
INFLUENTIAL MESSAGE PASSING COMPUTE
MODELS AND FRAMEWORKS

DataFlow Architectures / Languages (1975)

Kahn Process Networks (1974)

Communicating Sequential Processes (CSP) (1978)

Actor Model (1973/1978)

Message Passing Interface (MPI) (1992)

373

Dataflow Architectures and Languages*

 Take advantage of massive parallelism.

 Von Neumann Architecture unsuitable for parallelism. Bottlenecks:

 Global program counter and

 Global updatable memory

 Alternative proposal: dataflow architecture

 Local memory

 Execute instructions as soon as operands are available

 Program in a dataflow computer is a directed graph and data flows between
instructions along its edges

374
*following „Advances in Dataflow Programming Languages“, Johnston,
Hanna, Millar, ACM Computing Surveys Vol36, No.1, 2004
Dataflow Programming Languages invented in the mid 1970s

Example

 A := X + Y

 B := Y / 10

 C := A * B

375

X Y 10

+ /



C

token

fireable
node

special control nodes (gates):

merge split
c c

T F

T F

Early Dataflow Hardware Architectures

 Static Architecture (Jack Dennis /David Misunas 1975)

 Each arc can hold only one token

 Firing rule: token available on all input nodes and no token on output nodes

 Single token per arc  second loop cannot begin until the previous one has ended –
parallelism boils down to pipelining

 Dynamic Architecture (Watson/Gurd 1979)

 Multiple incovations of a subgraph allowed

 Each arc a bag of tokens with different tags (destinations, value)

 Node fireable when on each input edge the same tag is available

 Can take full advantage of pipelining and out of order execution.

376

MIT Tagged Token Dataflow Architecture

Conceptual Encoding of graph

Program memory:

Opcode Destination(s)

Encoding of token:

A “token” contains

120R, 6.847 Destination instruction address,
Left/Right port, Value

Possible reasons for the failure of early dataflow

 Totally new programming paradigm not accepted

 Dataflow languages almost invariably functional

 Programs in imperative languages hard to compile to a dataflow
architecture

 Dataflow architecture operated on a too fine grained level

 Von Neumann: process level granularity

 Early dataflow: instruction level granularity

378

Hybrid Dataflow

Realization in the 1990s:
Dataflow and von Neumann
architectures are not
mutually exclusive but the
two extremes of a continuum
of possible computer architectures

 Large-grain dataflow: each node contains an entire function expressed in a
sequential language

379

thread granularity

execution

time

Kahn Process Networks
 Seminal Paper „The Semantics of a Simple Language for Parallel

Programming“ by Gilles Kahn, 1974.

 „Formal approach to the design of programming languages and
system programming“

 Programming language based on Algol.

 KPNs describe a signal processing system:
Processes communicate by passing data tokens through
unidirectional FIFO channels

 KPN provide a distributed model of computation

 KPNs consist of a set of arbitrary deterministic sequential
processes

380

Concepts

 Channels

 Processes

 Wait
(Blocking Receive)

 Send
(Non-Blocking, unbounded fifos)

 Parallel invocation
of processes in
program body

381

Determinism
Execution Model

 Channels are the only way for communication

 Communication for each line takes unpredictable but finite time

 Each process is either computing or waiting on one of its input lines.Processes are not allowed to test
input channels for existence of tokens without consuming them (reads are blocking)

 Each process is a sequential process (given a specific input history for a process, the process must be
determinstic). Timing / execution order may not influence the result

 Determinism

 The history of tokens produced on communication channel does not depend on execution order

 Every execution order that obeys the semantic of the process network produces the same result

382

The Actor Model*

Actor = Computational agent that maps
communication to

 a finite set of communications sent to other actors
(messages)

 a new behavior (state)

 a finite set of new actors created (dynamic
reconfigurability)

 Undefined global ordering

 Asynchronous Message Passing

 Invented by Carl Hewitt 1973**

383

*Gul Agha (1986). Actors: A Model of Concurrent Computation in Distributed Systems. Doctoral Dissertation. MIT Press
**Carl Hewitt; Peter Bishop and Richard Steiger (1973). A Universal Modular Actor Formalism for Artificial Intelligence. IJCAI.

Actor

Thread

State

Mailbox

The Actor Model

Actor model provides a dynamic interconnection topology

 dynamically configure the graph during runtime (add channels)

 dynamically allocate resources

An actor sends messages to other actors using "direct naming", without
indirection via port / channel / queue / socket (etc.)

