
||Departement Informatik

Autumn Semester 2019

ETH Zürich

Felix Friedrich, Paul Reed

25.09.2019 1

System Construction

Dr. Felix Friedrich

Goals

 Competence in building custom system software from scratch

 Understanding of „how it really works“ behind the scenes across all
levels

 Knowledge of the approach of fully managed simple systems

A lot of this course is about detail.
A lot of this course is about bare metal programming.

2

Course Concept

 Discussing elaborated case studies

 In theory (lectures)

 and practice (hands-on lab)

 Learning by example vs. presenting topics

3

Prerequisites

Knowledge corresponding to lectures
Systems Programming [and Computer Architecture]

 Do you know what a stack-frame is?

 Do you know how an interrupt works?

 Do you know the concept of virtual memory?

Good references for recapitulation:

 Randal E. Bryant, David Richard O'Hallaron,
Computer Systems – A Programmer's
Perspective,

 David A. Patterson, John L. Hennessy
Computer Organization and Design – The
Hardware/Software Interface ,

4

Links

 SVN repository

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared

 Links on the course homepage

http://lec.inf.ethz.ch/syscon

5

Some ETH History

1980: Niklaus Wirth develops Lilith,
one of the first computers with
graphical user interface: bitmap
display and mouse

Lilith was constructed from 4-bit
AMD-Am2900 Slices

Its instruction set was optimized for
/ codesigned with the intermediate
code of the Modula-2 Compiler.

It ran at 7 MHz and had a screen
resolution of 704 x 927 pixels.

6

Some ETH History

1986: A 32-bit processor NS32032
CPU was used to build a new
computer Ceres together with its
operating system Oberon that
was programmed using the
language Oberon.

7

Sources: The Web Site to Remember National Semiconductor's Series 32000 Family, http://www.cpu-ns32k.net/Ceres.html

Some ETH History

1988 Ceres2, based on NS32532 CPU

8

Sources: The Web Site to Remember National Semiconductor's Series 32000 Family, http://www.cpu-ns32k.net/Ceres.html

memory boardscpu board
cpu board, housing

Some ETH History

1991 Ceres 3, based on
NS32GX32 CPU
(cheaper, without MMU)

Used for education
at ETH until 1999
(10s of machines)

9

Sources: The Web Site to Remember National Semiconductor's Series 32000 Family, http://www.cpu-ns32k.net/Ceres.html

Some ETH History

From mid 1990s

Oberon V4 availability as subsystems on Amiga, AtariST, DECStation,
HP700, Linux, MacII, PowerMac, RS6000, SiliconGraphics, Solaris 2,
Windows

System 3 available on Win3x, Win95NT, Unix (Darwin, PPC Linux, x86
Linux, x86 Solaris) , Macintosh (68k, PowerPC), with slim binaries

Native for various platforms.

From 2001: Aos / A2 (Active Oberon)

10

Background: Co-Design @ ETH

Lilith Ceres
x86 / IA64/ ARM
Emulations on
Unix / Linux /MacOS

1980 1990 2000 2010

Modula Oberon ActiveOberon

Zonnon

+MathOberon

Oberon07

Medos Oberon Aos

HeliOs

A2 SoC

TRM
(FPGA)

Active
Cells

Languages (Pascal Family)

Operating / Runtime Systems

Hardware

RISC
(FPGA)

Minos LockFree
Kernel

11

Component Pascal

BlackBox

Course Overview
Part1: Contemporary Hardware

Case Study 1. Minos: Embedded System
 Safety-critical and fault-tolerant monitoring system

 Originally invented for autopilot system for helicopters

 Topics: ARM Architecture, Cross-Development, Object Files and Module
Loading, Basic OS Core Tasks (IRQs, MMUs etc.), Minimal Single-Core
OS: Scheduling, Device Drivers, Compilation and Runtime Support.

