
3. LOCK FREE KERNEL
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Whatever can go wrong
will go wrong.

attributed to Edward A. Murphy

Murphy was an optimist.
authors of lock-free programs
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Problems with Locks

Deadlock Livelock Starvation

Parallelism? Progress Guarantees? Reentrancy? Granularity? Fault Tolerance?



Politelock
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Lock-Free
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Definitions

Lock-freedom: at least one algorithm makes progress even if other 
algorithms run concurrently, fail or get suspended.
Implies system-wide progress but not freedom from starvation.

Wait-freedom: each algorithm eventually makes progress. 
Implies freedom from starvation.
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Progress Conditions  
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Blocking Non-Blocking

Someone make
progress

Deadlock-free Lock-free

Everyone makes
progress

Starvation-free Wait-free



Goals

Lock Freedom

 Progress Guarantees

 Reentrant Algorithms

Portability

 Hardware Independence

 Simplicity, Maintenance



Guiding principles

1. Keep things simple

2. Exclusively employ non-blocking algorithms in the system

 Use implicit cooperative multitasking

 no virtual memory

 limits in optimization



Where are the Locks in the Kernel?

Scheduling Queues / Heaps

Memory Management 
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CAS (again)
 Compare old with data

at memory location

 If and only if data at memory
equals old overwrite data with
new

 Return previous memory value 

int CAS (memref a, int old, int new)

previous = mem[a];

if (old == previous)  

Mem[a] = new;

return previous;
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CAS is implemented wait-free(!) 
by hardware.



Memory Model for Lockfree Active Oberon

Only two rules

1. Data shared between two or more activities at the same time has to 
be protected using exclusive blocks unless the data is read or modified 
using the compare-and-swap operation

2. Changes to shared data visible to other activities after leaving an 
exclusive block or executing a compare-and-swap operation. 

Implementations are free to reorder all other memory accesses as long 
as their effect equals a sequential execution within a single activity.

263



Inbuilt CAS

 CAS instruction as statement of the language
PROCEDURE CAS(VAR variable, old, new: BaseType): BaseType

 Operation executed atomically, result visible instantaneously to other processes

 CAS(variable, x, x) constitutes an atomic read

 Compiler required to implement CAS as a synchronisation barrier

 Portability, even for non-blocking algorithms

 Consistent view on shared data, even for systems that represent words using
bytes
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Simple Example: Non-blocking counter

PROCEDURE Increment(VAR counter: SIZE): SIZE;

VAR previous, value: SIZE;

BEGIN

REPEAT

previous := CAS(counter,0,0);

value := CAS(counter, previous, previous + 1);

UNTIL value = previous;

return previous;

END Increment;
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Lock-Free Programming
Performance of CAS

 on the H/W level, CAS triggers a 
memory barrier

 performance suffers with 
increasing number of contenders 
to the same variable
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CAS with backoff
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103 iterations

104 iterations

105 iterations

106 iterations
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CAS Operations
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constant backoff with

LOOP
value := CAS (counter, 0, 0);
IF CAS (counter, v, v+1) = v THEN

EXIT 
END;
CPU.Backoff;

END;



Stack
Node = POINTER TO RECORD

item: Object;

next: Node;

END;

Stack = OBJECT

VAR top: Node;

PROCEDURE Pop(VAR head: Node): BOOLEAN;

PROCEDURE Push(head: Node);

END;
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Stack -- Blocking
PROCEDURE Push(node: Node): BOOLEAN;
BEGIN{EXCLUSIVE}

node.next := top;
top := node;

END Push;

PROCEDURE Pop(VAR head: Node): BOOLEAN;
VAR next: Node;
BEGIN{EXCLUSIVE}

head := top; 
IF head = NIL THEN

RETURN FALSE
ELSE

top := head.next;
RETURN TRUE;

END;
END Pop;
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Stack -- Lockfree
PROCEDURE Pop(VAR head: Node): BOOLEAN;
VAR next: Node;
BEGIN

LOOP
head := CAS(top, NIL, NIL);
IF head = NIL THEN

RETURN FALSE 
END;
next := head.next;
IF CAS(top, head, next) = head THEN

RETURN TRUE 
END;
CPU.Backoff

END;
END Pop;
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Stack -- Lockfree
PROCEDURE Push(new: Node);
BEGIN

LOOP
head := CAS(top, NIL, NIL);
new.next := head;
IF CAS(top, head, new) = head THEN

EXIT
END;
CPU.Backoff;

END;
END Push;
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Node Reuse

Assume we do not want to allocate a new node for each Push and 
maintain a Node-pool instead. Does this work?

NO ! WHY NOT?
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ABA Problem
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The ABA-Problem

"The ABA problem ... occurs when one activity fails to recognise that a 
single memory location was modified temporarily by another activity and 
therefore erroneously assumes that the overal state has not been 
changed."
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A

X observes 
Variable V as A

B

meanwhile V 
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.. and back to A

A
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How to solve the ABA problem?
• DCAS (double compare and swap)

 not available on most platforms

• Hardware transactional memory

 not available on most platforms

 memory restrictions

• Garbage Collection

 relies on the existence of a GC

 impossible to use in the inner of a runtime kernel

 can you implement a lock-free garbage collector relying on garbage collection?