Implemented in various languages such as Erlang, Scala, Ruby and in
frameworks such as Akka (for Scala and Java)

384

Example: Erlang

Functional Programming Language

Developed by Ericsson for
distributed fault-tolerant
applications

 if no state is shared, recovering
from errors becomes much
easier

Open source

Concurrent, follows the actor
model

385

-module(pingpong).
-export([start/1, ping/2, pong/0]).

ping(0, Pong_Node) ->
{pong, Pong_Node} ! finished,
io:format("ping finished~n", []);

ping(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
receive

pong ->
io:format("Ping received pong~n", [])

end,
ping(N - 1, Pong_Node).

pong() ->
receive

finished ->
io:format("Pong finished~n", []);

{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()

end.

start(Ping_Node) ->
register(pong, spawn(tut18, pong, [])),
spawn(Ping_Node, tut18, ping, [3, node()]).

386

Erlang example
Start() ->

Pid = spawn(fun() -> hello() end),

Pid ! Hello,
Pid ! bye.

hello() ->
receive

hello ->
io:fwrite("Hello world\n"),

hello();
bye ->

io:fwrite("Bye cruel world\n"),
ok

end.

new task (actor) that will execute the hello
function
spawn returns address (Pid) of new task

Address (Pid) can be used to send messages to
task

387

Erlang example
Start() ->

Pid = spawn(fun() -> hello() end),

Pid ! Hello,
Pid ! bye.

hello() ->
receive

hello ->
io:fwrite("Hello world\n"),

hello();
bye ->

io:fwrite("Bye cruel world\n"),
ok

end.

new task (actor) that will execute the hello
function
spawn returns address (Pid) of new task

Address (Pid) can be used to send messages to
task

Messages sent to a task are put in a
mailbox

Receive reads the first message in the
mailbox, which is matched against
patterns (similar to a switch statement)

Event-driven programming:
code is structured as reactions to events

Communicating Sequential Processes

Sir Charles Antony Richard Hoare (aka C.A.R. / Tony Hoare) (1978, 1985)

Formal language defining a process algebra for concurrent systems.

Operators seq (sequential) and par (parallel) for the hierarchical
composition of processes.

Synchronisation and Communication between parallel processes with
Message Passing.

 Symbolic channels between sender and receiver

 Read and write requires a rendevouz (synchronous!)

CSP was firstly implemented in Occam.

388

CSP: Indirect Naming

 Most message passing architectures (including CSP) include an
intermediary entity (port / channel) to address send destination

 Process issuing send() specifies the port to which the message is sent

 Process issuing receive() specifies a port number and waits for the first
message that arrives at the port

389

process

CSP Example (from Hoare's seminal Paper)

Conway's Problem

 Write a program that transforms a series of cards with 80-character
columns in a series of printing lines with 125 characters each. Replace
each "**" by "^"

 Separation into processes (Threads)
R par C par P

 R: Reading process reading 80-character records

 C: Converting process converting "**" into "^"

 W: Writing process: write records with 125 characters

390

C PR

Channel c Channel d
c!x c?x d!x d?x

CSP Example (from Hoare's seminal Paper)

[west :: DISASSEMBLE] || X :: SQUASH || east :: ASSEMBLE]

SQUASH
X ::
*[c:character; west?c 

[c # asterisk  east!c
|c = asterisk  west?c;

[c # asterisk  east!asterisk; east!c
|c = asterisk  east!upward arrow
]

]
]

391

Repetition of guarded
command

Guarded receive

Blocking send

Guarded alternatives

SQUASHwest east

OCCAM

First programming language to implement CSP (1983)

ALT
count1 < 100 & c1 ? data

SEQ
count1 := count1 + 1
merged ! data

count2 < 100 & c2 ? data
SEQ
count2 := count2 + 1
merged ! data

status ? request
SEQ
out ! count1
out ! count2

392

Superpascal (Per Brinch Hansen (1994))
Typed channels, processes, parallel statements, message passing

type channel= *(boolean, number);

procedure ring(a: number; var prime: boolean);
var left, right: channel;
begin

open(left, right);
parallel
pipeline(left, right) | master(a, prime, left, right)
end

end;

procedure node(i: integer;
left, right: channel);

var a: number; j: integer;
composite: boolean;