 With hands-on lab on Raspberry Pi (2)

12

Course Overview
Part1: Contemporary Hardware

Case Study 2. A2: A lock free Multiprocessor OS kernel
 Universal operating system for symmetric multiprocessors (SMP)

 Based on the co-design of a programming language (Active
Oberon) and operating system kernel (A2)

 Topics: Intel SMP Architecture, Multicore Operating System, Scheduling,
Synchronisation, Synchronous and Aysynchronous Context Switches,
Priority Handling, Memory Handling, Garbage Collection.

 With hands-on labs on x86ish hardware and Raspberry Pi

13

Course Overview
Part2: Custom Designed Systems

Case Study 3. RISC: Single-Processor System [Lectures by Paul Reed]

 RISC single-processor system designed from scratch: hardware on FPGA

 Graphical workstation OS and compiler ("Project Oberon")

 Topics: building a system from scratch, Art of simplicity, Graphical OS, Processor
Design.

Case Study 4. Active Cells: Multi-Processor System

 Special purpose heterogeneous system on a chip (SoC)

 Massively parallel hard- and software architecture based on Message Passing

 Topics: Dataflow-Computing, Tiny Register Machine: Processor Design Principles,
Software-/Hardware Codesign, Hybrid Compilation, Hardware Synthesis

14

Organization

 Lecture Wednesday 13:15-15:00 (CAB H 52)
with a break around 14:00

 Exercise Lab Wednsday 15:15 – 17:00 (CAB H 52)
Guided, open lab, duration normally 2h
First exercise: today (September 25th)

 Oral Examination in examination period after semester (15 minutes).
Prerequisite: knowledge from both course and lab

15

Design Decisions: Area of Conflict

16

simple /
undersized

sophisticated /
complex

tailored /
non-generic

universal /
overly generic

comprehensible /
simplicistic

elaborate /
incomprehensible

customizable /
inconvenient

feature rich /
predetermined

I am about here

Programming Model

Compiler

Language

Tools

System
optimized /
uneconomic

economic /
unoptimzed

1. CASE STUDY MINOS
Minimal Operating System

17

Topics

 Hardware platform

 Cross development

 Simple modular OS

 Runtime Support

 Realtime task scheduling

 I/O (SPI)*

18

*Serial Peripheral Interface,

1.1 HARDWARE
Learn to Know the Target Architecture

19

ARM Processor Architecture Family
 32 bit Reduced Instruction Set Computer architecture by ARM Holdings

 1st production 1985 (Acorn Risc Machine at 4MHz)

 ARM Ltd. today does not sell hardware but (licenses and hardware descriptions for) chip designs

 Initial designs used for coprocessors in the 8-bit BBC Micro Computers
(Computer Literacy Project in the 1980s)

 First ARM Computer: Archimedes (1987)

 An early prominent example: StrongARM (1995)

 by DEC, licensing the design from Advanced Risc Machines.

 XScale implementation by Intel (now Marvell) after DEC take over

 More than 90 percent of the sold mobile phones (since 2007) contain at least one ARM processor
(often more)*

[95% of smart phones, 80% of digital cameras and 35% of all electronic devices*]

 Modular approach (today):
ARM families produced for different profiles, such as Application Profile, Realtime Profile and
Microcontroller / Low Cost Profile

20

*http://news.cnet.com/ARMed-for-the-living-room/2100-1006_3-6056729.html
*http://arm.com/about/company-profile/index.php

BBC Micro

Acorn Archimedes

Other Contemporary RISC Architectures
Examples

 MIPS (MIPS Technologies)

 Business model similar to that of ARM

 Architectures MIPS(I|…|V), MIPS(32|64), microMIPS(32|64)

 AVR (Atmel)

 Initially targeted towards microcontrollers

 Harvard Architecture designed and Implemented by Atmel

 Families: tinyAVR, megaAVR, AVR32

 AVR32: mixed 16-/32-bit encoding

 SPARC (Sun Microsystems)

 Available as open-source: e.g. LEON (FPGA)

 MicroBlaze, PicoBlaze (Xilinx)

 Softcore on FPGAs, support integrated in Linux.

