ABA

Problems of unbounded lock-free queues

= unboundedness = dynamic memory allocation is inevitable
= if the memory system is not lock-free, we are back to square 1

= reusing nodes to avoid memory issues causes the ABA problem (where ?!)

* Employ Hazard Pointers now.

271



Hazard Pointers

* Store pointers of memory

references about to be accessed thread A
by a thread - hp1
- hp2

* Memory allocation checks all
hazard pointers to avoid the ABA
problem

Number of threads unbounded

—time to check hazard pointers
also unbounded!

— difficult dynamic bookkeeping!

thread B
- hpl
- hp2

thread C
- hp1l
- hp2



Key idea of Cooperative MT & Lock-free Algorithms

Use the guarantees of cooperative multitasking to
implement efficient unbounded lock-free queues



Time Sharing

awn

user mode kernel mode

timer IRQ

thread A - save processor registers (assembly)

- call timer handler (assembly)
- lock scheduling queue

- pick new process to schedule
- unlock scheduling queue

inherently hardware
dependent

(timer programming
context save/restore)

- restore processor registers (assembly)\

thread B - Interrupt return (assembly)

inherently non-parallel
(scheduler lock)



Cooperative Multitasking

user mode user mode

hardware independent

(no timer required,

standard procedure calling convention
takes care of register save/restore)

function call
thread A
% - pick new process to schedule (lockfree)
thread B - switch base pointer

- return from function call finest granularity

(no lock)




Implicit Cooperative Multitasking

Ensure cooperation

= Compiler automatically inserts code at specific points in the code

Details
= Each process has a quantum

= At regular intervals, the compiler inserts code to decrease the
guantum and calls the scheduler if necessary

sub  [rcx + 88], 10 ; decrement quantum by 10

jge skip ; check if it 1s negative

call Switch ; perform task switch
skip:

implicit cooperative multitasking — AMD64



uncooperative

PROCEDURE Enqueue- (item: Item; VAR queue: Queue);
BEGIN {UNCOOPERATIVE}

(* no scheduling here ! *)

END Enqueue;

zero overhead processor
local "locks"

277



Implicit Cooperative Multitasking

Pros
= extremely light-weight — cost of a regular function call
= allow for global optimization — calls to scheduler known to the compiler

= zero overhead processor local locks

Cons

= overhead of inserted scheduler code

= currently sacrifice one hardware register (e.g. rcx)

= requires a special compiler and access to the source code



Cooperative MT & Lock-free Algorithms

Guarantees of cooperative MT

*  No more than M threads are executing inside an uncooperative
block (M = # of processors)

* No thread switch occurs while a thread is running on a processor

= hazard pointers can be associated with the processor
= Number of hazard pointers limited by M

= Search time constant

thread-local storage - processor local storage



No Interrupts?

Device drivers are interrupt-driven

= breaks all assumptions made so far
(number of contenders limited by the number of processors)

Key idea: model interrupt handlers as virtual processors

= M = # of physical processors + # of potentially concurrent interrupts



Queue Data Structures

for each queue

first  last

global (once!)

hazard released
pointers pointers

hazard hazard  pooled pooled hazard hazard pooled pooled
first/last = next first/last | next first/last next first/last = next

Hprocessors

N
Vv

281



Marking Hazarduous

PROCEDURE Access (VAR node, reference: Node; pointer: SIZE);
VAR value: Node; index: SIZE;
BEGIN {UNCOOPERATIVE, UNCHECKED}

index := Processors.GetCurrentIndex ();
LOOP
processors|[index].hazard[pointer] := node;

guarantee: the node in reference
was set hazardous before it was
here available in reference

value := CAS (reference, NIL, NIL);
IF value = node THEN EXIT END;
nhode := value;
END;
END Access;

PROCEDURE Discard (pointer: SIZE);

BEGIN {UNCOOPERATIVE, UNCHECKED}
processors[Processors.GetCurrentIndex ()].hazard[pointer] := NIL;

END Discard;



Node Reuse

PROCEDURE Acquire (VAR node {UNTRACED}: Node): BOOLEAN;
VAR index := ©: SIZE;
BEGIN {UNCOOPERATIVE, UNCHECKED}
WHILE (node # NIL) & (index # Processors.Maximum) DO
IF node = processors[index].hazard[First] THEN

Swap (processors[index].pooled[First], node); index := 0;
ELSIF node = processors[index].hazard[Next] THEN

Swap (processors[index].pooled[Next], node); index := 0;
ELSE

INC (index) wait free algorithm to find non-
END; hazarduous node for reuse (if any)

END;
RETURN node # NIL;
END Acquire;