begin
receive(left, a);
if i < p then send(right, a);
test(a, i, composite);
send(right, composite);
for j := 1 to i - 1 do
begin

receive(left, composite);
send(right, composite)

end
end;

procedure master(
a: number; var prime: boolean;
left, right: channel);

var
i: integer; composite: boolean;

begin
send(left, a); prime := true;
for i := 1 to p do

begin
receive(right, composite);
if composite then

prime := false
end

end;

procedure pipeline(left, right: channel);
type row = array [0..p] of channel;
var c: row; i: integer;

begin
c[0] := left; c[p] := right;
for i := 1 to p ¡ 1 do

open(c[i]);
forall i := 1 to p do

node(i, c[i-1], c[i])
end;

393

Go programming language
Concurrent programming language from Google

Language support for:
– Lightweight tasks (called goroutines)

– Typed channels for task communications

● channels are synchronous (or unbuffered) by default

● support for asynchronous (buffered) channels

Inspired by CSP

Language roots in Algol Family: Pascal, Modula, Oberon [Prof. Niklaus Wirth, ETH]

[One of the inventors of Go: Robert Griesemer holding a PhD from ETH]

394

Go example
func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs,done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}

395

Go example
func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs,done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}

396

Create two channels:
●msgs: for strings
●done: for boolean values

Go example
func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs,done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}

397

Create a new task (goroutine),
that will execute function
hello with the given
arguments

Go example
func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs,done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}

398

Hello takes two channels as
arguments for communication

Go example
func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs,done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}

399

Write arguments to msgs
channel

Read result via done channel

Towers of Hanoi (sequential)
package main
import "fmt"

func Hanoi(n, f, t, u int) {
if n<=1 {

fmt.Println(f, "->", t)
} else{

Hanoi(n-1, f, u, t);
fmt.Println(f, "->", t);
Hanoi(n-1, u, t, f);

}
}

func main() {
Hanoi(4,1,3,2)

}

400

Q: How can I easily return the
moves in this sequence to
main()?

Towers of Hanoi with go-routine
func Hanoi(ch chan<- int, n, f, t, u int) {

if n<=1 {
ch <- f
ch <- t

} else{
Hanoi(ch, n-1, f, u, t);
ch <- f
ch <- t
Hanoi(ch, n-1, u, t, f);

}
}

func Towers(ch chan<- int, n, f, t, u int) {
Hanoi(ch,n,f,t,u);
ch <- -1

}

func main() {
ch := make(chan int)
go Towers(ch, 4,1,3,2)
for ;; {

i := <-ch
if i<0 {return}
j := <-ch
fmt.Println(i,"<-",j)

}
}

401

Towers main()

Concurrent prime sieve

402source code copied from golang.org

G F2 F3 F5

... 9 8 7 6 5 4 3 2 9 7 5 3 ... 7 5 ... 7

Each station removes multiples of the first element received and passes on
the remaining elements to the next station

Concurrent prime sieve

func main() {

ch := make(chan int)

go Generate(ch)

for i := 0; i < 10; i++ {

prime := <-ch

fmt.Println(prime)

ch1 := make(chan int)

go Filter(ch, ch1, prime)

ch = ch1

}

}

403source code copied from golang.org

func Generate(ch chan<- int) {

for i := 2; ; i++ {

ch <- i

}

}

func Filter(in <-chan int, out chan<- int, prime int) {

for {

i := <-in // Receive value from 'in'.

if i%prime != 0 {

out <- i // Send 'i' to 'out'.

}

}

}

G F2 F3 F5

... 7 6 5 4 3 2 7 5 3 ... 7 5 ... 7

G
Fprime

Message Passing Interface (MPI)

Message passing libraries:

 PVM (Parallel Virtual Machines) 1980s

 MPI (Message Passing Interface) 1990s

MPI = Standard API

• Hides Software/Hardware details

• Portable, flexible

• Implemented as a library

Largely used for distributed HPC.