 RISC-V (University of California, Berkeley)

 Open Architecture, BSD-licensed

21

ARM Architecture Versions

22

Architecture Features

ARM v1-3 Cache from ARMv2a,

32-bit ISA in 26-bit address space

ARM v4 Pipeline, MMU,

32 bit ISA in 32 bit address space

ARM v4T 16-bit encoded

Thumb Instruction Set

ARM v5TE Enhanced DSP instructions,

in particular for audio processing

ARM v5TEJ Jazelle Technology extension to support Java acceleration technology (documentation

restricted)

ARM v6 SIMD instructions, Thumb 2, Multicore, Fast Context Switch Extension

ARM v7 profiles: Cortex- A (applications), -R (real-time), -M (microcontroller)

ARM v8 Supports 64-bit data / addressing (registers).

ARM 64 base instruction description: more than 500 of 6666 pages of the ARM Architecture

Reference Manual

[http://www.arm.com/products/processors/instruction-set-architectures/]

ARM Processor Families (Microarchitectures)
very much simplified & sparse

Architecture Product Line / Family

(Implementation)

Speed (MIPS)

ARMv1-ARMv3 ARM1-3, 6 4-28 (@8-33MHz)

ARMv3 ARM7 18-56 MHz

ARMv4T, ARMv5TEJ ARM7TDMI up to 60

ARMv4 StrongARM up to 200 (@200MHz)

ARMv4 ARM8 up to 84 (@72MHz)

ARMv4T ARM9TDMI 200 (@180MHz)

ARMv5TE(J) ARM9E 220(@200MHz)

ARMv5TE(J) ARM10E

ARMv5TE XScale up to 1000 @1.25GHz

ARMv6 ARM11 740

ARMv6, ARMv7, ARMv8 ARM Cortex up to 10000 DMIPS (Multicore @2GHz)

23

ARM Cortex Microarchitectures
 Cortex-A

 ARM v7-A, ARM v8-A

 Application profile: typically including luxuries such as MMU support for OSes, ranging up to high
performance multicore CPUs with (NEON) SIMD units while power consumption is moderate, newest
generation provides 64-bit support

 Cortex-M

 ARM v6-M, ARM v7-M

 Microcontroller profile (32bit), Thumb instruction set, very low power consumption, some provide a
MPU

 Cortex-R

 ARM v7-R

 Realtime profile, tightly coupled memory, deterministic interrupt handling, redundant computation
(HW replication for fault tolerance)

cf. https://en.wikipedia.org/wiki/List_of_ARM_microarchitectures

24

ARM Architecture Reference Manuals
describe

 ARM/Thumb instruction sets

 Processor modes and states

 Exception and interrupt model

 System programmer's model,
standard coprocessor interface

 Memory model, memory ordering and memory management for different
potential implementations

 Optional extensions like Floating Point, SIMD, Security, Virtualization ...

for example required for the implementation of assembler, disassembler,
compiler, linker and debugger and for the systems programmer.

25

ARMv5 Architecture Reference Manual

ARMv6-M Architecture Reference Manual

ARMv7-M Architecture Reference Manual

ARMv7-M Architecture Reference Manual

ARMv7-AR Architecture Reference Manual

ARMv8-A Architecture Reference Manual

ARM Technical System Reference Manuals

describe

 Particular processor implementation
of an ARM architecture

 Redundant information from the
Architecture manual (e.g. system control processor)

 Additional processor implementation specifics
e.g. cache sizes and cache handling, interrupt controller, generic timer

usually required by a system's programmer

26

Cortex™-A7 MPCore™
Technical Reference Manual

System on Chip Implementation Manuals

describe

 Particular implementation of a System on Chip

 Address map:
physical addresses and
bit layout for the registers

 Peripheral components / controllers,
such as Timers, Interrupt controller, GPIO, USB, SPI, DMA, PWM, UARTs

usually required by a system's programmer.

