System Construction

Autumn Semester 2018
ETH Zirich

Felix Friedrich

Goals

= Competence in building custom system software from scratch

= Understanding of ,,how it really works“ behind the scenes across all
levels

= Knowledge of the approach of fully managed simple systems

A lot of this course is about detail.
A lot of this course is about bare metal programming.

Course Concept

= Discussing elaborated case studies

= |n theory (lectures)

= and practice (hands-on lab)

= Learning by example vs. presenting topics

Prerequisite

= Knowledge corresponding to lectures

>ystems Programming [and Computer COMPUTER SYSTEMS
ArCh IteCtu re] A Programmer's Perspective

= Do you know what a stack-frame is?
= Do you know how an interrupt works?

= Do you know the concept of virtual memory?

= Good reference for recapitulation:
Computer Systems — A Programmer’s

Perspective Bryant - O'Hallaron

Links

= SVN repository
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared

" Links on the course homepage

http://lec.inf.ethz.ch/syscon

Background: Co-Design @ ETH

Languages (Pascal Family)

+MathOb i
Modula ——— Oberon > ActiveOberon ° eron = é;fl':e
\ Oberon(ﬂ\) Zonnon
Operating / Runtime Systems
Medos ———— Oberon \ — > A0S > SoC
= o > Heli0s ——> Minos LockFree
= e Kernel
Hardware |
x86 / 1A64/ ARM &= TIRM
Lilith > Emulations on > (FPGA)
Unix / Linux
RISC
(FPGA)
i

1980 1990 2000 2010

Course Overview

Partl: Contemporary Hardware

Case Study 1. Minos: Embedded System

= Safety-critical and fault-tolerant monitoring system
= QOriginally invented for autopilot system for helicopters

= Topics: ARM Architecture, Cross-Development, Object Files and Module
Loading, Basic OS Core Tasks (IRQs, MMUs etc.), Minimal Single-Core
OS: Scheduling, Device Drivers, Compilation and Runtime Support.

= With hands-on lab on Raspberry Pi (2)

Course Overview

Partl: Contemporary Hardware

Case Study 2. A2: A lock free Multiprocessor OS
kernel

" Universal operating system for symmetric multiprocessors (SMP)

" Based on the co-design of a programming language (Active
Oberon) and operating system kernel (A2)

= Topics: Intel SMP Architecture, Multicore Operating System, Scheduling,
Synchronisation, Synchronous and Aysynchronous Context Switches,
Priority Handling, Memory Handling, Garbage Collection.

= With hands-on labs on x86ish hardware and Raspberry Pi

Course Overview

Part2: Custom Desighed Systems

Case Study 3. RISC: Single-Processor System [Lectures by Paul Reed]
= RISC single-processor system designed from scratch: hardware on FPGA
= Graphical workstation OS and compiler ("Project Oberon")

= Topics: building a system from scratch, Art of simplicity, Graphical OS, Processor
Design.

Case Study 4. Active Cells: Multi-Processor System
= Special purpose heterogeneous system on a chip (SoC)
= Massively parallel hard- and software architecture based on Message Passing

= Topics: Dataflow-Computing, Tiny Register Machine: Processor Design Principles,
Software-/Hardware Codesign, Hybrid Compilation, Hardware Synthesis

Organization

" Lecture Wednesday 13:15-15:00 (CAB H 52)
with a break around 14:00

= Exercise Lab Wednsday 15:15 - 17:00 (CAB H 52)

Guided, open lab, duration normally 2h
First exercise: today (September 26th)

* Oral Examination in examination period after semester (15 minutes).
Prerequisite: knowledge from both course and lab

