ABA

Problems of unbounded lock-free queues

= unboundedness = dynamic memory allocation is inevitable
= if the memory system is not lock-free, we are back to square 1

= reusing nodes to avoid memory issues causes the ABA problem (where ?!)

* Employ Hazard Pointers now.

290

Hazard Pointers

Store pointers of memory
references about to be accessed
by a thread

Memory allocation checks all
hazard pointers to avoid the ABA
problem

Hazard Pointers

* Store pointers of memory

references about to be accessed thread A thread B thread C

by a thread - hpl -hpl - hpl
- hp2 - hp2 - hp2
* Memory allocation checks all

hazard pointers to avoid the ABA
problem

Hazard Pointers

* Store pointers of memory

references about to be accessed thread A
by a thread - hp1
- hp2

* Memory allocation checks all
hazard pointers to avoid the ABA
problem

Number of threads unbounded

—time to check hazard pointers
also unbounded!

— difficult dynamic bookkeeping!

thread B
- hpl
- hp2

thread C
- hp1l
- hp2

Key idea of Cooperative MT & Lock-free Algorithms

Use the guarantees of cooperative multitasking to
implement efficient unbounded lock-free queues

Time Sharing

user mode kernel mode

§ timer IRQ

thread A

awn

thread B

- save processor registers (assembly)

- call timer handler (assembly)

- lock scheduling queue

- pick new process to schedule

- unlock scheduling queue

- restore processor registers (assembly)
- Interrupt return (assembly)

Time Sharing

awn

user mode kernel mode

timer IRQ

thread A

thread B

- save processor registers (assembly)

- call timer handler (assembly)

- lock scheduling queue

- pick new process to schedule

- unlock scheduling queue

- restore processor registers (assembly)
- Interrupt return (assembly)

N

inherently hardware
dependent

(timer programming
context save/restore)

Time Sharing

awn

user mode kernel mode

timer IRQ

thread A - save processor registers (assembly)

- call timer handler (assembly)
- lock scheduling queue

- pick new process to schedule
- unlock scheduling queue

inherently hardware
dependent

(timer programming
context save/restore)

- restore processor registers (assembly)\

thread B - Interrupt return (assembly)

inherently non-parallel
(scheduler lock)

Cooperative Multitasking

user mode user mode

g function call

thread A

swli

- pick new process to schedule (lockfree)

- switch base pointer

thread B _
- return from function call

Cooperative Multitasking

user mode user mode

hardware independent

(no timer required,

standard procedure calling convention
takes care of register save/restore)

function call
thread A
% - pick new process to schedule (lockfree)
thread B - switch base pointer

- return from function call

Cooperative Multitasking

user mode user mode

hardware independent

(no timer required,

standard procedure calling convention
takes care of register save/restore)

function call
thread A
% - pick new process to schedule (lockfree)
thread B - switch base pointer

- return from function call finest granularity

(no lock)

Implicit Cooperative Multitasking

Ensure cooperation

= Compiler automatically inserts code at specific points in the code

Implicit Cooperative Multitasking

Ensure cooperation

= Compiler automatically inserts code at specific points in the code

Details
= Each process has a quantum

= At regular intervals, the compiler inserts code to decrease the
guantum and calls the scheduler if necessary

sub [rcx + 88], 10 ; decrement quantum by 10

jge skip ; check if it 1s negative

call Switch ; perform task switch
skip:

implicit cooperative multitasking — AMD64

uncooperative

PROCEDURE Enqueue- (item: Item; VAR queue: Queue);
BEGIN {UNCOOPERATIVE}

(* no scheduling here ! *)

END Enqueue;

296

uncooperative

PROCEDURE Enqueue- (item: Item; VAR queue: Queue);
BEGIN {UNCOOPERATIVE}

(* no scheduling here ! *)

END Enqueue;

zero overhead processor
local "locks"

296

Implicit Cooperative Multitasking

Implicit Cooperative Multitasking

Pros
= extremely light-weight — cost of a regular function call
= allow for global optimization — calls to scheduler known to the compiler

= zero overhead processor local locks

Implicit Cooperative Multitasking

Pros
= extremely light-weight — cost of a regular function call
= allow for global optimization — calls to scheduler known to the compiler

