
System Construction Course 2019,

Assignment 7

Felix Friedrich, ETH Zürich

Variations of a Lock-Free Stack and the ABA Problem

• Learn how to implement lock-free data structures.

• Experience the difference between data structures that are linked in-place and data
structures that use separate items as placeholders from the point of view of lock-free
programming.

• Get a deeper insight into the cause and remedy of the ABA problem.

Lessons to Learn

Preparation

1. For this exercise you can start working on your current operating system. As in the previous
exercises, you can use the command shell environment and the compiler.

2. Open a console in directory assignments/assignment07

3. In a second step you can continue using Bochs as used in the previous exercise or - even
better for this exercise – use qemu. If you feel uncomfortable with this, you can use any
virtualisation environment that emulates modern x86 hardware and that has a support for
booting from raw disk images as IDE devices. 1

4. Extract the files for your operating system in directory assignments/assignment07. For
example, execute unzip linux64.zip.

Implement a Thread-Safe (blocking) Stack

For this lab, we have prepared a module Stack.Mod that contains an abstract Stack object and a
concrete (”unprotected”) implementation that is vulnerable to race conditions.

Moreover, we provide a module TestStack.Mod that can be used in order to test the Stack. It
implements a simple scenario: Initially, a stack is filled with n nodes carrying values 0 to n − 1,
then t Threads are started that repeatedly pop and push elements. Each thread performs m such
operations concurrently.

Compile the module and the driver with the following commands:

./oberon compile Stack.Mod

./oberon compile TestStack.Mod

The test setup can be driven on the unprotected stack using the following command

./oberon TestStack.Test unprotected <t> <m> <n>

(replace <t>, <m> and <n> by the number of threads, operations and nodes, respectively).

In order to run this command in a virtual environment, you can choose between two operating
system kernels: (blocking) A2 kernel and lock-free A2 kernel. With regards to the actual problems

1If you like, you can also later on try to use the graphical A2 OS in your system (that you can get from here: http:

//a2.inf.ethz.ch)

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment7
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment07
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment07/Stack.Mod
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment07/TestStack.Mod
http://a2.inf.ethz.ch
http://a2.inf.ethz.ch


System Construction Course 2019, 7 2

of this task it is irrelevant which one you need. You might notice performance differences, though.
They can be created using one of the following commands:

./oberon execute makeA2

./oberon execute makeLockFreeA2

Run them using Bochs (as in the previous exercise by double clicking the a2.bxrc file in windows
or executing bochs -f linuxBochSettings in Linux). Alternatively, use qemu as follows

qemu−system−i386 −serial stdio a2.img

Qemu has the advantage that you can set the number of processors and even use virtualiza-
tion hardware. You can change the memory size with the m switch, for example -m 512. You
can change the numbers of processors using, for example -smp 8 and you can switch on the
virtualization using flag -enable-kvm.

1. Shortly experiment with the unprotected stack and find numbers for t, m and n where the
stack seems to always work, where it sometimes works and where it does never work (on
your computer).

2. Implement a blocking version of the stack (by completing the implementation of the BlockingStack
in module Stack.Mod). Convince yourself that it works using the command

TestStack.Test blocking <t> <m> <n>

Task 2

Having implemented a blocking version of the (thread-safe) stack, now implement a lock-free
version of it. You can use the CAS construct that is available as built-in function in Active Oberon.
The syntax of CAS is

CAS(variable, old, new)

where old and new need to be values that are assignment compatible to the content of the variable
variable (which needs to represent a memory location). The semantics of CAS are: in one atomic
action (that can nevertheless occupy a lot of processor cycles), the value of old is compared to
the value stored in the memory of variable. If the values coincide, the value of variable is set
to new.

CAS returns the previous value of the variable. If you want to ignore that return value, you can use
the following construct

IGNORE CAS(variable, old, new);

that effectively turns the CAS expression into a statement.

1. Do not (yet) try to find a solution for the ABA problem but implement the lock-free stack ac-
cording to first principles of lock-free programming by complementing object LockfreeStack
in module Stack.

2. Try out the capabilities of your implementation by calling

TestStack.Test lockfree <t> <m> <n>

Again, try to find values of t, m, and n where it works. Since you have not yet taken into
consideration the ABA problem, it will fail for some values of t, m and n.



System Construction Course 2019, 7 3

Task 3

Now implement a lock-free stack that avoids improper reuse of the nodes internally used by the
stack. In order to do so,

1. create a new class of container nodes that serve as the nodes of the linked list of the
stack and use them as placeholders that refer to what we previously called the nodes. For
simplicity (and such that the interface of the stack does not need to be changed), you can
keep using the Stack.Node (ignoring the next field) and simply add another container node
with a reference to a Stack.Node.

2. For each Push operation, you can now allocate a new placeholder node referring a Stack.Node.
During each Pop operation, you may discard the placeholder node.

3. Test your implementation by calling

TestStack.Test placeholder <t> <m> <n>

with appropriate values of t, m and n and explain to your colleague in detail, why the ABA
problem cannot occur with the (garbage collected) placeholder nodes.

Think what you would have to do in order to reuse placeholder nodes (i.e. avoiding the re-
allocation of a new object for each Push).

Optional

Try to come up with a node cache that could be used in order to avoid reallocation of new objects
for each Push. Think about where the ABA problem would occur there.

Documents

• System Construction Lecture 7 slides from the course-homepage
http://lec.inf.ethz.ch/syscon

• Oberon Language Report (Draft 2019) from the A2 repository

• A2 Programming Quickstart Guide. File A2QuickStartGuide.pdf in folder documents/oberon

http://lec.inf.ethz.ch/syscon
http://cas.inf.ethz.ch/projects/a2/repository/raw/trunk/LanguageReport/OberonLanguageReport.pdf
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/documents/oberon/A2QuickStartGuide.pdf
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/documents/oberon

