
ABA

Problems of unbounded lock-free queues

 unboundedness dynamic memory allocation is inevitable

 if the memory system is not lock-free, we are back to square 1

 reusing nodes to avoid memory issues causes the ABA problem (where ?!)

 Employ Hazard Pointers now.

290

Hazard Pointers
• Store pointers of memory

references about to be accessed
by a thread

• Memory allocation checks all
hazard pointers to avoid the ABA
problem

Hazard Pointers
• Store pointers of memory

references about to be accessed
by a thread

• Memory allocation checks all
hazard pointers to avoid the ABA
problem

thread A

- hp1
- hp2

thread B

- hp1
- hp2

thread C

- hp1
- hp2

…

Hazard Pointers
• Store pointers of memory

references about to be accessed
by a thread

• Memory allocation checks all
hazard pointers to avoid the ABA
problem

Number of threads unbounded

→time to check hazard pointers
also unbounded!

→difficult dynamic bookkeeping!

thread A

- hp1
- hp2

thread B

- hp1
- hp2

thread C

- hp1
- hp2

…

Key idea of Cooperative MT & Lock-free Algorithms

Use the guarantees of cooperative multitasking to
implement efficient unbounded lock-free queues

Time Sharing

- save processor registers (assembly)

- call timer handler (assembly)

- lock scheduling queue

- pick new process to schedule

- unlock scheduling queue

- restore processor registers (assembly)

- interrupt return (assembly)

thread A

tim
e

thread B

user mode kernel mode

timer IRQ

Time Sharing

- save processor registers (assembly)

- call timer handler (assembly)

- lock scheduling queue

- pick new process to schedule

- unlock scheduling queue

- restore processor registers (assembly)

- interrupt return (assembly)

thread A

tim
e

thread B

user mode kernel mode

timer IRQ

inherently hardware
dependent

(timer programming
context save/restore)

Time Sharing

- save processor registers (assembly)

- call timer handler (assembly)

- lock scheduling queue

- pick new process to schedule

- unlock scheduling queue

- restore processor registers (assembly)

- interrupt return (assembly)

thread A

tim
e

thread B

user mode kernel mode

timer IRQ

inherently hardware
dependent

(timer programming
context save/restore)

inherently non-parallel
(scheduler lock)

Cooperative Multitasking

thread A

tim
e

thread B

user mode user mode

function call

- save processor registers (assembly)

- call timer handler (assembly)

- lock scheduling queue

- pick new process to schedule (lockfree)

- unlock scheduling queue

- switch base pointer

- return from function call

Cooperative Multitasking

thread A

tim
e

thread B

user mode user mode

function call

hardware independent
(no timer required,

standard procedure calling convention
takes care of register save/restore)

- save processor registers (assembly)

- call timer handler (assembly)

- lock scheduling queue

- pick new process to schedule (lockfree)

- unlock scheduling queue

- switch base pointer

- return from function call

Cooperative Multitasking

thread A

tim
e

thread B

user mode user mode

function call

hardware independent
(no timer required,

standard procedure calling convention
takes care of register save/restore)

finest granularity
(no lock)

- save processor registers (assembly)

- call timer handler (assembly)

- lock scheduling queue

- pick new process to schedule (lockfree)

- unlock scheduling queue

- switch base pointer

- return from function call

Implicit Cooperative Multitasking

Ensure cooperation

 Compiler automatically inserts code at specific points in the code

Implicit Cooperative Multitasking

Ensure cooperation

 Compiler automatically inserts code at specific points in the code

Details

 Each process has a quantum

 At regular intervals, the compiler inserts code to decrease the
quantum and calls the scheduler if necessary

implicit cooperative multitasking – AMD64

uncooperative

PROCEDURE Enqueue- (item: Item; VAR queue: Queue);
BEGIN {UNCOOPERATIVE}

...
(* no scheduling here ! *)
...

END Enqueue;

296

uncooperative

PROCEDURE Enqueue- (item: Item; VAR queue: Queue);
BEGIN {UNCOOPERATIVE}

...
(* no scheduling here ! *)
...