= zero overhead processor local locks

Cons

= overhead of inserted scheduler code

= currently sacrifice one hardware register (e.g. rcx)

= requires a special compiler and access to the source code

Cooperative MT & Lock-free Algorithms

Guarantees of cooperative MT

* No more than M threads are executing inside an uncooperative
block (M = # of processors)

* No thread switch occurs while a thread is running on a processor

Cooperative MT & Lock-free Algorithms

Guarantees of cooperative MT

* No more than M threads are executing inside an uncooperative
block (M = # of processors)

* No thread switch occurs while a thread is running on a processor

= hazard pointers can be associated with the processor
= Number of hazard pointers limited by M

= Search time constant

Cooperative MT & Lock-free Algorithms

Guarantees of cooperative MT

* No more than M threads are executing inside an uncooperative
block (M = # of processors)

* No thread switch occurs while a thread is running on a processor

= hazard pointers can be associated with the processor
= Number of hazard pointers limited by M

= Search time constant

thread-local storage - processor local storage

No Interrupts?

Device drivers are interrupt-driven

= breaks all assumptions made so far
(number of contenders limited by the number of processors)

No Interrupts?

Device drivers are interrupt-driven

= breaks all assumptions made so far
(number of contenders limited by the number of processors)

Key idea: model interrupt handlers as virtual processors

= M = # of physical processors + # of potentially concurrent interrupts

Queue Data Structures

for each queue

first last

global (once!)

hazard released
pointers pointers

hazard hazard pooled pooled hazard hazard pooled pooled
first/last = next first/last | next first/last next first/last = next

Hprocessors

N
Vv

300

Marking Hazarduous

PROCEDURE Access (VAR node, reference: Node; pointer: SIZE);
VAR value: Node; index: SIZE;
BEGIN {UNCOOPERATIVE, UNCHECKED}

index := Processors.GetCurrentIndex ();
LOOP
processors|[index].hazard[pointer] := node;

guarantee: the node in reference
was set hazardous before it was
here available in reference

value := CAS (reference, NIL, NIL);
IF value = node THEN EXIT END;
nhode := value;
END;
END Access;

PROCEDURE Discard (pointer: SIZE);

BEGIN {UNCOOPERATIVE, UNCHECKED}
processors[Processors.GetCurrentIndex ()].hazard[pointer] := NIL;

END Discard;

Node Reuse

PROCEDURE Acquire (VAR node {UNTRACED}: Node): BOOLEAN;
VAR index := ©: SIZE;
BEGIN {UNCOOPERATIVE, UNCHECKED}
WHILE (node # NIL) & (index # Processors.Maximum) DO
IF node = processors[index].hazard[First] THEN

Swap (processors[index].pooled[First], node); index := 0;
ELSIF node = processors[index].hazard[Next] THEN

Swap (processors[index].pooled[Next], node); index := 0;
ELSE

INC (index) wait free algorithm to find non-
END; hazarduous node for reuse (if any)

END;
RETURN node # NIL;
END Acquire;

Lock-Free Enqueue with Node Reuse

nhode := item.node;
IF ~Acquire (node) THEN
NEW (node);
END;
nhode.next := NIL; node.item := item;

LOOP
last := CAS (queue.last, NIL, NIL);
Access (last, queue.last, Last);
next := CAS (last.next, NIL, node);
IF next = NIL THEN EXIT END;
IF CAS (queue.last, last, next) # last THEN CPU.Backoff END;
END;
ASSERT (CAS (queue.last, last, node) # NIL, Diagnostics.InvalidQueue);
Discard (Last);

303

Lock-Free Enqueue with Node Reuse

hode := item.node;
IF ~Acquire (node) THEN
NEW (node); reuse
END;
hode.next := NIL; node.item := item;
LOOP

last := CAS (queue.last, NIL, NIL);

Access (last, queue.last, Last);

next := CAS (last.next, NIL, node);

IF next = NIL THEN EXIT END;

IF CAS (queue.last, last, next) # last THEN CPU.Backoff END;
END;
ASSERT (CAS (queue.last, last, node) # NIL, Diagnostics.InvalidQueue);
Discard (Last);

303

Lock-Free Enqueue with Node Reuse

hode := item.node;
IF ~Acquire (node) THEN
NEW (node); reuse
END;
hode.next := NIL; node.item := item;