Design Decisions: Area of Conflict

simple /
undersized

tailored /
non-generic

comprehensible /
simplicistic

customizable /
inconvenient

economic /
unoptimzed

|

| am about here

Programming Model
Compiler
Language

Tools

System

sophisticated /
complex

universal /
overly generic

elaborate /
incomprehensible

feature rich /
predetermined

optimized /
uneconomic

11

Minimal Operating System

1. CASE STUDY MINOS

Focus Topics

* Hardware platform

= Cross development

= Simple modular OS

= Runtime Support

= Realtime task scheduling

= |/O (SPI, UART)*

*Serial Peripheral Interface, _
Universal Asynchronous Receiver Transmitter

Learn to Know the Target Architecture

1.1 HARDWARE

ARM Processor Architecture Family

= 32 bit Reduced Instruction Set Computer architecture by ARM Holdings
= 1st production 1985 (Acorn Risc Machine at 4MHz)
= ARM Ltd. today does not sell hardware but (licenses for) chip designs

* Prominent example: StrongARM (1995)
= by DEC & Advanced Risc Machines.

= XScale implementation by Intel (now Marvell) after DEC take over

= More than 90 percent of the sold mobile phones (since 2007) contain at least one
ARM processor (often more)*
[95% of smart phones, 80% of digital cameras and 35% of all electronic
devices™]

* Modular approach (today):
ARM families produced for different profiles, such as Application Profile, Realtime
Profile and Microcontroller / Low Cost Profile

*http://news.cnet.com/ARMed-for-the-living-room/2100-1006 _3-6056729.html|
*http://arm.com/about/company-profile/index.php 15

ARM Architecture Versions

ARM v1-3

ARM v4

ARM v4T

ARM V5TE

ARM Vv5TEJ

ARM v6

ARM v7

ARM v8

| GRYPTO @8 CRYPTO!

W} R

NEON™ ARMV7-A
Ady SIMD

compatibility

Cache from ARMv2a, s

32-bit ISA in 26-bit address space il
c c * Scalar FP « Scalar FP

Pipeline, MMU, v Al

. . . (SP Float) (SP+DP Float)
32 bit ISA in 32 bit address space T e 5o
16-bit encoded
Thumb Instruction Set [http://mww.arm.com/products/processors/instruction-set-architectures/]

Enhanced DSP instructions,
in particular for audio processing

Jazelle Technology extension to support Java acceleration
technology (documentation restricted)

SIMD instructions, Thumb 2, Multicore, Fast Context Switch
Extension

profiles: Cortex- A (applications), -R (real-time), -
(microcontroller)

Supports 64-bit data / addressing (registers).
ARM 64 base instruction description: more than 500 of 6666
pages of the ARM Architecture Reference Manual

16

ARM Processor Families (Microarchitectures)

very much simplified & sparse

Architecture Product Line / Family Speed (MIPS)
(Implementation)

ARMv1-ARMv3 ARM1-3, 6 4-28 (@8-33MHz)
ARMv3 ARM7 18-56 MHz

ARMvVAT, ARMV5TEJ ARM7TDMI up to 60

ARMvV4 StrongARM up to 200 (@200MHz)
ARMvV4 ARMS8 up to 84 (@72MHz)
ARMvVAT ARMOTDMI 200 (@180MHz)
ARMV5TE(J) ARMOE 220(@200MH?z)
ARMV5STE(J) ARM10E

ARMVSTE XScale up to 1000 @1.25GHz
ARMvV6 ARM11 740

ARMv6, ARMv7, ARMv8 ARM Cortex up to 2000 (@>1GHz)

ARM Cortex Microarchitectures

= Cortex-A
= ARM v7-A, ARM v8-A

= Application profile: typically including luxuries such as MMU support for OSes, ranging up to high
performance CPUs while power consumption is moderate, newest generation provides 64-bit support

= Cortex-M
= ARM v6-M, ARM v7-M

= Microcontroller profile (32bit), Thumb instruction set, very low power consumption, some provide a
MPU

= Cortex-R
= ARM v7-R

= Realtime profile, tightly coupled memory, deterministic interrupt handling, redundant computation
(HW replication for fault tolerance)

cf. https://en.wikipedia.org/wiki/List_of ARM_microarchitectures

ARM Architecture Reference Manuals

describe

ARM/Thumb instruction sets
Processor modes and states

Exception and interrupt model

System programmer's model,
standard coprocessor interface

ARMVS5 Architecture Reference Manual
ARMvV6-M Architecture Reference Manual

ARMvV7-M Architecture Reference Manual
ARMV7-M Architecture Reference Manual
ARMV7-AR Architecture Reference Manual
ARMV8-A Architecture Reference Manual

Memory model, memory ordering and memory management for different

potential implementations

Optional extensions like Floating Point, SIMD, Security, Virtualization ...

for example required for the implementation of assembler, disassembler,
compiler, linker and debugger and for the systems programmer.

