
System Construction Course 2019,

Assignment 11

Felix Friedrich, ETH Zürich, 2019

Multicore Computing on FPGAs – The Active Cells Model.

• Understand the features and limits of a message passing architecture.

• Understand how software code can be mapped to and deployed on a multicore archi-
tecture on FPGA.

• Understand how configurable hardware can be adapted to satisfy software require-
ments.

Lessons to Learn

Preparation

1. Update your repository or checkout the exercise from assignments/assignment11

2. Open a console in assignment11

3. Extract the development system:

unzip bin.zip && unzip source.zip

4. Compile the HDL tools and all hardware components with

./oberon execute BuildTools

5. Connect the board with LED inserted via USB cable to your PC.

LED connection (ignore the white and green serial cables).

and try out the very first application example module Application/PWMTest.Mod, a module
testing the Pulse Width Modulator hardware using

./oberon execute BuildPWM

This is equivalent to compiling the software modules, loading the hardware library and build-
ing the hardware with the following commands.

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment11
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment11/Application/PWMTest.Mod


System Construction Course 2019, 11 2

System.DoFile init . txt ˜ (∗ search paths ∗)
Compiler.Compile −−cellsAreObjects Application/PWMTest.Mod ˜
Compiler.Compile −p=TRMI Application/PWMTest.Mod ˜
System.DoFile LoadHWL.txt ˜
AcHdlBackend.Build −−deploy −−target=”OPALBoard” −−outputPath=”Ac3Projects” ”PWMTest.Network” ˜

After synthesis, place and routing and deployment, the three-color LED should slowly go
from red over green to blue. When you repeat the building process, you will notice that the
building process is much faster (because the hardware does not noeed to be rebuilt).

PWM Tester Network.

6. Connect the I2S board as shown on the picture below.

I2S microphone connection.

1 Candle

As an introductory exercise, we use the microphone (connected via
I2S to the FPGA board) in order to detect when someone blows on
the board and magically let the LEDs turn off and turn them on again
after a while.
Module Application/Candle.Mod contains a network that connects
the output of the I2S module to a software component which has
access to a Pulse Width Modulator (PWM) driving an RGB LED.
Complement the implementation of the CandleCell in Candle.Mod
such that it simulates a relighting candle.

Run the build script for the candle using the command

./oberon execute BuildCandle

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment11/Application/Candle.Mod


System Construction Course 2019, 11 3

Relighting Candle Network.

2 Sampling Audio

In the previous example, you implemented the logic of a cell in a network of cells. In this example,
the business logic of the cell is already given in module Application/SoundSampler.Mod and you
need to construct a useful network of cells.

Connect the Serial-To-USB cable with the board as shown on the figure below.

I2S serial connection.

Implement the network (as displayed below) in the Network cellnet in module SoundSampler.Mod.

Run the build script for the audio sampler

./oberon execute BuildSampler

Audio Sampler Network.

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment11/Application/SoundSampler.Mod


System Construction Course 2019, 11 4

The sampler sends each sample taken using a serial connection to the host PC , waiting for each
character to be sent. In order to synchronize the communication (very crudely), 8192 4-byte data
points will only be sent from the device to the host PC when a ’0’ character has been sent via
serial connection from the host to the device. Sending is indicated by a light up blue LED on the
board.

You can receive data on the host PC by calling

V24.Map 9 /dev/ttyUSB0 ~
SoundStream.Record 9 audio.txt ~

within the Oberon shell, or equivalently call

./oberon run RecordSoundStream

The command Record in Oberon module Application/SoundStream.Mod also does an FFT of the
data and tries to identify the dominant audio frequencies. The data can be visualized using the
python script plot audio.py using the command

python3 plot_audio.py

Originally, it was planned to use the FFT on the hardware device in this exercise but for reasons
of time and simplicity, this idea has been dismissed. You are very much welcome to implement
this on the FPGA hardware, nevertheless.

While doing the experiments for this exercise, we have found out that already counting the num-
bers of crossings from below the mean to above the mean in an audio signal can be used in order
to estimate the base frequency observed by the device, which gave us the idea for the following
part of this exercise.

