ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

System Construction Course 2019,
Assighment 6

Felix Friedrich, ETH Zirich

Lessons to Learn
e Learn how to debug a kernel using virtual environments.

e Understand call chains and stack traces.

e Understand synchronization semantics of Active Oberon.

1 Debugging a Kernel

Preparation

1. Install a recent version of the Bochs emulator, .e.g from http://bochs.sourceforge.net/.
Ubuntu linux users install it using apt-get install bochs bochs-x.

2. Open a console in directory assignments/assignment06

The first part of this lab is about debugging a kernel using the A2-built in tracing features and a
hardware emulating tool (Bochs).

Find the Bugs!

For this lab we have prepared an implementation of the A2 kernel together with build scripts to
set it up and run it in a virtual machine. The system reports a successful boot with the following
output

A2 Test System
Successfully booted

You will not see this report in the first place because we have injected bugs into the kernel that
prevent it from booting successfully. Find and correct the bugs!

Guidelines:

1. Use the script in file makeA2 in order to to compile and link the boot-file and to inject the
files into a bootable HDD image by calling oberon execute makeA2 or, equivalently, by
executing System.DoFile makeA2 within the Oberon shell.

The linker log file linker.log can contain valuable information about the arrangement.
Have a look at it!

2. Use the hardware emulator Bochs (2.6.8) for starting and debugging the kernel.

(a) Windows users start the system by clicking a2.bxrc. If you right-click this file, using the
context menu you can start the debugging mode of Bochs. Use the command “help”
to find out about facilities of the debugger.

(b) Linux users start the system by executing bochs -f linuxBochsSettings.txt. The
Linux version starts in debugging mode. In order to start the emulation, enter ¢ (for
continue).

3. The log of A2 will be written to the serial port. Bochs redirects it to the file a2.1og. Hint: Use
the log file for tracing the kind of errors that provide a trap stack trace-back report. Stack
trace-backs are described in the next section of this document.


http://bochs.sourceforge.net/
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment06
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment06/makeA2
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment06/a2.bxrc

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

© ©® N O oA W N =

N

System Construction Course 2019, 6 2

e Further hints: when in debugging mode, you can interrupt a running system with Ctrl-C
(typed at the debugging console of Bochs). Make use of time-breakpoints in Bochs,
when you cannot locate the exact location of a problem. Use the linker-log to find out
where you are with respect to the source code.

Understanding a Trap Traceback

When you (later on) run code in A,, it can happen that you see a red window popping up. Such a
red window indicates that something went wrong. Usually it happens as a result of an unhandled
runtime exception that needs intervention, such an array index out of bounds, nil pointer access,
programmed halt, assert failed etc. During startup of a kernel the information is displayed on the
text console and / or written to other debug channels such as a serial port.

The following module, for example, will produce a trap when TrapExample.Test is executed.

MODULE TrapExample;
VAR a: ARRAY 2 OF CHAR;

PROCEDURE Test2(x: SIZE);
BEGIN

al[x] := "A"; (x if x exceeds the length of a, this will lead to a trap *)
END Test2;

PROCEDURE Testx;

BEGIN
Test2(10);

END Test;

END TrapExample.

The trap output can be used to diagnose the history of a trap. Inspection of the trap is also
referred to as Post Mortem Debugging. A trap starts with information on the trap number and
reason (here: index out of range). Then there is more general information on the system release
followed by the state of the registers and flags. After that we see the process ID and the active
object that is associated with the process (here: Commands . Runner).

LinuxA2 Gen. 64—bit, Oct 26 2019 2019/10/26 15:34
Trap 5.7 (index out of range)
SP = 00007F79FA0A8430 FP = 00007F79FA0A8448 PC = 00007F79770C38DD

RAX = 0000000000000000 RBX = 00007F797704B9C0 RCX = 00007F79FFC3E320 RDX = 00007F79FA0A9A20
RSI = 00007F797704B9C0 RDI = 000000000000000A R8 = 0000000000000000 R9 = 00007F79640075E0

R10 = 0000000000000000 R11 = 0000000000200246 R12 = 00007F79FA0A8FC0 R13 = 0000000000000000
R14 = 000000000807FC60 R15 = 00007F79FA0664E8