LOOP
last := CAS (queue.last, NIL, NIL);
Access (last, queue.last, Last); mark last hazarduous
next := CAS (last.next, NIL, node);
IF next = NIL THEN EXIT END;
IF CAS (queue.last, last, next) # last THEN CPU.Backoff END;
END;
ASSERT (CAS (queue.last, last, node) # NIL, Diagnostics.InvalidQueue);
Discard (Last);

303

Lock-Free Enqueue with Node Reuse

hode := item.node;
IF ~Acquire (node) THEN
NEW (node); reuse
END;
hode.next := NIL; node.item := item;

LOOP
last := CAS (queue.last, NIL, NIL);
Access (last, queue.last, Last); mark last hazarduous
next := CAS (last.next, NIL, node);
IF next = NIL THEN EXIT END;
IF CAS (queue.last, last, next) # last THEN CPU.Backoff END;
END;
ASSERT (CAS (queue.last, last, node) # NIL, Diagnostics.InvalidQueue);
Discard (Last); unmark last

303

Lock-Free Dequeue with Node Reuse

LOOP
first := CAS (queue.first, NIL, NIL);
Access (first, queue.first, First);
next := CAS (first.next, NIL, NIL);
Access (next, first.next, Next);
IF next = NIL THEN
item := NIL; Discard (First); Discard (Next); RETURN FALSE

END;
last := CAS (queue.last, first, next);
item := next.item;

IF CAS (queue.first, first, next) = first THEN EXIT END;
Discard (Next); CPU.Backoff;
END;
first.item := NIL; first.next := first; item.node := first;
Discard (First); Discard (Next); RETURN TRUE;

304

Lock-Free Dequeue with Node Reuse

LOOP
first := CAS (queue.first, NIL, NIL);
Access (first, queue.first, First); mark first hazarduous

next := CAS (first.next, NIL, NIL);
Access (next, first.next, Next);
IF next = NIL THEN
item := NIL; Discard (First); Discard (Next); RETURN FALSE

END;
last := CAS (queue.last, first, next);
item := next.item;

IF CAS (queue.first, first, next) = first THEN EXIT END;
Discard (Next); CPU.Backoff;
END;
first.item := NIL; first.next := first; item.node := first;
Discard (First); Discard (Next); RETURN TRUE;

304

Lock-Free Dequeue with Node Reuse

LOOP
first := CAS (queue.first, NIL, NIL);
Access (first, queue.first, First); mark first hazarduous
next := CAS (first.next, NIL, NIL);
Access (next, first.next, Next); mark next hazarduous

IF next = NIL THEN
item := NIL; Discard (First); Discard (Next); RETURN FALSE

END;
last := CAS (queue.last, first, next);
item := next.item;

IF CAS (queue.first, first, next) = first THEN EXIT END;
Discard (Next); CPU.Backoff;
END;
first.item := NIL; first.next := first; item.node := first;
Discard (First); Discard (Next); RETURN TRUE;

304

Lock-Free Dequeue with Node Reuse

LOOP
first := CAS (queue.first, NIL, NIL);
Access (first, queue.first, First); mark first hazarduous
next := CAS (first.next, NIL, NIL);
Access (next, first.next, Next); mark next hazarduous

IF next = NIL THEN
item := NIL; Discard (First); Discard (Next); RETURN FALSE unmark first and next
END;
last := CAS (queue.last, first, next);
item := next.item;
IF CAS (queue.first, first, next) = first THEN EXIT END;
Discard (Next); CPU.Backoff;
END;
first.item := NIL; first.next := first; item.node := first;
Discard (First); Discard (Next); RETURN TRUE;

304

Lock-Free Dequeue with Node Reuse

LOOP
first := CAS (queue.first, NIL, NIL);
Access (first, queue.first, First); mark first hazarduous
next := CAS (first.next, NIL, NIL);
Access (next, first.next, Next); mark next hazarduous

IF next = NIL THEN

item := NIL; Discard (First); Discard (Next); RETURN FALSE unmark first and next
END;
last := CAS (queue.last, first, next);

item := next.item;

IF CAS (queue.first, first, next) = first THEN EXIT END;