END Enqueue;

296

zero overhead processor
local "locks"

Implicit Cooperative Multitasking

Implicit Cooperative Multitasking

Pros

 extremely light-weight – cost of a regular function call

 allow for global optimization – calls to scheduler known to the compiler

 zero overhead processor local locks

Implicit Cooperative Multitasking

Pros

 extremely light-weight – cost of a regular function call

 allow for global optimization – calls to scheduler known to the compiler

 zero overhead processor local locks

Cons

 overhead of inserted scheduler code

 currently sacrifice one hardware register (e.g. rcx)

 requires a special compiler and access to the source code

Cooperative MT & Lock-free Algorithms

Guarantees of cooperative MT

• No more than M threads are executing inside an uncooperative
block (M = # of processors)

• No thread switch occurs while a thread is running on a processor

Cooperative MT & Lock-free Algorithms

Guarantees of cooperative MT

• No more than M threads are executing inside an uncooperative
block (M = # of processors)

• No thread switch occurs while a thread is running on a processor

 hazard pointers can be associated with the processor

 Number of hazard pointers limited by M

 Search time constant

Cooperative MT & Lock-free Algorithms

Guarantees of cooperative MT

• No more than M threads are executing inside an uncooperative
block (M = # of processors)

• No thread switch occurs while a thread is running on a processor

 hazard pointers can be associated with the processor

 Number of hazard pointers limited by M

 Search time constant

thread-local storage processor local storage

No Interrupts?

Device drivers are interrupt-driven

 breaks all assumptions made so far
(number of contenders limited by the number of processors)

No Interrupts?

Device drivers are interrupt-driven

 breaks all assumptions made so far
(number of contenders limited by the number of processors)

Key idea: model interrupt handlers as virtual processors

 M = # of physical processors + # of potentially concurrent interrupts

Queue Data Structures

300

Node Node

Item

Queue first last

processors hazard
first/last

hazard
next

pooled
first/last

pooled
next

hazard
first/last

hazard
next

pooled
first/last

pooled
next

Node

…

#processors

for each queue

global (once!)

hazard
pointers

released
pointers

Marking Hazarduous
PROCEDURE Access (VAR node, reference: Node; pointer: SIZE);
VAR value: Node; index: SIZE;
BEGIN {UNCOOPERATIVE, UNCHECKED}

index := Processors.GetCurrentIndex ();
LOOP

processors[index].hazard[pointer] := node;
value := CAS (reference, NIL, NIL);
IF value = node THEN EXIT END;
node := value;

END;
END Access;

PROCEDURE Discard (pointer: SIZE);
BEGIN {UNCOOPERATIVE, UNCHECKED}

processors[Processors.GetCurrentIndex ()].hazard[pointer] := NIL;
END Discard;

301

guarantee: the node in reference
was set hazardous before it was
here available in reference

Node Reuse

PROCEDURE Acquire (VAR node {UNTRACED}: Node): BOOLEAN;

VAR index := 0: SIZE;

BEGIN {UNCOOPERATIVE, UNCHECKED}

WHILE (node # NIL) & (index # Processors.Maximum) DO

IF node = processors[index].hazard[First] THEN

Swap (processors[index].pooled[First], node); index := 0;

ELSIF node = processors[index].hazard[Next] THEN

Swap (processors[index].pooled[Next], node); index := 0;

ELSE

INC (index)

END;

END;

RETURN node # NIL;

END Acquire;

302

wait free algorithm to find non-
hazarduous node for reuse (if any)

Lock-Free Enqueue with Node Reuse

303

node := item.node;

IF ~Acquire (node) THEN

NEW (node);

END;

node.next := NIL; node.item := item;

LOOP

last := CAS (queue.last, NIL, NIL);

Access (last, queue.last, Last);

next := CAS (last.next, NIL, node);

IF next = NIL THEN EXIT END;

IF CAS (queue.last, last, next) # last THEN CPU.Backoff END;

END;

ASSERT (CAS (queue.last, last, node) # NIL, Diagnostics.InvalidQueue);

Discard (Last);

Lock-Free Enqueue with Node Reuse

303

reuse

node := item.node;

IF ~Acquire (node) THEN

NEW (node);

END;

node.next := NIL; node.item := item;

LOOP

last := CAS (queue.last, NIL, NIL);

Access (last, queue.last, Last);

next := CAS (last.next, NIL, node);

IF next = NIL THEN EXIT END;

IF CAS (queue.last, last, next) # last THEN CPU.Backoff END;

END;

ASSERT (CAS (queue.last, last, node) # NIL, Diagnostics.InvalidQueue);

