
3. LOCK FREE KERNEL

252

Whatever can go wrong
will go wrong.

attributed to Edward A. Murphy

Murphy was an optimist.
authors of lock-free programs

Literature

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

Florian Negele. Combining Lock-Free Programming with Cooperative Multitasking for a
Portable Multiprocessor Runtime System. ETH-Zürich, 2014.
http://dx.doi.org/10.3929/ethz-a-010335528

A substantial part of the following material is based on Florian Negele's Thesis.

Florian Negele, Felix Friedrich, Suwon Oh and Bernhard Egger, On the Design and
Implementation of an Efficient Lock-Free Scheduler, 19th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP) 2015.

253

http://dx.doi.org/10.3929/ethz-a-010335528

Problems with Locks

Deadlock Livelock Starvation

Parallelism? Progress Guarantees? Reentrancy? Granularity? Fault Tolerance?

Politelock

255

Lock-Free

256

Definitions

Lock-freedom: at least one algorithm makes progress even if other
algorithms run concurrently, fail or get suspended.
Implies system-wide progress but not freedom from starvation.

Wait-freedom: each algorithm eventually makes progress.
Implies freedom from starvation.

257

implies

Progress Conditions

258

Blocking Non-Blocking

Someone make
progress

Deadlock-free Lock-free

Everyone makes
progress

Starvation-free Wait-free

Goals

Lock Freedom

 Progress Guarantees

 Reentrant Algorithms

Portability

 Hardware Independence

 Simplicity, Maintenance

Guiding principles

1. Keep things simple

2. Exclusively employ non-blocking algorithms in the system

 Use implicit cooperative multitasking

 no virtual memory

 limits in optimization

Where are the Locks in the Kernel?

Scheduling Queues / Heaps

Memory Management

261

object header

P PPP

ready queues array

P P NILP NILNIL P P PP P PP P

CAS (again)
 Compare old with data

at memory location

 If and only if data at memory
equals old overwrite data with
new

 Return previous memory value

int CAS (memref a, int old, int new)

previous = mem[a];

if (old == previous)

Mem[a] = new;

return previous;

262
a

to
m

ic

CAS is implemented wait-free(!)
by hardware.

Memory Model for Lockfree Active Oberon

Only two rules

1. Data shared between two or more activities at the same time has to
be protected using exclusive blocks unless the data is read or modified
using the compare-and-swap operation

2. Changes to shared data visible to other activities after leaving an
exclusive block or executing a compare-and-swap operation.

Implementations are free to reorder all other memory accesses as long
as their effect equals a sequential execution within a single activity.

263

Inbuilt CAS

 CAS instruction as statement of the language
PROCEDURE CAS(VAR variable, old, new: BaseType): BaseType

 Operation executed atomically, result visible instantaneously to other processes

 CAS(variable, x, x) constitutes an atomic read

 Compiler required to implement CAS as a synchronisation barrier

 Portability, even for non-blocking algorithms

 Consistent view on shared data, even for systems that represent words using
bytes

264

Simple Example: Non-blocking counter

PROCEDURE Increment(VAR counter: SIZE): SIZE;

VAR previous, value: SIZE;

BEGIN

REPEAT

previous := CAS(counter,0,0);

value := CAS(counter, previous, previous + 1);

UNTIL value = previous;

return previous;

END Increment;

265

Lock-Free Programming
Performance of CAS

 on the H/W level, CAS triggers a
memory barrier

 performance suffers with
increasing number of contenders
to the same variable

4 8 12 16 20 24 28 32

1

2

3

4

5

6

#Processors

Successful
CAS
Operations
[106]

CAS with backoff

267

103 iterations

104 iterations

105 iterations

106 iterations

4 8 12 16 20 24 28 32

1

2

3

4

5

6

#Processors

Successful
CAS Operations
[106]

constant backoff with

LOOP
value := CAS (counter, 0, 0);
IF CAS (counter, v, v+1) = v THEN

EXIT
END;
CPU.Backoff;

END;

Stack
Node = POINTER TO RECORD

item: Object;

next: Node;

END;

Stack = OBJECT

VAR top: Node;