27

BCM2835 ARM Peripherals

ARM Instruction Set

consists of

 Data processing instructions

 Branch instructions

 Status register transfer instructions

 Load and Store instructions

 Generic Coprocessor instructions

 Exception generating instructions

28

Some Features
of the ARM Instruction Set

 32 bit instructions / many in one cycle / 3 operands

 Load / store architecture (no memory operands such as in x86)

ldr r11, [fp, #-8]

add r11, r11, #1 ?
str r11, [fp, #-8]

29

increment a
local variable?

Some Features
of the ARM Instruction Set

 32 bit instructions / many in one cycle / 3 operands

 Load / store architecture (no memory operands such as in x86)

ldr r11, [fp, #-8]

add r11, r11, #1 ?
str r11, [fp, #-8]

30

increment a
local variable

Some Features
of the ARM Instruction Set

 Index optimized instructions (such as pre-/post-indexed
addressing)

stmdb sp!,{fp,lr} ; store multiple decrease before and update sp

... ?

ldmia sp!,{fp,pc} ; load multiple increase after and update sp

31

stack activation
frame?

Some Features
of the ARM Instruction Set

 Index optimized instructions (such as pre-/post-indexed
addressing)

stmdb sp!,{fp,lr} ; store multiple decrease before and update sp

... ?

ldmia sp!,{fp,pc} ; load multiple increase after and update sp

32

stack activation
frame

Some Features
of the ARM Instruction Set

 Predication: all instructions can be conditionally executed*

cmp r0, #0
swieq #0xa ?

33

null pointer
check?

Some Features
of the ARM Instruction Set

 Predication: all instructions can be conditionally executed*

cmp r0, #0
swieq #0xa ?

34

null pointer
check

Impressive Example of Predication

35

loop: CMP Ri, Rj ; set condition flags

SUBGT Ri, Ri, Rj ; if i>j then i = i-j;

SUBLT Rj, Rj, Ri ; if i<j then j = j-i;

BNE loop ; if i != j then loop

Some Features
of the ARM Instruction Set

Link Register

bl #0x0a0100070 ?

 Shift and rotate in instructions

add r11, fp, r11, lsl #2 ?

36

procedure call

r11 = fp + r11*4
e.g. array access

?

?

Some Features
of the ARM Instruction Set

Link Register

bl #0x0a0100070 ?

 Shift and rotate in instructions

add r11, fp, r11, lsl #2 ?

37

procedure call

r11 = fp + r11*4
e.g. array access

Some Features
of the ARM Instruction Set

 PC-relative addressing

ldr r0, [pc, #+24] ?

 Coprocessor access instructions

mrc p15, 0, r11, c6, c0, 0 ?

38

load a large
constant

setup the mmu

?

?

Some Features
of the ARM Instruction Set

 PC-relative addressing

ldr r0, [pc, #+24] ?

 Coprocessor access instructions

mrc p15, 0, r11, c6, c0, 0 ?

39

load a large
constant

setup the mmu

ARM Instruction Set
Encoding (ARM v5)

40

shiftable register

8 bit immediates with
even rotate

generic coprocessor
instructions

branches with 24 bit
offset

load / store with
multiple registers

load / store with
destination increment

conditional execution

undefined instruction:
user extensibility

From ARM Architecture Reference Manual

Thumb Instruction Set
ARM instruction set complemented by

 Thumb Instruction Set

 16-bit instructions, 2 operands

 eight GP registers accessible from most instructions

 subset in functionality of ARM instruction set

 targeted for density from C-code (~65% of ARM code size)

 Thumb2 Instruction Set

 extension of Thumb, adds 32 bit instructions to support almost all of ARM ISA
(different from ARM instruction set encoding!)

 design objective: ARM performance with Thumb density

41

Typical procedure call on ARM
Caller: push parameters

use branch and link instruction. Stores
the PC of the next instruction into the
link register.

