
1.5. I/O

154

Serial Communication

155

Simplex Half-Duplex Duplex

Serial Communication

156

Master Slave

Master Slave

Slave

Master-Slave

Master-Multi-Slave

Master

Slave

Slave

Slave

(Multi-)Master
Multi-Slave

Serial Communication

157

Master

SlaveMaster

Slave

Synchronous

Asynchronous

Some Bus Types
Wires
(+Gnd)

Directionality Synchrony Distance
typ.

Speed typ. Remarks

RS-232 2/4 –7 full duplex asynchronous
+synchronous

10 m 115kbps /
1Mbps

Point-to-Point
Interference prone

RS-485 2/4 half/full duplex asynchronous 1000 m Mbps Differential Signalling

SPI [aka SSP,
Microwire]

4
[+Vcc]

full duplex synchronous few cm 10 Mbps Master-Multi-Slave
with Slave select

I2C
[SMBus]

2
[+Vcc]

half duplex synchronous few m 100kbps-
3Mbps

Addressed Multi-Master

1-Wire 1 half duplex time-slot based,
synchronous

tens of m 15kbps/
125kbps

Master-Multi-Slave
Parasitic power

USB 2.0 2
[+ Vcc]

half-duplex asynchronous few m 12Mbits/
480 MBits

isochronous/ bulk/ interrupt
transfers
Differential signalling

USB 3.0 2+4
[+DGnd
+ Vcc]

full-duplex asynchronous few m 5/10/20 GBits
(USB
3.0/3.1/3.2)

158

SPI

SCLK: Serial bit-rate Clock

MOSI: Master data Output, Slave data Input

MISO: Master data Input, Slave data Output

SS: Slave Select

159

SCLK

MOSI

MISO

SS

SS

Master Slaveshift
register

shift
register

Slaveshift
register

SPI

 Four wire serial bus invented / named by Motorola

 Serial connection between two or more devices (microprocessors, D/A converters)

 Configurations

 1 Master, 1 Slave (single slave mode)

 1 Master, N Slaves (multiple slave mode)

 Synchronous bidirectional data transfer

 Data transfer initiated by Master

 Bandwidth some KBits/s up to several MBits/s

 Simple implementation in software

 Used in a variety of devices, such as memory (flash, EEPROM), LCD displays and in all
MMC / SD cards

160

Communication

161

SCLK

SS

MOSI

MISO

• Master configures the clock

• Master selects slave (SS), followed by waiting period (if required by slave)

Communication

162

SCLK

SS

MOSI

MISO

• Master configures the clock

• Master selects slave (SS), followed by waiting period (if required by slave)

• Clock starts toggling in first active clock cycle

Communication

163

Bit[7] Bit[6] Bit[5] Bit[1] Bit[0] End of transfer data state

SCLK

SS

MOSI

MISO

• Full duplex data transmission in each cycle

• Master sends bit over MOSI line, slave reads bit

Communication

164

Bit[7]

Bit[7] Bit[6] Bit[5] Bit[1] Bit[0]

Bit[1] Bit[0]Bit[6] Bit[5]

End of transfer data state

undefinedundefined

MSB 8 bits LSB

SCLK

SS

MOSI

MISO

sampling

• Full duplex data transmission in each cycle

• Master sends bit over MOSI line, slave reads bit

• Slave sends bit over MISO line, master reads bit

• When no data is to be transmitted any more, master stops toggling the clock

Polarity

165

SCLK

Bit[7] Bit[6] Bit[5] Bit[1] Bit[0] End of transfer data state

Polarity = 0

Polarity = 1

idle=low

idle=high

Phase

166

SCLK

Bit[7] Bit[6] Bit[5] Bit[1] Bit[0] End of transfer data state

Phase = 0

Phase = 1

first edge

second edge

SPI – Data Transfer

 Master configures the clock

 Master selects slave (SS), followed by waiting period (if required by slave)

 Full duplex data transmission in each cycle

 Master sends bit over MOSI line, slave reads bit

 Slave sends bit over MISO line, master reads bit

 Two shift registers, one in slave, one in master for transfer

 When no data is to be transmitted any more, master stops toggling the clock

 No acknowledgement mechanism

 No device interrupts

167

Programming SPI

1. Bit-Banging

168

Master

GPIO Pins

Programming SPI

1. Bit-Banging

169

FOR i := 7 TO 0 BY -1 DO
IF ODD(ASH(data,-i)) THEN
Platform.WriteBits(Platform.GPSET0, MOSI);

ELSE
Platform.WriteBits(Platform.GPCLR0, MOSI);

END;
Kernel.MicroWait(HalfClock);
Platform.WriteBits(Platform.GPSET0, CLOCK);
Kernel.MicroWait(HalfClock);
Platform.WriteBits(Platform.GPCLR0, CLOCK);

END;