PROCEDURE Pop(VAR head: Node): BOOLEAN;

PROCEDURE Push(head: Node);

END;

268

item
next

item
next

item
next

NIL

top

Stack -- Blocking
PROCEDURE Push(node: Node): BOOLEAN;
BEGIN{EXCLUSIVE}

node.next := top;
top := node;

END Push;

PROCEDURE Pop(VAR head: Node): BOOLEAN;
VAR next: Node;
BEGIN{EXCLUSIVE}

head := top;
IF head = NIL THEN

RETURN FALSE
ELSE

top := head.next;
RETURN TRUE;

END;
END Pop;

269

item
next

item
next

item
next

NIL

top

Stack -- Lockfree
PROCEDURE Pop(VAR head: Node): BOOLEAN;
VAR next: Node;
BEGIN

LOOP
head := CAS(top, NIL, NIL);
IF head = NIL THEN

RETURN FALSE
END;
next := head.next;
IF CAS(top, head, next) = head THEN

RETURN TRUE
END;
CPU.Backoff

END;
END Pop;

270

A

B

C

NIL

top

head

next

Stack -- Lockfree
PROCEDURE Push(new: Node);
BEGIN

LOOP
head := CAS(top, NIL, NIL);
new.next := head;
IF CAS(top, head, new) = head THEN

EXIT
END;
CPU.Backoff;

END;
END Push;

271

A

B

C

NIL

top

head

new

Node Reuse

Assume we do not want to allocate a new node for each Push and
maintain a Node-pool instead. Does this work?

NO ! WHY NOT?

272

ABA Problem

A

NIL

top

head

next

Thread X

in the middle

of pop: after read

but before CAS

Thread Y

pops A

A

NIL

top

Thread Z

pushes B

B

NIL

top

Thread Z'

pushes A

B

NIL

Thread X

completes pop

A

NIL

top

head

next

BA

time

Pool

Pool

top

The ABA-Problem

"The ABA problem ... occurs when one activity fails to recognise that a
single memory location was modified temporarily by another activity and
therefore erroneously assumes that the overal state has not been
changed."

274

A

X observes
Variable V as A

B

meanwhile V
changes to B ...

A

.. and back to A

A

X observes A again
and assumes the
state is unchanged

time

How to solve the ABA problem?
• DCAS (double compare and swap)

 not available on most platforms

• Hardware transactional memory

 not available on most platforms

 memory restrictions

• Garbage Collection

 relies on the existence of a GC

 impossible to use in the inner of a runtime kernel

 can you implement a lock-free garbage collector relying on garbage collection?

• Pointer Tagging

 does not cure the problem, rather delay it

 can be practical

• Hazard Pointers

275

Pointer Tagging
ABA problem usually occurs with CAS on pointers

Aligned addresses (values of pointers) make some bits available for pointer
tagging.

Example: pointer aligned modulo 32  5 bits available for tagging

Each time a pointer is stored in a data structure, the tag is increased by one.
Access to a data structure via address x – x mod 32

This makes the ABA problem very much less probable because now 32 versions
of each pointer exist.

276

MSB 00000XXXXXXXX...

Hazard Pointers

The ABA problem stems from reuse of a pointer P that has been read by
some thread X but not yet written with CAS by the same thread.
Modification takes place meanwhile by some other thread Y.

Idea to solve:

• Before X reads P, it marks it hazarduous by entering it in a thread-
dedicated slot of the n (n= number threads) slots of an array associated
with the data structure (e.g. the stack)

• When finished (after the CAS), process X removes P from the array

• Before a process Y tries to reuse P, it checks all entries of the hazard
array

277

Unbounded Queue (FIFO)

278

item item item item item item

first last

Enqueue

279

item item item item item item

first last

new
①

②

first last

new

case last != NIL

case last = NIL

① ②

Dequeue

280

item item item item item item

first last①

②

last != first

item

first last

last == first

①

Naive Approach
Enqueue (q, new)

REPEAT last := CAS(q.last, NIL, NIL);
UNTIL CAS(q.last, last, new) = last;
IF last # NIL THEN