404

Program

MPI library

Standard
TCPI/IP

Standard
Network

HW

Specialized
Driver

Custom
Network

HW

SPMD

Single Program

Multiple Data
(Multiple Instances)

405

if (rank == 0)
do this

else
do that

if (rank == 0)
do this

else
do that

P0

if (rank == 0)
do this

else
do that

P1

if (rank == 0)
do this

else
do that

P2

if (rank == 0)
do this

else
do that

P3

we compile
one program

the if-else
makes it

SPMD

Synchronous / Asynchronous vs Blocking / Nonblocking

Synchronous / Asynchronous

 about communication between sender and receiver

Blocking / Nonblocking

 about local handling of data to be sent / received

406

MPI Send and Receive Defaults

Send

• blocking,

• synchrony implementation dependent

 depends on existence of buffering, performance considerations etc

Receive

• blocking

407

Danger of Deadlocks.
Don’t make any assumptions!

There are a lot of
different variations of
this in MPI.

Group Communication

MPI supports sending messages between groups of processors

• not absolutely necessary for programming

• but essential for performance

Examples: broadcast, gather, scatter, reduce, barrier

408

Reduce

409

2 3 4 5

14

0 1 2 3process

sender
buffer

receiver
buffer

+

Allreduce

Useful in a situation in which all of the processes need the result of a
global sum in order to complete some larger computation.

410

2 3 4 5

14 14 14 14

0 1 2 3process

sender
buffer

receiver
buffer

Allreduce = Reduce + Broadcast?

411

A global sum followed
by distribution of the
result.

Allreduce ≠ Reduce + Broadcast

412

A butterfly-structured global sum.

Broadcast

Data belonging to a single process is sent to all of the processes in the
communicator.

413

2

2 2 2 2

0 1 2 3process

sender
buffer

receiver
buffer

P0 10 20 30 P0 10 20 30

P1 10 20 30

P2 10 20 30

𝑦 =
1 2 3
4 5 6
7 8 9

⋅
𝟏𝟎
𝟐𝟎
𝟑𝟎

Scatter

Scatter can be used in a function that reads in an entire vector on process 0 but only
sends the needed components to each of the other processes.

414

2

3

4

5

2 4 6 8

0 1 2 3process

sender
buffer

receiver
buffer

6

7

3 5 7 9

8

9

P0

1 2 3 P0 1 2 3

P1 4 5 6

P2 7 8 9

4 5 6

7 8 9

𝑦 =
𝟏 𝟐 𝟑
𝟒 𝟓 𝟔
𝟕 𝟖 𝟗

⋅
10
20
30

Gather

Collect all of the components of the vector onto destination process, then destination

process can process all of the components.

415

2

3

4

5

2 4 6 8

0 1 2 3process

sender
buffer

receiver
buffer

6

7

3 5 7 9

8

9

P0 140 320 500

P0 140

P1 320

P2 500

𝒚 =
1 2 3
4 5 6
7 8 9

⋅
10
20
30

TRM PROCESSOR DETAILS

416

TRM Architectural State

 PC

 8 registers

 flag registers

 Memory (configurable)

 nK * 36 bits instruction memory (1k = 1024)

 nk * 32 bits data memory

417

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

PL vs. HDL
Programming Language

 Sequential execution

 No notion of time

var a,b,c: integer;

a := 1;
b := 2;
c := a + b;

Hardware Description Language

 Continuous execution (combinational logic)

wire [31:0] a,b,c;

assign a=1;
assign b=2;
assign c=a+b;

 Synchronous execution (register transfer)

reg [31:0] a,b,c;

always @ (posedge clk)
begin
a <= 1;
b <= 2;
c <= a+b;

end;

418

unknown
mapping

to machine
cycles

synchronous

at rising edge of
the clock

no memory

associated

Single-Cycle Datapath:
arithmetical logical instruction fetch

InsMem

(nK x 36)

Split
36

pmout
18IR

clk

pmadr

PC

Split

clk

pcmux

419

IRpcmux

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

Single-Cycle Datapath: instruction fetch

wire [PAW-1:0] pcmux, nxpc;
wire [17:0] IR;
reg [PAW-1:0] PC;

IM #(.BN(IMB)) imx(.clk(clk), .pmadr({{{32-PAW}{1'b0}},pcmux[PAW-1:1]}),
.pmout(pmout));

assign IR = (~rst)? NOP: (PC[0]) ? pmout[35:18] : pmout[17:0];

always @ (posedge clk) begin
if (~rst) PC <= 0;
else if (stall0)

PC <= PC;
else

PC <= pcmux;
end

420

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

Single-Cycle Datapath: register read

RF

dst

irs

A

DPRA

WE

B

AA

D

c
lk

421

 STEP 2: Read source operands from register file

wire [2:0] rd, rs;
wire regWr;
wire [31:0] rdOut, rsOut;