• Pointer Tagging

 does not cure the problem, rather delay it

 can be practical

• Hazard Pointers
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Pointer Tagging
ABA problem usually occurs with CAS on pointers

Aligned addresses (values of pointers) make some bits available for pointer 
tagging.

Example: pointer aligned modulo 32  5 bits available for tagging

Each time a pointer is stored in a data structure, the tag is increased by one. 
Access to a data structure via address x – x mod 32

This makes the ABA problem very much less probable because now 32 versions 
of each pointer exist.
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Hazard Pointers

The ABA problem stems from reuse of a pointer P that has been read by 
some thread X but not yet written with CAS by the same thread. 
Modification takes place meanwhile by some other thread Y.

Idea to solve:

• Before X reads P, it marks it hazarduous by entering it in a thread-
dedicated slot of the n (n= number threads) slots of an array associated 
with the data structure (e.g. the stack)

• When finished (after the CAS), process X removes P from the array

• Before a process Y tries to reuse P, it checks all entries of the hazard
array
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Unbounded Queue (FIFO)
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Enqueue
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Dequeue

280

item item item item item item

first last①

②

last != first

item

first last

last == first

①



Naive Approach
Enqueue (q, new)

REPEAT last := CAS(q.last, NIL, NIL);
UNTIL CAS(q.last, last, new) = last;
IF last # NIL THEN

CAS(last.next, NIL, new);
ELSE

CAS(q.first, NIL, new);
END

Dequeue (q)
REPEAT

first := CAS(q.first, null, null);
IF first = NIL THEN RETURN NIL END;
next := first.next;

UNTIL CAS(q.first, first, next) = first;
IF next = NIL THEN

CAS(q.last, first, NIL);
END
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Scenario
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Process P enqueues A
Process Q dequeues

first last

initial

A

first last

P:

A

first last

Q:
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first last
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
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Enqueue (q, new)
REPEAT last := CAS(q.last, NIL, NIL);
UNTIL CAS(q.last, last, new) = last;
IF last # NIL THEN

CAS(last.next, NIL, new);
ELSE

CAS(q.first, NIL, new);
END

Dequeue (q)
REPEAT

first := CAS(q.first, null, null);
IF first = NIL THEN RETURN NIL END;
next := first.next;

UNTIL CAS(q.first, first, next) = first;
IF next = NIL THEN

CAS(q.last, first, NIL);
END
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Scenario
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REPEAT last := CAS(q.last, NIL, NIL);
UNTIL CAS(q.last, last, new) = last;
IF last # NIL THEN

CAS(last.next, NIL, new);
ELSE

CAS(q.first, NIL, new);
END

Dequeue (q)
REPEAT

first := CAS(q.first, null, null);
IF first = NIL THEN RETURN NIL END;
next := first.next;

UNTIL CAS(q.first, first, next) = first;
IF next = NIL THEN

CAS(q.last, first, NIL);
END
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Analysis

 The problem is that enqueue and dequeue do under some
circumstances have to update several pointers at once [first, last, next]

 The transient inconsistency can lead to permanent data structure
corruption

 Solutions to this particular problem are not easy to find if no double 
compare and swap (or similar) is available

 Need another approach: Decouple enqueue and dequeue with a 
sentinel. A consequence is that the queue cannot be in-place.
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Queues with Sentinel
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Queue nonempty: first # last
Invariants: first # NIL 

last # NIL



Node Reuse
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Enqueue and Dequeue with Sentinel

287

first last

1

S A B C

2 3

next

first last

1

S A B

2

A becomes the new sentinel.
S associated with free item.

Item enqueued together 
with associated node.



Enqueue
PROCEDURE Enqueue- (item: Item; VAR queue: Queue);
VAR node, last, next: Node;
BEGIN

node := Allocate();
node.item := Item:
LOOP

last := CAS (queue.last, NIL, NIL);
next := CAS (last.next, NIL, node);
IF next = NIL THEN EXIT END;
IF CAS (queue.last, last, next) # last THEN CPU.Backoff END;

END;
ASSERT (CAS (queue.last, last, node) # NIL);

END Enqueue;
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If setting last pointer failed, then 
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last node  Progress guarantee
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Dequeue
PROCEDURE Dequeue- (VAR item: Item; VAR queue: Queue): BOOLEAN;
VAR first, next, last: Node;
BEGIN

LOOP
first := CAS (queue.first, NIL, NIL);
next := CAS (first.next, NIL, NIL);
IF next = NIL THEN RETURN FALSE END;
last := CAS (queue.last, first, next);
item := next.item;
IF CAS (queue.first, first, next) = first THEN EXIT END;
CPU.Backoff;

END;
item.node := first; 
RETURN TRUE;

END Dequeue;

289

Remove potential 
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