Discard (Next); CPU.Backoff; unmark next
END;
first.item := NIL; first.next := first; item.node := first;

Discard (First); Discard (Next); RETURN TRUE;

304

Lock-Free Dequeue with Node Reuse

LOOP
first := CAS (queue.first, NIL, NIL);
Access (first, queue.first, First); mark first hazarduous
next := CAS (first.next, NIL, NIL);
Access (next, first.next, Next); mark next hazarduous

IF next = NIL THEN

item := NIL; Discard (First); Discard (Next); RETURN FALSE unmark first and next
END;
last := CAS (queue.last, first, next);

item := next.item;

IF CAS (queue.first, first, next) = first THEN EXIT END;

Discard (Next); CPU.Backoff; unmark next
END;
first.item := NIL; first.next := first; item.node := first;

Discard (First); Discard (Next); RETURN TRUE; unmark first and next

304

Scheduling -- Activities

TYPE Activity* = OBJECT {DISPOSABLE} (Queues.Item) ———— accessed via

VAR activity register
access to current processor

stack management
guantum and scheduling

active object

END Activity;

(cf. Activities.Mod)

305

Lock-free scheduling

Use non-blocking Queues and discard coarser granular locking.

Problem: Finest granular protection makes races possible that did not
occur previously:

current := GetCurrentTask()
next := Dequeue(readyqueue)
Enqueue(current, readyqueue)

SwitchTo(next)

Lock-free scheduling

Use non-blocking Queues and discard coarser granular locking.

Problem: Finest granular protection makes races possible that did not
occur previously:

current := GetCurrentTask()

next := Dequeue(readyqueue)

Other thread can dequeue
and run (on the stack of)
the currently executing
thread!

Enqueue(current, readyqueue)

SwitchTo(next)

306

Task Switch Finalizer

PROCEDURE Switch-;
VAR currentActivity {UNTRACED}, nextActivity: Activity;
BEGIN {UNCOOPERATIVE, SAFE}
currentActivity := SYSTEM.GetActivity () (Activity);
IF Select (nextActivity, currentActivity.priority) THEN
SwitchTo (nextActivity, Enqueue, ADDRESS OF readyQueue[currentActivity.priority]);

FinalizeSwitch;
ELSE Enqueue runs on
currentActivity.quantum := Quec. *'im; new thread
END;

END Switch; Calls finalizer of

previous thread

(* Switch finalizer that enqueues the previous activity to the specified ready queue. *)
PROCEDURE Enqueue (previous {UNTRACED}: Activity; queue {UNTRACED}: POINTER {UNSAFE} TO Queues.Queue);
BEGIN {UNCOOPERATIVE, UNCHECKED}

Queues.Enqueue (previous, queue’);

IF ADDRESS OF queue” = ADDRESS OF readyQueue[IdlePriority] THEN RETURN END;

IF Counters.Read (working) < Processors.count THEN Processors.ResumeAllProcessors END;

END Enqueue; 307

Task Switch Finalizer

PROCEDURE FinalizeSwitch-;

VAR currentActivity {UNTRACED}: Activity;

BEGIN {UNCOOPERATIVE, UNCHECKED}
currentActivity := SYSTEM.GetActivity () (Activity);
IF currentActivity.finalizer # NIL THEN

currentActivity.finalizer (currentActivity.previous, currentActivity.argument)
END;
currentActivity.finalizer := NIL;
currentActivity.previous := NIL; Enqueue!
END FinalizeSwitch;

308

Stack Management

Stacks organized as Heap Blocks.
Stack check instrumented at beginning of each procedure.

Stack expansion possibilities

Stack Management

Stacks organized as Heap Blocks.
Stack check instrumented at beginning of each procedure.

Stack expansion possibilities

1. old new

Tcopy
old

Stack Management

Stacks organized as Heap Blocks.

Stack check instrumented at beginning of each procedure.