ARM Technical System Reference Manuals

describe

= Particular processor implementation
of an ARM architecture Cortex™-A7 MPCore™

Technical Reference Manual

= Redundant information from the
Architecture manual (e.g. system control processor)

= Additional processor implementation specifics
e.g. cache sizes and cache handling, interrupt controller, generic timer

usually required by a system's programmer

System on Chip Implementation Manuals

describe
= Particular implementation of a System on Chip

= Address map: | BCM2835 ARM Peripherals
physical addresses and
bit layout for the registers

= Peripheral components / controllers,
such as Timers, Interrupt controller, GPIO, USB, SPI, DMA, PWM, UARTs

usually required by a system's programmer.

ARM Instruction Set

consists of

= Data processing instructions

Branch instructions

Status register transfer instructions

Load and Store instructions

Generic Coprocessor instructions

Exception generating instructions

Some Features
of the ARM Instruction Set

= 32 bit instructions / many in one cycle / 3 operands

= Load / store architecture (no memory operands such as in x86)

Idr r11, [fp, #-8]
add r11, r11, #1
strrll, [fp, #-8]

23

Some Features
of the ARM Instruction Set

= Index optimized instructions (such as pre-/post-indexed
addressing)

stmdb SP !,{fp,lr} , store multiple decrease before and update sp

ldmia sp!,{fp,pc} ; load multiple increase after and update sp

24

Some Features
of the ARM Instruction Set

" Predication: all instructions can be conditionally executed*

cmp r0O, #0
swieq #0xa ?

25

Impressive Example of Predication

loop:

CMP

SUBGT Ri, Ri, Rj
SUBLT Rj, Rj, Ri

BNE

Ri, Rj

loop

; 1f i<j then j

; set condition flags

; 1f i>j then i = i-j;

!
.
I
=

-

; if i 1= j then loop

Some Features
of the ARM Instruction Set

Link Register

bl #0x0a0100070

= Shift and rotate in instructions

add r11, fp, r11, Isl #2

27

Some Features
of the ARM Instruction Set

= PC-relative addressing
Idr rO, [pc, #+24]
= Coprocessor access instructions

mrc p15, 0O, r11, c6, cO, O

28

ARM Instruction Set
Encoding (ARM v5)

31302928272625242322212019 1817161514 13 121110 9 8 7 6 5§ 4 3 2 1 0

«©
J

Data processing immediate shift cond[1] |0 O O opcode |S Rn Rd shift amount | shift . .
shiftable register

Mlscellaneotézg\étir;ucrtelog% cond[1] [0 0 0|1 0 x x|0[x X X X X X X X X X X X X x x[0|X x X X

Data processing register shift [2] cond[1] |0 O O| opcode |S Rn Rd Rs 0| shift | 1 Rm
Miscellaneogsé:?ngligultj:rtéog_sé cond[1] 100 0l1 n « vlnlx X X x x x x x x x x x|0lx x[1]x x x x .)
Mutipes, exa oad/sores: | cong i [0 0 0[x x x x x x x x x x x x x x x x x| 1]x x|1]x x x x conditional execution
Data processing immediate [2] cond[1] |0 O 1| opcode |S Rn Rd rotate immediate b d h
8 bit immediates wit
Undefined instruction [3] cond[1] |0 0 1|1 O|x|0 DO[x X X X X X X X X X X X X X X X X X X X even rotate
Move immediate to status register cond[1] |0 0 1(1 O|R|1 O Mask SBO rotate immediate | d . h
Load/store immediate offset cond[1] |0 1 O(P|U[BW]|L Rn Rd immediate destoira]at/i::o;l:c‘fn'lelrnent
Load/store register offset cond[1] (0 1 1|P|U|BW|L Rn Rd shiftamount | shift | 0 Rm
Undefined instruction cond[1] |0 1 1T[x X X X X X X X X X X X X ¥ ¥ Mo : undeﬁned inStrUCtion:

Undefined instruction[4,7] [1 1 1 1|0fx x X

user extensibility

(=]
(=]
o
c
n
=
=
1

Load/store multiple cond [1] register list

load / store with
Undefined instruction 4] |1 1 1 1|1 0 O|x x X multiple registers

Branch and branch with link cond[1] (1 0 1]|L 24-bit offset
o branches with 24 bit
Branch and branch with link)
and changeto Thumb[4] |1 1 1 1|1 0 1H 24-bit offset offset
Coprocessor load/store and double | cond[5] |1 1 O[P|U|[N|W|L Rn CRd cp_num 8-bit offset
register transfers [6] .
Coprocessor data processing cond[5] |1 1 1 0| opcodel CRn CRd cp_num opcodez‘ 0 ’ CRm gen?nc Copfocessor
instructions
Coprocessor register transfers cond[5] |1 1 1 0|opcodel|L CRn Rd cp_num |opcode2| 1 CRm
Software interrupt cond[1] |1 1 1 1 swi number

Undefined instruction 4] [1 1 1 1|1 1 1 1]|x X

From ARM Architecture Reference Manual

Thumb Instruction Set

ARM instruction set complemented by

" Thumb Instruction Set
= 16-bit instructions, 2 operands
= eight GP registers accessible from most instructions
= subset in functionality of ARM instruction set
= targeted for density from C-code (¥65% of ARM code size)

= Thumb?2 Instruction Set

= extension of Thumb, adds 32 bit instructions to support almost all of ARM ISA
(different from ARM instruction set encoding!)

= design objective: ARM performance with Thumb density

Other Contemporary RISC Architectures

Examples

= MIPS (MIPS Technologies)
= Business model similar to that of ARM
= Architectures MIPS(l]...|V), MIPS(32|64), microMIPS(32|64)
= AVR (Atmel)
= [|nitially targeted towards microcontrollers
= Harvard Architecture designed and Implemented by Atmel
= Families: tinyAVR, megaAVR, AVR32
= AVR32: mixed 16-/32-bit encoding
= SPARC (Sun Microsystems)
= Available as open-source: e.g. LEON (FPGA)
" MicroBlaze, PicoBlaze (Xilinx)

= Softcore on FPGAs, support integrated in Linux.

privileged

ARM Processor Modes

ARM from v5 has (at least) seven basic operating modes

Each mode has access to its own stack and a different subset of registers

Some operations can only be carried out in a privileged mode

Description / Cause

SV g 7] Reset / Software Interrupt

FIQ Fast Interrupt

—

Normal Interrupt

A

Abort Memory Access Violation
Undef Undefined Instruction

System Privileged Mode with same registers as in User Mode

(

[ew.ou

Regular Application Mode

uollndaXxa

32

ARM Register Set

unbanked

User/System

ARM has 37 registers, all 32-bits long

A subset is accessible in each mode

Register 13 is the Stack Pointer (by convention)
Register 14 is the Link Register**

Register 15 is the Program Counter (settable)
CPSR* is not immediately accessible

FI0__ <@ Shadowing
R8 R8.FIOQ
R9 R9.FIOQ
R10 R10.FIQ
- LR11 R11.FI
R13 SP | | R13.FIQ SP| | R13.IRQ SP | | R13.SVC SP| | R13.UND SP| | R13.ABT SP
R14 LR | |R14.FIQ LR| [R14.IRQ LR | [R14.SVC LR| | R14.UND LR] [R14.ABT LR
R15 PC

| SPSR*.FIQ | | SPSR.IRO | | SPSR.SVC | | SPSR.UND | | SPSR.ABT |

* current / saved processor status register, accessible via MSR / MRS instructions
** more than a convention: link register set as side effect of some instructions