Discard (Last);

Lock-Free Enqueue with Node Reuse

303

reuse

mark last hazarduous

node := item.node;

IF ~Acquire (node) THEN

NEW (node);

END;

node.next := NIL; node.item := item;

LOOP

last := CAS (queue.last, NIL, NIL);

Access (last, queue.last, Last);

next := CAS (last.next, NIL, node);

IF next = NIL THEN EXIT END;

IF CAS (queue.last, last, next) # last THEN CPU.Backoff END;

END;

ASSERT (CAS (queue.last, last, node) # NIL, Diagnostics.InvalidQueue);

Discard (Last);

Lock-Free Enqueue with Node Reuse

303

reuse

mark last hazarduous

unmark last

node := item.node;

IF ~Acquire (node) THEN

NEW (node);

END;

node.next := NIL; node.item := item;

LOOP

last := CAS (queue.last, NIL, NIL);

Access (last, queue.last, Last);

next := CAS (last.next, NIL, node);

IF next = NIL THEN EXIT END;

IF CAS (queue.last, last, next) # last THEN CPU.Backoff END;

END;

ASSERT (CAS (queue.last, last, node) # NIL, Diagnostics.InvalidQueue);

Discard (Last);

Lock-Free Dequeue with Node Reuse

304

LOOP

first := CAS (queue.first, NIL, NIL);

Access (first, queue.first, First);

next := CAS (first.next, NIL, NIL);

Access (next, first.next, Next);

IF next = NIL THEN

item := NIL; Discard (First); Discard (Next); RETURN FALSE

END;

last := CAS (queue.last, first, next);

item := next.item;

IF CAS (queue.first, first, next) = first THEN EXIT END;

Discard (Next); CPU.Backoff;

END;

first.item := NIL; first.next := first; item.node := first;

Discard (First); Discard (Next); RETURN TRUE;

Lock-Free Dequeue with Node Reuse

304

mark first hazarduous

LOOP

first := CAS (queue.first, NIL, NIL);

Access (first, queue.first, First);

next := CAS (first.next, NIL, NIL);

Access (next, first.next, Next);

IF next = NIL THEN

item := NIL; Discard (First); Discard (Next); RETURN FALSE

END;

last := CAS (queue.last, first, next);

item := next.item;

IF CAS (queue.first, first, next) = first THEN EXIT END;

Discard (Next); CPU.Backoff;

END;

first.item := NIL; first.next := first; item.node := first;

Discard (First); Discard (Next); RETURN TRUE;

Lock-Free Dequeue with Node Reuse

304

mark first hazarduous

mark next hazarduous

LOOP

first := CAS (queue.first, NIL, NIL);

Access (first, queue.first, First);

next := CAS (first.next, NIL, NIL);

Access (next, first.next, Next);

IF next = NIL THEN

item := NIL; Discard (First); Discard (Next); RETURN FALSE

END;

last := CAS (queue.last, first, next);

item := next.item;

IF CAS (queue.first, first, next) = first THEN EXIT END;

Discard (Next); CPU.Backoff;

END;

first.item := NIL; first.next := first; item.node := first;

Discard (First); Discard (Next); RETURN TRUE;

Lock-Free Dequeue with Node Reuse

304

mark first hazarduous

unmark first and next

mark next hazarduous

LOOP

first := CAS (queue.first, NIL, NIL);

Access (first, queue.first, First);

next := CAS (first.next, NIL, NIL);

Access (next, first.next, Next);

IF next = NIL THEN

item := NIL; Discard (First); Discard (Next); RETURN FALSE

END;

last := CAS (queue.last, first, next);

item := next.item;

IF CAS (queue.first, first, next) = first THEN EXIT END;

Discard (Next); CPU.Backoff;

END;

first.item := NIL; first.next := first; item.node := first;

Discard (First); Discard (Next); RETURN TRUE;

Lock-Free Dequeue with Node Reuse

304

mark first hazarduous

unmark first and next

mark next hazarduous

unmark next

LOOP

first := CAS (queue.first, NIL, NIL);

Access (first, queue.first, First);

next := CAS (first.next, NIL, NIL);

Access (next, first.next, Next);

IF next = NIL THEN

item := NIL; Discard (First); Discard (Next); RETURN FALSE

END;

last := CAS (queue.last, first, next);

item := next.item;