Stack expansion possibilities

1. old new
Tcopy
old

2. old old =

link

new

Copying stack

Must keep track of all pointers from stack to stack

Requires book-keeping of

Copying stack

Must keep track of all pointers from stack to stack
Requires book-keeping of

= call-by-reference parameters
= Open arrays

= records

= unsafe pointer on stack
= e.g. file buffers

Copying stack

Must keep track of all pointers from stack to stack
Requires book-keeping of

= call-by-reference parameters
= open arrays

= records

= unsafe pointer on stack
= e.g. file buffers

turned out to be prohibitively expensive

310

Linked Stack

Linked Stack

" |nstrumented call to ExpandStack

Linked Stack

" |nstrumented call to ExpandStack

" End of current stack segment pointer included in process descriptor

Linked Stack

" |nstrumented call to ExpandStack
" End of current stack segment pointer included in process descriptor

" Link stacks on demand with new stack segment

Linked Stack

" |nstrumented call to ExpandStack
" End of current stack segment pointer included in process descriptor
" Link stacks on demand with new stack segment

= Return from stack segment inserted into call chain backlinks

Linked Stacks

Linked Stacks

caller of
A.B

parameters

pc
fp
proc desc

var

Linked Stacks

caller of
A.B

A.B

parameters

pc
fp
proc desc

var

par

pc (caller of A.B)
fp
pdesc of A.B

312

Linked Stacks

caller of
A.B

A.B

ExpandStack

parameters

pC

fp

proc desc

var

par

pc (caller of A.B)

fp
pdesc of A.B

var

pc (caller of expandstack)

312

Linked Stacks

caller of
A.B

A.B

ExpandStack

parameters

pc
fp
proc desc

var

par

pc (caller of A.B)

fp
pdesc of A.B

var

par

pc (caller of expandstack)

fp
pdesc

312

Linked Stacks

caller of
A.B

A.B

ExpandStack

parameters

pc
fp
proc desc

var

par

pc (caller of A.B)

fp
pdesc of A.B

var

par

pc (caller of expandstack)

fp
pdesc

312

Linked Stacks

caller of
A.B

A.B
becomes frame of

ReturnToStackSegment

ExpandStack

. parameters
o

c

EE fe

proc desc

var

I pc(caller of A.B)

— [fp

pdesc of A.B—> pdesc of ReturnToStackSegment

var

par
fp
pdesc

var

pc (caller of expandstack)

A.B

par (copy)

pc (ReturnToStackSegment)

fp
pdesc of A.B

var

312

Linked Stacks

par (copy)

pc (ReturnToStackSegment)

fp
pdesc of A.B

caller of . parameters A.B
AB -

c

EE fe

proc desc

var

var

I pc(caller of A.B)

A.B —
becomes frame of pdesc of A.B-> pdesc of ReturnToStackSegment
ReturnToStackSegment var
r
I
! par
1
pc (caller of expandstack)
ExpandStack ! o
pdesc

var

312

Linked Stacks

caller of
A.B

A.B
becomes frame of

ReturnToStackSegment

ExpandStack

A.B

. parameters
o

c

EE fe

proc desc

var

I pc(caller of A.B)
— [<

pdesc of A.B—> pdesc of ReturnToStackSegment

var

©
Q
—

pc (caller of expandstack)

fp - fp(new), return new sp
pdesc

var

par (copy)

pc (ReturnToStackSegment)

fp
pdesc of A.B

var

312

Lock-free Garbage Collector

" |ncremental

= Mark & Sweep = several instances of the GC traverse

f the h
= mark counter, sweeping blocks parts of the heap

. = Concurrent
= Precise

= GCrunsin cocurrently with mutator

= GC knows all pointers, no heuristics
P thread

* Optional = Parallel

2 m can ilt without GC .
system can be bu = Several instances of the GCs can run

concurrently

Synchronisation

Mutators M, M, M, Mark

Write
Barrier

Collectors C, C, Traverse

314

Data Structures

Global Per Object
Mark Bit
Marist [Miarked Firse NextMarked
Watchlist

Root Set

315

Example

Cycle Count =2

Root Set > A,
Marked List > C, > D, —e
Watched List > E, > G, > F, —e

316

Lock-Free Runtime Conclusion

= Consequent use of lock-free algorithms in the kernel

" Oberon Synchronization primitives (for applications) implemented on
top

= Efficient unbounded lock-free queues, ABA Problem solved using Hazard
Pointers

" |mplicit cooperative multitasking -> can switch off scheduling locally
(uncooperative blocks)

= Parallel and lock-free memory management with garbage collection