33

Processor Status Register (PSR)

* N=Negative result from ALU e |=1: Disables IRQ e Specify processor mode
e 7Z=Zero result from ALU e F=1: Disables FIQ

® C=ALU operation Carried out *
¢ \V=ALU operation overflowed

20 19 16 15 10 9 8 6/5 4
Other bits | T Bit J
e architecture 5TE(J) and later P .
¢ Q flag: sticky overflow flag for saturating instr. * T=0: Processor in ARM mode
* J flag: Jazelle state e T=1: Processor in Thumb State

e architecture 6 and later
® GE[0:3]: used by SIMD instructions
e E: controls endianess
¢ A: controls imprecise data aborts
¢ |T: controls conditional execution of Thumb?2

¢ Introduced in Architecture 4T

* reverse cmp/sub meaning compared with x86 34

Typical procedure call on ARM

Caller: push parameters

use branch and link instruction. Stores bl #address (...)

the PC of the next instruction into the o
link register. U%
Callee: save link register and frame stmdb sp!, {fp, Ir} parameters | g
pointer on stack and set new frame mov fp, sp - 2

ointer.
P mcm)| prevfp

Execute procedure content

Reset stack pointer and restore frame mov sp, fp I\cl)acrasl
pointer and and jump back to caller : |
address. ldmia sp!, {fp, pc}

Caller: cleanup parameters from stack
add sp, sp, #n

35

Exceptions (General)

Exception = abrupt change in the control flow
as a response to some change in the
processor's state

" Interrupt - asynchronous event triggered by a
device signal

= Trap / Syscall - intentional exception

= Fault - error condition that a handler might be able
to correct

= Abort - error condition that cannot be corrected

Exception Table on ARM

m_ return link(type)**

Reset Supervisor undef
Undefined Instruction Undefined Ox4 next instr

SWI Supervisor Ox38 next instr
Prefetch Abort Abort O0xC aborted instr +4
Data Abort Abort 0x10 aborted instr +8
Interrupt (IRQ) IRQ Ox18 next instr +4
Fast Interrupt (FIQ) FIRQ 0x1C next instr +4

* alternatively High Vector Address = OxFFFF0000 + adr (configurable)
** different numbers in Thumb instruction mode

37

Exception Handling

Involves close interaction between hardware and software.

Exception handling is similar to a procedure call with important
differences:

" processor prepares exception handling: save* part of the current
processor state before execution of the software exception handler

= assigned to each exception is an exception number, the exception
handler's code is accessible via some exception table that is
configurable by software

= exception handlers run in a different processor mode with complete
access to the system resources.

* In special registers or on the stack — we will go into the details for some architectures

Context change, schematic

SP

Memory Sp
PC

PC

Regs Regs
PSW* PSW*

Before the interrupt % In the interrupt handler

*Processor Status Word 39

Exception handling on ARM

)
bt
L)
S
©
bt
1°)
I

Software

HW

Hardware action at entry (invoked by exception)

R14(exception_mode):= return link

SPSR(exception_mode) := CPSR

CPSR[4:0] := exception_mode number

CPSR[5] := 0 (* execute in ARM state *)

If exception_mode = Reset or FIQ then CPSR[6]=1 (* disable fast IRQ. *)
CPSR[7]=1 (* disable normal interrupts *)

PC=exception vector address

STMDB SP!, {RO® .. R11, FP, LR} (* store all non-banked registers on stack *)
... (* exception handler ¥*)

LDMIA SP! {Re..R11,FP,LR} (* read back all non-banked registers from stack*)
SUBS PC,LR, #ofs (* return from interrupt instruction *)

Hardware action at exit (invoked by MOVS or SUBS instruction)