3 Tuner

The objective of this part of the exercise is to build a system that computes the base
frequency of a tone (e.g. of a musical instrument) in realtime and outputs the currently
measured frequency (via serial connection) and indidates the difference to a target
frequency on the RGB LED (red: too low, blue: too high, green: ok).
In order to be able to finish this in reasonable time, we provide you with our current
solution where one component is missing: the bias correction.
You can alternatively use the serial connection in order to output sampling values on
your host PC or the LED. Leave the green and white cables of the serial cable connected
and connect the black cable (ground) alternatingly with the LED. We have only one
ground pin.

Add the BIAS correction in three steps:

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment11/Application/SoundStream.Mod
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment11/plot_audio.py


System Construction Course 2019, 11 5

1. Compute the (integer) average value of a reasonable number of samples in software within
the PitchDetector and subtract this value from each new sampled value. The (hardware)
component Sampler provides (at most) 20000 samples per second: an attempt to read a
value from the Sampler component output blocks until 50µs have passed since the most
recent read. The sampler delivers 24 bit signed integer values (with a prevision of 18 bits,
cf. I2S component data sheet).

2. Build a software BiasCorrector component that takes data from the Sampler component,
applies the bias correction, and passes the corrected values on to the Pitch detector (as
seen below in the network of the tuner).

3. Translate the software BiasCorrector to Verilog Hardware Description Language and pro-
vide a new specialized ActiveCells BiasCorrector engine that does this in hardware.

Steps 1 and 2 can be carried out directly in module Application/Tuner.Mod and do not require any
changes in the Active Cells Hardware library. Recompile, build and deploy the module using the
command

./oberon execute BuildTuner

The third step is more involved and usually consists of the following tasks

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment11/Application/Tuner.Mod


System Construction Course 2019, 11 6

(a) Create an Active Cells registration module of the hardware module. This has already been
done and can be found in module HardwareLibrary/IO/BiasCorrector.Mod. Please have a
look in this module that contains the description of the software (Axi4Stream) ports and the
hardware ports involved.

(b) Create the corresponding Verilog module. We have prepared a template of this module
(such that it adheres to the right kind of interface) with HardwareLibrary/IO/BiasCorrector.v.
The business logic of this module is largely missing.

(c) Define the hardware ports that are used by (instances) of this module for the underlying
hardware / board. This definition (here in HardwareLibrary/OPALBoard.Mod) is not neces-
sary here because the module does not provide any hardware ports.

(d) Register the Verilog module in the Active Cells Hardware library. We have carried this out
already in file HardwareLibrary/Specifications.txt

The implementation of the Verilog module is non-trivial because of the Axi4Stream ports involved.
It is best to have a look at other hardware modules in the Hardware library. In order to make it
doable in the amount of time given, our code can already pass on unaltered data. The code can
be understood with the following rules in mind.

Sender perspective:

(i) Availability of data is signaled on the output port (signal out_tvalid) only when data are
available.

(ii) Data keeps being available on the output as long as they have not been picked up (signal
out_tready).

Receiver perspective:

(iii) Data is only read from the input when it is available (signal in_tvalid).

(iv) Sender of the data sees that you have picked up the data (signal out_tready).

Documents

• Slides from the lecture homepage.

• I2S microphone SPH0645LM4H datasheet documents/microphone/SPH0645LM4H-B.pdf

• AMBA 4 AXI4-Stream Protocol in documents/ActiveCells/IHI0051A amba4 axi4 stream v1 0 protocol spec.pdf

• Active Cells Paper in documents/ActiveCells/ComputeModelHPSoCFPGA.pdf

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment11/HardwareLibrary/IO/BiasCorrector.Mod
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment11/HardwareLibrary/IO/BiasCorrector.v
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment11/HardwareLibrary/OPALBoard.Mod
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment11/HardwareLibrary/Specifications.txt
http://lec.inf.ethz.ch/syscon
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/documents/microphone/SPH0645LM4H-B.pdf
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/documents/ActiveCells/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/documents/ActiveCells/ComputeModelHPSoCFPGA.pdf

	Candle
	Sampling Audio
	Tuner