IF CAS (queue.first, first, next) = first THEN EXIT END;

Discard (Next); CPU.Backoff;

END;

first.item := NIL; first.next := first; item.node := first;

Discard (First); Discard (Next); RETURN TRUE;

Lock-Free Dequeue with Node Reuse

304

mark first hazarduous

unmark first and next

unmark first and next

mark next hazarduous

unmark next

LOOP

first := CAS (queue.first, NIL, NIL);

Access (first, queue.first, First);

next := CAS (first.next, NIL, NIL);

Access (next, first.next, Next);

IF next = NIL THEN

item := NIL; Discard (First); Discard (Next); RETURN FALSE

END;

last := CAS (queue.last, first, next);

item := next.item;

IF CAS (queue.first, first, next) = first THEN EXIT END;

Discard (Next); CPU.Backoff;

END;

first.item := NIL; first.next := first; item.node := first;

Discard (First); Discard (Next); RETURN TRUE;

Scheduling -- Activities

305

TYPE Activity* = OBJECT {DISPOSABLE} (Queues.Item)

VAR

END Activity;

(cf. Activities.Mod)

accessed via
activity register

access to current processor

stack management

quantum and scheduling

active object

Lock-free scheduling

Use non-blocking Queues and discard coarser granular locking.

Problem: Finest granular protection makes races possible that did not
occur previously:

current := GetCurrentTask()

next := Dequeue(readyqueue)

Enqueue(current, readyqueue)

SwitchTo(next)

306

Lock-free scheduling

Use non-blocking Queues and discard coarser granular locking.

Problem: Finest granular protection makes races possible that did not
occur previously:

current := GetCurrentTask()

next := Dequeue(readyqueue)

Enqueue(current, readyqueue)

SwitchTo(next)

306

Other thread can dequeue
and run (on the stack of)
the currently executing
thread!

Task Switch Finalizer

PROCEDURE Switch-;

VAR currentActivity {UNTRACED}, nextActivity: Activity;

BEGIN {UNCOOPERATIVE, SAFE}

currentActivity := SYSTEM.GetActivity ()(Activity);

IF Select (nextActivity, currentActivity.priority) THEN

SwitchTo (nextActivity, Enqueue, ADDRESS OF readyQueue[currentActivity.priority]);

FinalizeSwitch;

ELSE

currentActivity.quantum := Quantum;

END;

END Switch;

307

Enqueue runs on
new thread

Calls finalizer of
previous thread

(* Switch finalizer that enqueues the previous activity to the specified ready queue. *)
PROCEDURE Enqueue (previous {UNTRACED}: Activity; queue {UNTRACED}: POINTER {UNSAFE} TO Queues.Queue);
BEGIN {UNCOOPERATIVE, UNCHECKED}

Queues.Enqueue (previous, queue^);
IF ADDRESS OF queue^ = ADDRESS OF readyQueue[IdlePriority] THEN RETURN END;
IF Counters.Read (working) < Processors.count THEN Processors.ResumeAllProcessors END;

END Enqueue;

Task Switch Finalizer

PROCEDURE FinalizeSwitch-;

VAR currentActivity {UNTRACED}: Activity;

BEGIN {UNCOOPERATIVE, UNCHECKED}

currentActivity := SYSTEM.GetActivity ()(Activity);

IF currentActivity.finalizer # NIL THEN

currentActivity.finalizer (currentActivity.previous, currentActivity.argument)

END;

currentActivity.finalizer := NIL;

currentActivity.previous := NIL;

END FinalizeSwitch;

308

Enqueue!

Stack Management

Stacks organized as Heap Blocks.

Stack check instrumented at beginning of each procedure.

Stack expansion possibilities

309

Stack Management

Stacks organized as Heap Blocks.

Stack check instrumented at beginning of each procedure.

Stack expansion possibilities

1.

309

old new

old

copy

Stack Management

Stacks organized as Heap Blocks.

Stack check instrumented at beginning of each procedure.

Stack expansion possibilities

1.

2.