CPSR := SPSR(exception mode) (* includes a reset of the irq/fiq flag *)
PC := LR —ofs

40

Raspberry Pi 2

Raspberry Pi 2 (Model B) will be the hardware used at least in the first 4 weeks lab
sessions

= Produced by element14 in the UK
(www.elementl14.com)

= Features

= Broadcom BCM2836 ARMv7
Quad Core Processor running at 900 MHz

= 1G RAM
= 40 PIN GPIO
= Separate GPU ("Videocore")

= Peripherals: UART, SPI, USB, 10/100 Ethernet Port (via USB),
4pin Stereo Audio, CSI camera, DSI display, Micro SD Slot

= Powered from Micro USB port

41

ARM System Boot

ARM processors usually starts executing code at adr Ox0
- e.g. containing a branch instruction to jump over the interrupt vectors
- usually requires some initial setup of the hardware

The RPI, however, is booted from the Video Core CPU (VC):

the firmware of the RPI does a lot of things before we get control:
kernel-image gets copied to address 0x8000H and branches there
No virtual to physical address-translation takes place in the start.

Only one core runs at that time. (More on this later)

RPI'1 Memory Map

m'}’cou BCM2835 ARM Peripherals
—~_J

FEFEFFFF

'C Allas - drect uncached

CO000000

T Alias - L2 cached (ondy)

4’ Alias - L2 cache
coharent (non allocatng)

40000000

U Alas - L1 and L2 cached

00000000

VC CPU Bus
Addresses

VC Virtual

This is

SORAM
(%0f the ARM)'

ARM Physical
Addresses

ARM

Size of Physical memory
setin amm_loader
{4000000)

for RPI1 (BCM 2835)

and wrong for RPI2 (BCM 2836)
correct for BCM2836: 3F000000

G | o13] Sisiam SORAM

VCIARM spat determined
by VO platform
conguraticn

00000000

Physical

FFFEFEFF
1O Sanpherais
' ‘|. yamal arch
= \ Kemelmode Vitual
VC SDRAN Addresases
-om-an.a"'-gh ‘
SC'QA%’ 6
(For the ARG UnerKemel spit
(‘J % determined by keme|
o’ conbguration (CO000000
. >
. o®
<D
o, 7
2 0
e
l | %yccl?ﬁ. d
i) d O &
% 2
% %,
(AT
ARM Virtual
Addresses

Linux Virtual

RPI 2 Memory Map

= |nitially the MMU is switched
off. No memory translation
takes place.

= System memory divided in
ARM and VC part, partially
shared (e.g. frame buffer)

= ARM's memory mapped
registers start from
Ox3F000000
-- opposed to reported offset
0X7E600000 in BCM 2835
Manual

SD RAM VC —

SD RAM ARM —

DEVICES

kernel.img

OXFFFFFFFF (4G-1)

Ox40000000 (total system DRAM)
Ox3F000000

0x30000000 (768 M, configurable)

0x8000 (32k)
0x0

44

General Purpose |/O (GPIO)

= Software controlled processor pins

= Configurable direction of transfer

= Configurable connection

> with internal controller (SPI, MMC, memory controller, ...)

> with external device

= Pin state settable & gettable
= High, low

= Forced interrupt on state change
= On falling/ rising edge

GPIO

Block Diagram (BCM 2835)

pin direction control

Alternate function direction

Pin Direction
Regs
[

Pull up

Contral Regs

GPIC[n)

Pull up State

Pull Dn State

Pull Dn
Control Regs

pull up / down resistor
control

Function |

'y Select Regs |

Pin Set&

Clear Regs
Output State

3
- %
Alternate function output
3
Low Level Alternate function input
Detect
Enable Rens
I
High Lavel
Detect
Enable Rens
[
Level Detect —— Intermupts
Event Detect
Status Regs ey I
Edge Detect ———
[
Rising Edge
Detect
Enable Regs
T
Pin Lawval