Lock-Free Enqueue with Node Reuse

hode := item.node;
IF ~Acquire (node) THEN
NEW (node); reuse
END;
hode.next := NIL; node.item := item;

LOOP
last := CAS (queue.last, NIL, NIL);
Access (last, queue.last, Last); mark last hazarduous
next := CAS (last.next, NIL, node);
IF next = NIL THEN EXIT END;
IF CAS (queue.last, last, next) # last THEN CPU.Backoff END;
END;
ASSERT (CAS (queue.last, last, node) # NIL, Diagnostics.InvalidQueue);
Discard (Last); unmark last

284



Lock-Free Dequeue with Node Reuse

LOOP
first := CAS (queue.first, NIL, NIL);
Access (first, queue.first, First); mark first hazarduous
next := CAS (first.next, NIL, NIL);
Access (next, first.next, Next); mark next hazarduous

IF next = NIL THEN

item := NIL; Discard (First); Discard (Next); RETURN FALSE unmark first and next
END;
last := CAS (queue.last, first, next);

item := next.item;

IF CAS (queue.first, first, next) = first THEN EXIT END;

Discard (Next); CPU.Backoff; unmark next
END;
first.item := NIL; first.next := first; item.node := first;

Discard (First); Discard (Next); RETURN TRUE; unmark first and next

285



Scheduling -- Activities

TYPE Activity* = OBJECT {DISPOSABLE} (Queues.Item) ————  accessed via

VAR activity register
access to current processor

stack management
guantum and scheduling

active object

END Activity;

(cf. Activities.Mod)

286



Lock-free scheduling

Use non-blocking Queues and discard coarser granular locking.

Problem: Finest granular protection makes races possible that did not
occur previously:

current := GetCurrentTask()

next := Dequeue(readyqueue)

Other thread can dequeue
and run (on the stack of)
the currently executing
thread!

Enqueue(current, readyqueue)

SwitchTo(next)

287



Task Switch Finalizer

PROCEDURE Switch-;
VAR currentActivity {UNTRACED}, nextActivity: Activity;
BEGIN {UNCOOPERATIVE, SAFE}
currentActivity := SYSTEM.GetActivity () (Activity);
IF Select (nextActivity, currentActivity.priority) THEN
SwitchTo (nextActivity, Enqueue, ADDRESS OF readyQueue[currentActivity.priority]);

FinalizeSwitch;
ELSE Enqueue runs on
currentActivity.quantum := Quec. *'im; new thread
END;

END Switch; Calls finalizer of

previous thread

(* Switch finalizer that enqueues the previous activity to the specified ready queue. *)
PROCEDURE Enqueue (previous {UNTRACED}: Activity; queue {UNTRACED}: POINTER {UNSAFE} TO Queues.Queue);
BEGIN {UNCOOPERATIVE, UNCHECKED}

Queues.Enqueue (previous, queue’);

IF ADDRESS OF queue” = ADDRESS OF readyQueue[IdlePriority] THEN RETURN END;

IF Counters.Read (working) < Processors.count THEN Processors.ResumeAllProcessors END;

END Enqueue; 288



Task Switch Finalizer

PROCEDURE FinalizeSwitch-;

VAR currentActivity {UNTRACED}: Activity;

BEGIN {UNCOOPERATIVE, UNCHECKED}
currentActivity := SYSTEM.GetActivity () (Activity);
IF currentActivity.finalizer # NIL THEN

currentActivity.finalizer (currentActivity.previous, currentActivity.argument)
END;
currentActivity.finalizer := NIL;
currentActivity.previous := NIL; Enqueue!
END FinalizeSwitch;

289



Stack Management

Stacks organized as Heap Blocks.

Stack check instrumented at beginning of each procedure.

Stack expansion possibilities

1. old new
Tcopy
old

2. old old =

link

new



Copying stack

Must keep track of all pointers from stack to stack
Requires book-keeping of

= call-by-reference parameters
= Oopen arrays

= records

= unsafe pointer on stack
= e.g. file buffers

turned out to be prohibitively expensive

291



Linked Stack

" |nstrumented call to ExpandStack
" End of current stack segment pointer included in process descriptor
" Link stacks on demand with new stack segment

= Return from stack segment inserted into call chain backlinks



Linked Stacks

caller of
A.B

A.B
becomes frame of

ReturnToStackSegment

ExpandStack

A.B

. parameters
o

c

EE fe

proc desc

var

I pc(caller of A.B)
— [ <

pdesc of A.B—> pdesc of ReturnToStackSegment

var

©
Q
—

pc (caller of expandstack)

fp - fp(new), return new sp
pdesc

var

par (copy)

pc (ReturnToStackSegment)

fp
pdesc of A.B

var

293