Programming SPI

2. Using a Controller

170

Master

SPI Controller

Programming SPI

2. Using a Controller

171

(* start transition *)
Platform.SetBits(Platform.SPI_CS, {TA});

REPEAT UNTIL TXD IN Platform.ReadBits(Platform.SPI_CS);

Platform.WriteWord(Platform.SPI_FIFO, data);
junk := Platform.ReadWord(Platform.SPI_FIFO);

REPEAT UNTIL DONE IN Platform.ReadBits(Platform.SPI_CS);

(* transfer inactive *)
Platform.ClearBits(Platform.SPI_CS, {TA});

BCM 2835 Registers

172

CS -- Control and Status
Chip Select
FIFO Status
Transfer Progress
Interrupts
Polarity & Phase

FIFO Register
Data

Read:
RX Fifo

Write:
TX Fifo

Other
DMA Control
Special Mode Control

CLK
Clock Divider

MAX7219 8-Digit LED Display Driver

173

Max7219 Specification, p.5

MAX7219 8-Digit LED Display Driver

174

Max7219 Specification, p.6

MMC and SD Cards

 Low cost memory system for persistent data on „solid state mass
storage“ (for example flash memory cards)

 Separate bus system

 1 master, N slaves (cards)

 typically 1 master for one card

 Serial & synchronous transfer of commands and data

 Sequential read/ write

 Block read/ write

175

Power
Supply

Bus
Master

Card

(I/O)

Card

(ROM)

Card

(Flash)

Multi Media Card Bus

MMC System Interaction

176

CMD

DAT

Host (BCM 2835)

EMMC

Controller

G
P

IO
 P

in
s

CPU
Core

SD Card

Clock for
synchronous

transfer

Memory

SD Card
Interface

Controller

S
D

 C
ar

d
 P

in
s

CLK

Bidirectional
Data Channels

Command and
Response
Channel

SD Card

177

VDD
DAT2

DAT3
CMD DAT0CLK

DAT1

OCR[31:0]

CID[127:0]

RCA[15:0]

DSR[15:0]

CSD[127:0]

SCR[63:0]

SSR[511:0]

CSR[31:0]

Card Interface
Controller

Memory Core Interface

Memory Core

Po
w

er
 O

n
 D

et
ec

ti
o

n

reset

reset

SD Physical Layer Spec. P. 12

SD Mode vs SPI Mode

178

(Micro) SD Card Header

Dat2
Dat3

CMD CLK
VDD GND

Dat0
Dat1

SD Mode vs SPI Mode

179

(Micro) SD Card HeaderSPI-MODE

CS DI CLKVDD GND DO

Dat2
Dat3

CMD CLK
VDD GND

Dat0
Dat1

Example: Block Read/ Write Operation (SPI mode)

 Read

 Write

180

command

response data block crc data block crc data block crc

command

response

block read operation

multiple block read
data stop operation

from host to card from card to host data from card to host stop command

stops data transfer

DO

DI

command

response

data block crc data block crc command

response

block write operation

multiple block write

data stop operation

from host to card from card to host
data from host to card stop command

stops data transfer

DO

DI busy busy

busy from card to host

response

SanDisk SD Card Product Manual 2.2

SD Memory Card State Diagram Example
(Card Identification)

181

RS232

182

Terminal [DTE]

UART

Data Set [DCE]
(Modem)

UART

TxD

RxD

GND

if Hardware Flow Control

RTS/RTR

CTS

+

RS232 Signalling

183

[+3v , +15 v]

0 v

[-3v ,-15 v]

8 data bits
(+parity, if applicable)

1-2 stop bit(s)
start bit
starts the local clock

Time

Sampling in the middle of bit intervals

LSB MSB

(idle)(idle)

UART

Universal Asynchronous Receiver/ Transmitter

 Serial transmission of individual bits in byte

packets (lowest significant bit first)

 Configurable

 Number of data bits per byte: 5, 6, 7, 8

 Parity: odd, even, none

 Number of stop bits: 1, 1.5, 2

 Transfer rate in bps (bits per second): 75, 110, 300,... ,

115200

184

source: Wikipedia

Implementation

185

2.

UART Driver UART

Receiver buffer

Sender buffer
Application

Receive

Send

in out

IRQ

Port

out

in

2.

1.

IRQ
1.

Receiver FIFO

Sender FIFO

Receiver
Line

Sender
Line

Port

Trigger
level

reached

Hardware

PROCEDURE UARTHandler(uart: Uart);
VAR pending: SET;
BEGIN

pending :=
Platform.ReadBits(Platform.UART_MIS);

IF (Platform.RXMIS IN pending)
OR (Platform.RTIM IN pending) THEN

EmptyFIFO(uart);
END;
IF Platform.TXMIS IN pending THEN

FillFIFO(uart);
END;
Kernel.EnableIRQ(

Platform.UartInstallIrq , TRUE);
END UARTHandler;