//register file
…

assign irs = IR[2:0];
assign ird = IR[13:11];
assign dst = (BL)? 7: ird;

source register

destination register

IR

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

ADD R0 R1 (0x08401)

Single-Cycle Datapath: ALU

RF

dst

irs

A

DPRA

we

B

AA

WD

c
lk

ALU

imm

IR[10]

422

 STEP 3: Compute the result via ALU
wire [31:0] AA, A, B, imm;
wire [32:0] aluRes;

assign A = (IR[10])? AA:
{22’b0, imm};

assign minusA = {1‘b0, ~A} + 33‘d1;
assign aluRes =

(MOV)? A:
(ADD)? {1‘b0, B} + {1‘b0, A} :
(SUB)? {1‘b0, B} + minusA :
(AND)? B & A :
(BIC)? B & ~A :
(OR)? B | A :
(XOR)? B ^ A :
~A;

A, B

IR

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

ADD R0 R1 (0x08401)

Control Path
assign vector = IR[10] & IR[9] & ~IR[8] & ~IR[7];
assign op = IR[17:14];

assign MOV = (op == 0);
assign NOT = (op == 1);
assign ADD = (op == 2);
assign SUB = (op == 3);
assign AND = (op == 4);
assign BIC = (op == 5);
assign OR = (op == 6);
assign XOR = (op == 7);
assign MUL = (op == 8) & (~IR[10] | ~IR[9]);
assign ROR = (op == 10);
assign BR = (op == 11) & IR[10] & ~IR[9];
assign LDR = (op == 12);
assign ST = (op == 13);
assign Bc = (op == 14);
assign BL = (op == 15);
assign LDH = MOV & IR[10] & IR[3];
assign BLR = (op == 11) & IR[10] & IR[9];

423

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

IR17:14 Function

0000 B := A

0001 B := ~A

0010 B := B + A

0011 B := B – A

0100 B := B & A

0101 B := B & ~A

0110 B := B | A

0111 B := B ^ A

Single-Cycle Datapath: write back to Rd

InsMem

(nK x 36)

Split
36

pmout
18IR

clk

pmadr

PC

Split

clk

pcmux

RF

dst

irs

A

DPRA

WE

B

AA

WD

c
lk

32

32

32

ALU

32

imm

32 32

aluRes
33

32

32

...

regWr

regmux

424

 STEP 4: Write result back to Rd

pcmux IR

A, B

aluRes

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

ADD R0 R1 (0x08401)

Single-Cycle Datapath: write back to Rd

wire [31:0] regmux;
wire regwr;

...

assign regwr = (~LD | stall1) & ~ST & ~Bc & ~BR;

assign regmux =
LDR ?
ioenbReg ? InbusReg : dmout
: ROR ? s3
: (BL | BR) ? {{DW-IAW{1'b0},nxpc}
: aluRes

425

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

ADD R0 R1 (0x08401)

Single-Cycle Datapath: LD

IM

(nK x 36)

Split
36

pmout
18ir

clk

pmadr

PC

Split
11

clk

pcmux

RF

dst

irs

WE

B

AA

WD

c
lk

32

32

32

ALU

1

32

imm

isReg

32 32

aluRes
32

...

regwr

regmux

DatMem

(2K x 32)

zero

extend

Ir[9:3]

Split

rdAdr

clk

wrDat

wrEnb

rd

+

426

 STEP 1: Fetch instruction

 STEP 2: Read source operand from the register file

 STEP 3: Compute the memory address

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

Single-Cycle Datapath: LD

IM

(nK x 36)

Split
36

pmout
18ir

clk

pmadr

PC

Split

clk

pcmux

RF

dst

irs

A

DPRA

we

B

AA

WD

c
lk

32

32

32

ALU

32

imm

32 32

aluRes
32

...

regWr

regmux

DM

(nK x 32)

zero

extend

Split

adr

clk

wrDat

wrEnb

rdDat

+

dmout 32

427

 STEP 3: Compute the memory address

 STEP 4: Read data from data memory

read data memory is clocked,
stall the processor for one
cycle.

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

428

TRM Stalling

 stop fetching next instruction, pcmux keeps the current value

 disable register file write enable and memory write enable signals to
avoid changing the state of the processor.

 only LD and MUL instructions stall the processor.

 dmwe signal is not affected.

 regwr signal is affected.