Callee: save link register and frame
pointer on stack and set new frame
pointer.

Execute procedure content

Reset stack pointer and restore frame
pointer and and jump back to caller
address.

Caller: cleanup parameters from stack

42

prev fp
lr

local
vars

parameters

(...) stack gro
w

s

...

bl #address

stmdb sp!, {fp, lr}
mov fp, sp

...

mov sp, fp
ldmia sp!, {fp, pc}

add sp, sp, #n
...

fp

ARM Processor Modes

ARM from v5 has (at least) seven basic operating modes

 Each mode has access to its own stack and a different subset of registers

 Some operations can only be carried out in a privileged mode

43

Mode Description / Cause

Supervisor Reset / Software Interrupt

FIQ Fast Interrupt

IRQ Normal Interrupt

Abort Memory Access Violation

Undef Undefined Instruction

System Privileged Mode with same registers as in User Mode

User Regular Application Mode

p
ri

v
ile

g
e

d

e
x
c
e
p
tio

n
s

n
o

rm
a
l

e
x
e

c
u

tio
n

ARM Register Set

44

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13 SP
R14 LR
R15 PC

CPSR*

User/System

R8.FIQ
R9.FIQ
R10.FIQ
R11.FIQ
R12.FIQ
R13.FIQ SP
R14.FIQ LR

SPSR*.FIQ

FIQ

R13.SVC SP
R14.SVC LR

SPSR.SVC

SVC

R13.IRQ SP
R14.IRQ LR

SPSR.IRQ

IRQ

R13.UND SP
R14.UND LR

SPSR.UND

UND

R13.ABT SP
R14.ABT LR

SPSR.ABT

ABT

Shadowing

ARM has 37 registers, all 32-bits long

A subset is accessible in each mode

Register 13 is the Stack Pointer (by convention)

Register 14 is the Link Register**

Register 15 is the Program Counter (settable)

CPSR* is not immediately accessibleu
n
b
a
n
k
e
d

b
a
n
k
e
d

* current / saved processor status register, accessible via MSR / MRS instructions

** more than a convention: link register set as side effect of some instructions

Processor Status Register (PSR)

N Z C V Q J GE[3:0] IT cond E A I F T mode

31 28 27 24 23 20 19 16 15 10 9 8 7 6 5 4 0

Condition Codes

•N=Negative result from ALU

•Z=Zero result from ALU

•C=ALU operation Carried out *

•V=ALU operation overflowed

Mode Bits

• Specify processor mode

Other bits

• architecture 5TE(J) and later

• Q flag: sticky overflow flag for saturating instr.

• J flag: Jazelle state

• architecture 6 and later

• GE[0:3]: used by SIMD instructions

• E: controls endianess

• A: controls imprecise data aborts

• IT: controls conditional execution of Thumb2

T Bit

• T=0: Processor in ARM mode

• T=1: Processor in Thumb State

• Introduced in Architecture 4T

Interrupt Disable bits

• I=1: Disables IRQ

• F=1: Disables FIQ

* reverse cmp/sub meaning compared with x86 45

Raspberry Pi 2

46

Raspberry Pi 2 (Model B) will be the hardware used at least in the first 4 weeks lab
sessions

 Produced by element14 in the UK
(www.element14.com)

 Features

 Broadcom BCM2836 ARMv7
Quad Core Processor running at 900 MHz

 1G RAM

 40 PIN GPIO

 Separate GPU ("Videocore")

 Peripherals: UART, SPI, USB, 10/100 Ethernet Port (via USB),
4pin Stereo Audio, CSI camera, DSI display, Micro SD Slot

 Powered from Micro USB port

ARM System Boot

 ARM processors usually starts executing code at adr 0x0
- e.g. containing a branch instruction to jump over the interrupt vectors
- usually requires some initial setup of the hardware

 The RPI, however, is booted from the Video Core CPU (VC):
the firmware of the RPI does a lot of things before we get control:
kernel-image gets copied to address 0x8000H and branches there
No virtual to physical address-translation takes place in the start.