CAS(last.next, NIL, new);
ELSE

CAS(q.first, NIL, new);
END

Dequeue (q)
REPEAT

first := CAS(q.first, null, null);
IF first = NIL THEN RETURN NIL END;
next := first.next;

UNTIL CAS(q.first, first, next) = first;
IF next = NIL THEN

CAS(q.last, first, NIL);
END

281

e1

e2

e3

d1

d2

d3

A

first last

A

first last

B A A

first last

B

first last

e1 e3+ e1 e2+ d2 d3+ d2

Scenario

282

Process P enqueues A
Process Q dequeues

first last

initial

A

first last

P:

A

first last

Q:

A

first last

P:



e1 d1 e3

Enqueue (q, new)
REPEAT last := CAS(q.last, NIL, NIL);
UNTIL CAS(q.last, last, new) = last;
IF last # NIL THEN

CAS(last.next, NIL, new);
ELSE

CAS(q.first, NIL, new);
END

Dequeue (q)
REPEAT

first := CAS(q.first, null, null);
IF first = NIL THEN RETURN NIL END;
next := first.next;

UNTIL CAS(q.first, first, next) = first;
IF next = NIL THEN

CAS(q.last, first, NIL);
END

e1

e2

e3

d1

d2

d3

Scenario

283

first last

initial

A

first last

P:

A

first last

Q: P:

B B B A

first last

B 

Process P enqueues A
Process Q dequeues

e1 e2d2

Enqueue (q, new)
REPEAT last := CAS(q.last, NIL, NIL);
UNTIL CAS(q.last, last, new) = last;
IF last # NIL THEN

CAS(last.next, NIL, new);
ELSE

CAS(q.first, NIL, new);
END

Dequeue (q)
REPEAT

first := CAS(q.first, null, null);
IF first = NIL THEN RETURN NIL END;
next := first.next;

UNTIL CAS(q.first, first, next) = first;
IF next = NIL THEN

CAS(q.last, first, NIL);
END

e1

e2

e3

d1

d2

d3

Analysis

 The problem is that enqueue and dequeue do under some
circumstances have to update several pointers at once [first, last, next]

 The transient inconsistency can lead to permanent data structure
corruption

 Solutions to this particular problem are not easy to find if no double
compare and swap (or similar) is available

 Need another approach: Decouple enqueue and dequeue with a
sentinel. A consequence is that the queue cannot be in-place.

284

Queues with Sentinel

285

first last

1

S A B C

2 3

next

item
sentinel

Queue empty: first = last
Queue nonempty: first # last
Invariants: first # NIL

last # NIL

Node Reuse

286

B

2simple idea:
link from node to item
and from item to node

Enqueue and Dequeue with Sentinel

287

first last

1

S A B C

2 3

next

first last

1

S A B

2

A becomes the new sentinel.
S associated with free item.

Item enqueued together
with associated node.

Enqueue
PROCEDURE Enqueue- (item: Item; VAR queue: Queue);
VAR node, last, next: Node;
BEGIN

node := Allocate();
node.item := Item:
LOOP

last := CAS (queue.last, NIL, NIL);
next := CAS (last.next, NIL, node);
IF next = NIL THEN EXIT END;
IF CAS (queue.last, last, next) # last THEN CPU.Backoff END;

END;
ASSERT (CAS (queue.last, last, node) # NIL);

END Enqueue;

288

Set last node's next pointer

If setting last pointer failed, then
help other processes to update
last node  Progress guarantee

Set last node, can fail but
then others have already
helped

last

B C

2 3

Dequeue
PROCEDURE Dequeue- (VAR item: Item; VAR queue: Queue): BOOLEAN;
VAR first, next, last: Node;
BEGIN

LOOP
first := CAS (queue.first, NIL, NIL);
next := CAS (first.next, NIL, NIL);
IF next = NIL THEN RETURN FALSE END;
last := CAS (queue.last, first, next);
item := next.item;
IF CAS (queue.first, first, next) = first THEN EXIT END;
CPU.Backoff;

END;
item.node := first;
RETURN TRUE;

END Dequeue;

289

Remove potential
inconsistency, help other
processes to set last pointer

set first pointer

first last

1

S A B

2

associate node with first