Single-Cycle Datapath: LD

IM

(nK x 36)

Split
36

pmout
18ir

clk

pmadr

PC

Split

clk

pcmux

RF

dst

irs

A

DPRA

WE

B

AA

WD

c
lk

32

32

32

ALU

32

imm

32 32

aluRes

mulH

32

32

...

regWr

regmux

DM

(nK x 32)

zero

extend

Split

adr

clk

wrDat

wrEnb

rdDat

+

32

429

 STEP 4: Read data from data memory

 STEP 5: Write data back into the register file

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

TRM: LD
Verilog code in TRM module

wire [31:0] dmout;

wire [DAW:0] dmadr;

wire [6:0] offset;

reg IoenbReg;

//register file

…

Assign dmadr = (irs == 7) ? {{{DAW-6}{1'b0}}, offset} :(AA[DAW:0] + {{{DAW-6}{1'b0}}, offset});

assign ioenb = &(dmadr[DAW:6]);

assign rfWd = ...

(LDR & ~IoenbReg)? dmout:

(LDR & IoenbReg)? InbusReg: //from IO

...;

always @(posedge clk)

IoenbReg <= ioenb;

430

I/O space: Uppermost
2^6 bytes in data
memory

LD rd, [rs+offset]

Src register = lr ignored
(Harvard architecture!)

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

Single-Cycle Datapath: ST

IM

(nK x 36)

Split
36

pmout
18ir

clk

pmadr

PC

Split

clk

pcmux

RF

dst

irs

A

DPRA

WE

B

AA

WD

c
lk

32

32

32

ALU

32

imm

32 32

aluRes

mulH

32

32

...

regWr

regmux

DM

(nK x 32)

zero

extend

Split

adr

clk

wrDat

wrEnb

rdDat

+

32

431

 STEP 1: Fetch instruction

 STEP 2: Read source operand from the register file

 STEP 3: Compute the memory address

 STEP 4: Write data into the data memory

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

Single-Cycle Datapath: ST

wire [31:0] dmin;

wire dmwr;

//register file

…

DM #(.BN(DMB)) dmx (.clk(clk),

.wrDat(dmin),

.wrAdr({{{31-DAW}{1'b0}},dmadr}),

.rdAdr({{{31-DAW}{1'b0}},dmadr}),

.wrEnb(dmwe),

.rdDat(dmout));

Assign dmwe = ST & ~IR[10] & ~ioenb;

assign dmin = B;

 STEP 3: Compute the memory address

 STEP 4: Write data into the data memory

432

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

Single-Cycle Datapath: set flag registers

433

always @ (posedge clk, negedge rst) begin // flags
handling

if (~rst) begin N <= 0; Z <= 0; C <= 0; V <= 0; end
else begin
if (regwr) begin

N <= aluRes[31];
Z <= (aluRes[31:0] == 0);
C <= (ROR & s3[0]) | (~ROR & aluRes[32]);
V <= ADD & ((~A[31] & ~B[31] & aluRes[31])

| (A[31] & B[31] & ~aluRes[31]))
| SUB & ((~B[31] & A[31] & aluRes[31])
| (B[31] & ~A[31] & ~aluRes[31]));

end
end

end

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

Single-Cycle Datapath: set flag registers

IM

(nK x 36)

Split
36

RD
18ir

clk

adr

PC

Split

clk

pcmux

RF

dst

irs

A

DPRA

WE

B

AA

WD

c
lk

32

32

32

ALU

32

imm

32 32

aluRes
33

32

3

32

...

regWr

regmux

DM

(nK x 32)

zero

extend

Split

adr

clk

wrDat

wrEnb

rdOut

+

32

2

Condition

Flag Regs

(N, Z, C, V)clk

flagOp
2 alu[32:31]

1 B[31]

1 A[31]

434

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

Single-Cycle Datapath: Branch instructions

 Type c instructions, BR instruction, BL instruction

 PC <= PC + 1 + off

 PC <= Rs

 PC <= PC + 1 (by default)

 PC <= PC (if stall)

 PC <= 0 (reset)

435

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

Single-Cycle Datapath: Branch instructions

IM

(nK x 36)

Splitpmout
18

clk

pmadr

PC

Split

clk

pcmux

RF

dst

irs

A

DPRA

we

B

AA

wd

c
lk

32

32

32

ALU

32

imm

32 32

aluRes

32

3

...