Rags

internal function selection

output control registers

interrupt control

input (pin level) registers

Documentation Examples

GPIO Register Overview GPIO Function Select Register Definition

Bit(s) |Field Name |Description Type |Reset
. . . . Read) — R
Address Field Name Description Size) AREE cocicdi ¢
Write 29.27 FSEL19 FSEL19 - Function Select 19 RW 0
e R R=0000 000 = GPIO Pin 19 is an input
GPESELD GPIU runcuon serect v 32 001 = GPIO Pin 19 is an output
100 = GPIO Pin 19 takes alternate function 0
Ox 7E20 0000 GPFSELO | GPIO Function Select 0 32 R/W 101 = GPIO Pin 19 takes alternate function 1
110 = GPIO Pin 19 takes alternate function 2
Ox 7£20 0004 GPFSEL1 | GPIO Function Select 1 32 R/W 111 = GPIO Pin 19 takes alternate function 3
011 = GPIO Pin 19 takes alternate function 4
SRS GPFSEL2 | GPIO Function Select 2 32 RIW 010 - GPIO Pin 19 takes alternate function 5
Ox 7E20 000C ; 26-24 I\ FSEL18 FSEL18 - Function Select 18 RW 0
3 3 32 R/W
GEESELS |GHIO Bomcliom vilect 2321 | FSEL17 |FSEL17- Function Select 17 RW | o
Ox 7£20 0010 (PEQET 4 (PIN Eunctinn Qalant 4 29 RN 20-18 " FSEL16 FSEL16 - Function Select 16 RW 0
17-15 | FSEL15 FSEL15 - Function Select 15 RW 0
1412 | FSEL14 |FSEL14 - Function Select 14 RW 0
11-9 } FSEL13 FSEL13 - Function Select 13 RW 0
86 | FSEL12 FSEL12 - Function Select 12 RW 0
5-3 J FSEL11 FSEL11 - Function Select 11 RW 0
20 | FSEL10 FSEL10 - Function Select 10 RW 0
G PIO Pi n Map p i n g / Altern ate Fu n Cti O n S Table 6-3 — GPIO Alternate function select register 1
arnJio Luw —yvivi ﬂnl'l_lUl\
GPIO14 Low
GPIO15 Low
GPIO16 Low
~NIM47 I ~anr oni4 NC4 Al

47

Raspberry Pi 2 GPIO Pinout

Connecting external power

Be careful with the USB TTL

GPIO 05 29
GPIO 06 31
GPIO 13 33
GPIO 19

Cable (Exercise 2) °e

PIO 02 03| @@

GPIO 03 5| o @

T - GPI0O04 07| @ @
*::' e LU T) vgus - : ground ©v| e
GPIO 17 1] @ o

GPIO 27 13| o @

GPIO 22 15| @@

. 3.3V DC 17| @@

(‘); GPIO10 19| e @

.............. :% GPIO 09 21 o0
Ei GPIO 11 23| @ o0

; ground 25| e o

27| @@

o0

o0

o0

o0

{ N

o0

pin
02
04
06
08
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

40

name

DC power 5v

DC power 5v
ground
GPIO 14
GPIO 15
GPIO 18
ground
GPIO 23
GPIO 24
ground
GPIO 25
GPIO 08
GPIO 07

ground
GPIO 12
ground
GPIO 16
GPIO 20
GPIO 21

48

GPIO Setup (RPI12)

1.

2.

d.

Program GPIO Pin Function (in / out / alternate function)

by writing corresponding (memory mapped) GPFSEL register.

GPFSELn: pins 10n, ...,10n 4+ 9

Use RMW (Read-Modify-Write) operation in order to keep the other bits

Use GPIO Pin

If writing: set corresponding bit in the GPSETn or GPCLRn register
set pin: GPSETn: pins 32n, ...,32n + 31

clear pin: GPCLRn: pins 32n, ...,32n + 31

no RMW (Read — Modify — Write) required.

If reading: read corrsponding bit in the GPLEVn register
GPLEVn: pins32n, ...,32n + 31

If "alternate function": device acts autonomously. Implement device driver.