Process: 85 run 0 000007F7977049890:Commands.Runner NIL {0}

After this prolog starts the stack trace. The runtime builds this information by traversing the
stack frames from top to bottom. Read from bottom to top (lines 7,5,4,2), it shows how pro-
cedures were called. In our example it starts with Objects.Wrapper. Objects.BodyStarter
executed the body of object Commands . Runner that called TrapExample.Test which itself called



ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

© ® N O g A N =

=)

System Construction Course 2019, 6 3

TrapExample.Test2. This is where the trap occured. More specifically, at instruction offset 44
(bytes) relative to the start of TrapExample.Test2. The offset can be utilized to determine the
exact location of a trap both in binary code but also, using the compiler, in source code. In a
kernel output, the pc=number [hex number] shows the location of the program counter as abso-
lute value and therefore allows also to examine where the trap happened by comparison with the
linker script.

Between procedure and module names we see other names followed by an equal sign. They
denote the variables and parameters of the respective procedures. For example, in procedure
TrapExample.Test2, variable x had a value of 10, ultimately causing the index out of bound trap.
StackTraceBack:
TrapExample.Test2:44 pc=00007F79770C38DD fp=00007F79FA0A8448 crc=D3BC8C17

x= [@16] 10
TrapExample.Test:39 pc=00007F79770C3919 fp=00007F79FA0A8470 crc=D3BC8C17
Commands.Runner.@Body:790 pc=00000000080A3A85 fp=00007F79FA0A8490 crc=6208ACC3

@Self= [@16] 00007F7977049890 (Commands.Runner)
Objects.BodyStarter:714 pc=000000000807FF2A fp=00007F79FA0A84D8 crc=97D54EES

p= [@—16] 00007F797704B100 (Objects.Process)

res= [@—20] 0

sp= [@—32] 00007F79FA0A84A8

2 A Recursive Lock

This second part of the exercise does only work in case you have solved part 1.

This second part of this lab is to learn how to use the language constructs of Active Oberon for
process synchronisation in A2.

Critical sections can be executed by at most one process at a time. In A2, only non recursive
locks are implemented, which means that a process can only enter a critical section once, even
if it holds the lock. Implement a recursive lock to allow a process to re-enter a critical section
recursively.

The intended usage is like this:

VAR lock: RecursiveLock;
NEW (lock) ;

lock.Acquire();
(x critical section (without AWAIT) x)
lock.Release()
We provide some initial context with module Locks.Mod
Module TestLocks.Mod serves as a testing program.
Once, successfully implemented, the kernel log should end with lines like the following:

,7,8,9,10,11,12,13,14,15,16,17,18,19,20
,7,8,9,10,11,12,13,14,15,16,17,18,19,20
7,8,9,10,11,12,13,14,15,16,17,18,19,20

0,1,2,3,4,5,6
0,1,2,3,4,5,6
0,1,2,3,4,5,6

s’ s I’ s 3

The following command can be used in order to build and run the test example (in Linux):

./oberon execute makeTestLocks && bochs —f linuxBochsSettings.txt

Hints:


https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment06/src/Locks.Mod
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/assignments/assignment06/src/TestLocks.Mod

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

System Construction Course 2019, 6 4

e An AWAIT statement must always be placed in an EXCLUSIVE section.

e Condition evaluation of all waiting conditions takes place when a process exits the monitor.
This implies that statements that change the state of a condition of an AWAIT statement
should be put into an EXCLUSIVE section.

¢ Condition evaluation potentially takes place in the context of a different thread.

e A pointer to the currently running process can be acquired by the procedure Objects.ActiveObject ()
You may assign it to a variable of type ANY, for example.

Documents

e System Construction Lecture 6 slides from the course-homepage
http://lec.inf.ethz.ch/syscon

e A, Programming Quickstart Guide. File A2QuickStartGuide.pdf in folder documents/oberon


http://lec.inf.ethz.ch/syscon
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2019/shared/documents/oberon/A2QuickStartGuide.pdf
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/documents/oberon

	Debugging a Kernel
	A Recursive Lock