regWr

regWdSel

regmux

DM

(nK x 32)

zero

extend

Split

adr

clk

wrDat

wrEnb

rdOut

+

32

Condition

Flag Regs

(N, Z, C, V)clk

flagOp

H
clk

7

0

+

+

3

36

436

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

Single-Cycle Datapath: Branch instructions

//pcmux logic

assign pcmux =

(~rst) ? 0 :

(stall0) ? PC:

(BL)? {{10{IR[BLS-1]}},IR[BLS-1: 0]}+ nxpc :

(Bc & cond) ? {{{PAW-10}{IR[9]}}, IR[9:0]} + nxpc :

(BLR | BR) ? A[PAW-1:0] :

nxpc;

437

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

Complete single-cycle datapath

IM

(nK x 36)

Split
36

pmout
18ir

clk

pmadr

PC

Split

clk

pcmux

RF

dst

irs

we

B

AA

wd

c
lk

32

32

32

ALU

32

imm

32 32

aluRes

32

32

regWr

rfWd

DM

(nK x 32)

zero

extend

Split

adr

clk

wrDat

wrEn

b

rdOut

+

32

Condition

Flag Regs

(N, Z, C, V)clk

flagOp

1

1

H
clk

0

+

+

32

zero

extend

1

dmwe

438

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

EXPECTATIONS FOR THE EXAM

439

Background

ARM

 Characterize ARM Instruction Set

 Processor Modes, Register Shadowing, Interrupts / IRQ Table

Language Support

 Loading and Linking

 The Oberon execution model: Commands and Module Loading, Module
Unloading

 Object Files and consistency

 Runtime support: type inheritance and inference

440

Minos Case Study

 Memory Management: Classical Memory Layout

 MMU setup for Minos

 Stack- and Heap Management

 Preemptive, Rate Monotonic Scheduling. Single core scheduling with
one stack

 Process Context

 (Prevention of) data races

 SPI: characterization, communication model

441

A2 case study

 Multi-Core boot

 APIC: idea, most important tasks, Interprocessor Interrupts

 Race conditions and their prevention (multicore): Spinlocks and beyond

 Active Oberon Compute Model: Semantics of EXCLUSIVE / AWAIT (Egg-
Shell Modell)

 Stack Management

 Activity Management (A2): process states, data structures

 Context-Switches (Synchronous / Asynchronous) [no IRQ-trick details]

442

Lock-Free Kernel

 Spinlocks, CAS, Contention and Backoff

 Lock-free algorithms (counter, stack)

 ABA Problem

 Hazard-Pointers

 Implicit cooperative Multitasking  Processor local storage

 Task Switch Finalizers

443

Case Study 3: RISC / Oberon

 Pros & Cons of building from scratch

 Processor construction: instruction set (and stalls)

 Measuring hardware speed

 Characterize the Oberon system (User Interface / Core Structure /
Programming Model)

 Memory mapped registers

444

Case Study 4: Active Cells

 Active Cells Programming Model: Idea, Semantics

 Hybrid compilation, Implementation (ideas)

 TRM

 Fast Path

 Axi-4 Stream interconnects

 Extensible Hardware, Engines (very qualitative)

445

Typical Exam Questions

Entry Questions

 How does a multiprocessor system boot?

 Typical memory layout of a one-/multi-processor system (no
heavyweight processes). Unmapped pages...

 Specialities of ARM instruction set / the ARM architecture

 What is GPIO?

 What happens when a command is activated in Oberon

 What does module loading and module unloading mean and imply?

446

Progressing towards...
 How do you implement a low-level lock? On a single-core system, on a multicore-system?

 How to implement a lock-free stack? What is the ABA problem? How to solve it?

 Difference between static- and dynamic loading

 Remember why the first page of the system was unmapped? Pitfalls?

 Describe a simple scheduler with periodic and aperiodic tasks (etc.)

 Sketch the life cycles of processes in A2

 Stack allocation in A2. How could a dynamic stack be implemented?

 Advantages and disadvantages of 18-bit instructions of TRM

 Advantages and disadvantages of building hardware from scratch

 Hybrid compilation: what? How?

 Why patch code / data files to bit stream? Alternatives?

A selection of possible exam questions will be available through the repository

447

THE END

I will be available for further questions via email

felix.friedrich@inf.ethz.ch

Do not hesitate to ask!

448