 Only one core runs at that time. (More on this later)

47

RPI 1 Memory Map

48

Linux VirtualARM PhysicalVC Virtual

This is for RPI1 (BCM 2835)
and wrong for RPI2 (BCM 2836)
correct for BCM2836: 3F000000

RPI 2 Memory Map

 Initially the MMU is switched
off. No memory translation
takes place.

 System memory divided in
ARM and VC part, partially
shared (e.g. frame buffer)

 ARM's memory mapped
registers start from
0x3F000000
-- opposed to reported offset
0x7E000000 in BCM 2835
Manual

49

0x0

0x30000000 (768 M, configurable)

DEVICES
0x3F000000

SD RAM VC

0xFFFFFFFF (4G-1)

0x40000000 (total system DRAM)

SD RAM ARM

kernel.img
0x8000 (32k)

General Purpose I/O (GPIO)

 Software controlled processor pins

 Configurable direction of transfer

 Configurable connection

 with internal controller (SPI, MMC, memory controller, …)

 with external device

 Pin state settable & gettable

 High, low

 Forced interrupt on state change

 On falling/ rising edge

50

GPIO
Block Diagram (BCM 2835)

51

internal function selection

output control registers

pin direction control

input (pin level) registers

interrupt control

pull up / down resistor
control

Raspberry Pi 2 GPIO Pinout
name pin pin name

3.3 V DC 01 ● ● 02 DC power 5v

GPIO 02 03 ● ● 04 DC power 5v

GPIO 03 05 ● ● 06 ground

GPIO 04 07 ● ● 08 GPIO 14

ground 09 ● ● 10 GPIO 15

GPIO 17 11 ● ● 12 GPIO 18

GPIO 27 13 ● ● 14 ground

GPIO 22 15 ● ● 16 GPIO 23

3.3V DC 17 ● ● 18 GPIO 24

GPIO 10 19 ● ● 20 ground

GPIO 09 21 ● ● 22 GPIO 25

GPIO 11 23 ● ● 24 GPIO 08

ground 25 ● ● 26 GPIO 07

ID_SD 27 ● ● 28 ID_SC

GPIO 05 29 ● ● 30 ground

GPIO 06 31 ● ● 32 GPIO 12

GPIO 13 33 ● ● 34 ground

GPIO 19 35 ● ● 36 GPIO 16

GPIO 26 37 ● ● 38 GPIO 20

ground 39 ● ● 40 GPIO 21 52

Connecting external power
with 5 v here kills the board!
Be careful with the USB TTL
Cable (Exercise 2)

Documentation Examples (BCM2835 ARM Peripherals)

53

GPIO Register Overview (p. 90) GPIO Function Select (p. 92 -94)

GPIO Pin Mapping / Alternate Functions (p.102)

GPIO Setup (RPI2)

1. Program GPIO Pin Function (in / out / alternate function)
by writing corresponding (memory mapped) GPFSEL register.
GPFSELn: pins 10𝑛,… , 10𝑛 + 9
Use RMW (Read-Modify-Write) operation in order to keep the other bits

2. Use GPIO Pin

a. If writing: set corresponding bit in the GPSETn or GPCLRn register
set pin: GPSETn: pins 32𝑛,… , 32𝑛 + 31
clear pin: GPCLRn: pins 32𝑛,… , 32𝑛 + 31
no RMW (Read – Modify – Write) required.

b. If reading: read corrsponding bit in the GPLEVn register
GPLEVn: pins32𝑛,… , 32𝑛 + 31

c. If "alternate function": device acts autonomously. Implement device driver.

54