309

old new

old

copy

old old new

link

Copying stack

Must keep track of all pointers from stack to stack

Requires book-keeping of

310

Copying stack

Must keep track of all pointers from stack to stack

Requires book-keeping of

 call-by-reference parameters

 open arrays

 records

 unsafe pointer on stack

 e.g. file buffers

310

Copying stack

Must keep track of all pointers from stack to stack

Requires book-keeping of

 call-by-reference parameters

 open arrays

 records

 unsafe pointer on stack

 e.g. file buffers

turned out to be prohibitively expensive

310

Linked Stack

311

Linked Stack

 Instrumented call to ExpandStack

311

Linked Stack

 Instrumented call to ExpandStack

 End of current stack segment pointer included in process descriptor

311

Linked Stack

 Instrumented call to ExpandStack

 End of current stack segment pointer included in process descriptor

 Link stacks on demand with new stack segment

311

Linked Stack

 Instrumented call to ExpandStack

 End of current stack segment pointer included in process descriptor

 Link stacks on demand with new stack segment

 Return from stack segment inserted into call chain backlinks

311

Linked Stacks

312

Linked Stacks

312

parameters

pc
fp
proc desc

var

caller of
A.B

Linked Stacks

312

parameters

pc
fp
proc desc

var

par

pc (caller of A.B)
fp

pdesc of A.B

var

caller of
A.B

A.B

Linked Stacks

312

parameters

pc
fp
proc desc

var

par

pc (caller of A.B)
fp

pdesc of A.B

var

par

pc (caller of expandstack)

caller of
A.B

A.B

ExpandStack

Linked Stacks

312

parameters

pc
fp
proc desc

var

par

pc (caller of A.B)
fp

pdesc of A.B

var

par

pc (caller of expandstack)
fp
pdesc

var

caller of
A.B

A.B

ExpandStack

Linked Stacks

312

parameters

pc
fp
proc desc

var

par

pc (caller of A.B)
fp

pdesc of A.B

var

par

pc (caller of expandstack)
fp
pdesc

var

caller of
A.B

A.B

ExpandStack

Linked Stacks

312

parameters

pc
fp
proc desc

var

par

pc (caller of A.B)
fp

pdesc of A.B

var

par

pc (caller of expandstack)
fp
pdesc

var

caller of
A.B

A.B

ExpandStack

par (copy)

pc (ReturnToStackSegment)
fp
pdesc of A.B

var

A.B

becomes frame of
ReturnToStackSegment

 pdesc of ReturnToStackSegment

Linked Stacks

312

parameters

pc
fp
proc desc

var

par

pc (caller of A.B)
fp

pdesc of A.B

var

par

pc (caller of expandstack)
fp
pdesc

var

caller of
A.B

A.B

ExpandStack

par (copy)

pc (ReturnToStackSegment)
fp
pdesc of A.B

var

A.B

becomes frame of
ReturnToStackSegment

 pdesc of ReturnToStackSegment

Linked Stacks

312

parameters

pc
fp
proc desc

var

par

pc (caller of A.B)
fp

pdesc of A.B

var

par

pc (caller of expandstack)
fp
pdesc

var

caller of
A.B

A.B

ExpandStack

par (copy)

pc (ReturnToStackSegment)
fp
pdesc of A.B

var

A.B

becomes frame of
ReturnToStackSegment

 pdesc of ReturnToStackSegment

 fp(new), return new sp

Lock-free Garbage Collector

 Mark & Sweep

 mark counter, sweeping blocks

 Precise

 GC knows all pointers, no heuristics

 Optional

 system can be built without GC

 Incremental

 several instances of the GC traverse
parts of the heap

 Concurrent

 GC runs in cocurrently with mutator
thread

 Parallel

 Several instances of the GCs can run
concurrently

313

Synchronisation

314

Mutators

Collectors

M1 M2 M3

C1 C2 C3

Mark

Traverse

Write
Barrier

Per ObjectPer ObjectPer Object

Data Structures

315

Mark Bit

Marklist

Watchlist

Root Set

Global

Cycle Count

Marked First

Watched First

Global References

Per Object

Cycle Count

Next Marked

Next Watched

Local Refcount

Example

316

Root Set

Marked List

Watched List

A2

C2 D2

E1 G1 F1

Cycle Count = 2

Lock-Free Runtime Conclusion

 Consequent use of lock-free algorithms in the kernel

 Oberon Synchronization primitives (for applications) implemented on
top

 Efficient unbounded lock-free queues, ABA Problem solved using Hazard
Pointers

 Implicit cooperative multitasking -> can switch off scheduling locally
(uncooperative blocks)

 Parallel and lock-free memory management with garbage collection

