
System Construction Course 2018,

Assignment 2

Felix Friedrich, ETH Zürich, 2018

Introduction

Oberon programs consist of modules that can be linked statically in a kernel or loaded dynam-
ically when a kernel is already running. The systems that we deal with in this course support
dynamic module loading. Moreover, Minos implements a protocol for module loading over a
serial connection.

In this exercise we will learn about the mechanism of linking and loading in some detail. We start
with a little demonstrating example and then implement module unloading.

• Learn to know the programming model of Oberon.

• Understand the concept of linking and loading.

• Get some insight into the module loading implementation on the Minos system.

Lessons to Learn

Preparation

1. Update your repository

2. Copy the new files / directories from the folder shared/assignments/assignment2 to some
working directory (or take this as your working directory).

3. For communication between the host PC and the Raspberry Pi we will use a serial connec-
tion. In order to provide the host with a connectivity to RS232 we use a special cable that
contains a USB to serial conversion chip. At the one end of the cable you will find the UBS
plug containing the conversion chip and on the other end there are four wires: red power,
black ground, white RX into USB port, and green TX out of the USB port. The power pin
provides 5V direct from the USB port and the RX/TX pins are 3.3V level for interfacing with
the most common 3.3V logic level chipsets. If you intend to power the Raspberry Pi directly
from your computer using this cable, do not connect the power cable used last week.

Consult the BCM2835 ARM Peripherals Technical Manual (page 102) in order to find out
on which pins you have to connect the cable. The Minos kernel configures ports RXD0 and
TXD0 as alternate function 0. Use slide number 45 from the course in order to find the
GPIO-pin to pinout mapping. Before you connect, double check your findings with figure
shared/documents/rpi/usbttl wiring.jpg in the repository. You can physically destroy the
cable and / or the RPI board when you connect it in a wrong way. Be careful! If in
doubt, ask me before connecting! Again: do not power the device from two sources!

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/assignments/assignment2
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/documents/rpi/usbttl_wiring.jpg

System Construction Course 2018, 2 2

1 Introductory example

Preparation

1. The tools required to build a Minos kernel are statically linked into the Oberon command line
kernel (Windows: win32.oberon.exe, win64.oberon.exe; Linux: linux32.oberon linux64.oberon).
Copy the appropriate file to file oberon.exe (Windows) or oberon (Linux).

2. Compile and link the Minos kernel using the command

./oberon execute MakeMinos.txt.

The steps contained can also be executed one by one in the oberon shell:

(a) Compile all modules of the Minos kernel, creating particularly compact and simple object
files in a special format suited for Minos, as discussed in the lecture.

Compiler.Compile −p=Minos Minos/RPI.Platform.Mos Minos/ARM.FPE64.Mod
Minos/ARM.Builtins.Mod Minos/Heaps.Mos Minos/RPI.UartMin.Mos
Minos/RPI.Kernel.Mos Minos/Utils.Mos Minos/Strings.Mos
Minos/Device.Mos Minos/RPI.Uart.Mos Minos/Log.Mos
Minos/SerialLog.Mos Minos/OFS.Mos Minos/OFSRamVolumes.Mos
Minos/Tools.Mos Minos/Streams.Mos Minos/Modules.Mos Minos/Minos.Mos
Minos/Out.Mos Minos/In.Mos

(b) In order to generate a runnable kernel some initial code has to be prepared that is
executed before the kernel module bodies can run. Effectively this code sets up the initial
stack and copies the kernel from address 0x8000 to address 0x108000 and jumps to the
starting address of the kernel. The initial code is compiled and linked using the following
commands.

Compiler.Compile −p=ARM Minos/RPI.MinimalInit.Mos
Linker.Link −p=RPI −−fileName=minimalinit.img MinimalInit

(c) The prelinked initial code and the Minos modules are now linked together using a linker
targeted towards the Minos object file format and runtime system

MinosLinker.Link minimalinit.img 108000H kernel.img OFSRamVolumes
SerialLog Minos

3. Store the kernel on the micro SD card.

4. For windows users: With the physical connections being established, execute on the Host
PC the commands V24.Scan folled by Serials.Show. Oberserving the log should make it
possible to identify the COM port where the board is connected.

For linux users: With the physical connections being established, it is required that you
map the associated file (usually /dev/ttyUSB0) to a COM port number (e.g. 5) within A2
using the command V24.Map 5 /dev/ttyUSB0. If this does not work directly, then please
consult the next paragraph. Often problems result from privilege problems.

5. Open a connection from the oberon shell with the command Zeus.Connect <portNumber>1

where <portNumber> has to be replaced by the respective COM-port number.

6. Check that the connection works by issuing a command to Minos:
Execute Zeus.Cmd Minos.ShowModules.

1In Greek Mythology, Minos is one of the sons of Zeus, the king of all gods. No other host name would be more
appropriate in view of the fact that the host (Zeus) can send commands to the client (Minos).

System Construction Course 2018, 2 3

Using the USB-to-Serial Cable in Linux

Having plugged in the Usb-/Serial cable, access to the serial connection may be immediately available via
/dev/ttyUSB0 (or some port different from 0). Using a terminal application such as minicom or putty, try
to connect to the client board: when resetting the board (power off/on), you should see some text on the
terminal. If this does not immediately work try the following.

admin@server ~ $ lsusb

Bus 002 Device 002: ID 090c:37a2 Silicon Motion, Inc. - Taiwan

Bus 005 Device 002: ID 067b:2303 Prolific Technology, Inc. PL2303 Serial Port

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

If you see (as in the example above) a Prolific to serial device, you can add the respective module to the
kernel with the following command. Replace the vendor and product id by the one that you see from lsusb..

admin@server ~ $ sudo modprobe usbserial vendor=0x067b product=0x2303

Check if the installation worked by executing

admin@server ~ $ dmesg

[131.747013] USB Serial support registered for pl2303

[131.747038] pl2303 5-1:1.0: >pl2303 converter detected

[131.758965] usb 5-1: >pl2303 converter now attached to ttyUSB0

After having installed the usb-to-serial driver it may be necessary to either grant user access rights to
the device (chmod) or run A2 with super user rights or add the current user to the group associated with
/dev/ttyUSB0

Tasks

(a) Create a new Oberon module called Hello.Mos and write a simple “Hello World” pro-
gram, i.e. a program that prints “Hello World”. Do not link this module to the Minos ker-
nel image, but download and link it dynamically at runtime. You can use the procedure
Out.String("...") to print a string. Use Out.Ln() for a newline character.

Compile the module with

Compiler.Compile −p=Minos Hello.Mos

Execute your code using Zeus.Cmd Hello.World

(b) Write a little program to blink the onboard LED. Consult module shared/assignments/as-
signment2/Minos/RPI.Platform.Mos (procedure LED) in order to access the onboard LED.

2 Module unloading

Your Minos has no built-in mechanism to unload a module yet. Your task is to add this to Minos.

Tasks

Implement (complete) procedure Unload(CONST name: ARRAY OF CHAR) in module Modules to
unload a currently loaded module from the system. Make sure a module is only unloaded if

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/assignments/assignment2/Minos/RPI.Platform.Mos
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/assignments/assignment2/Minos/RPI.Platform.Mos

System Construction Course 2018, 2 4

no other module imports it. Do not forget to adjust the reference counters of modules that are
imported by the unloaded module. Please ignore the fact that memory cannot be de-allocated.

Remark: The variable root in module Modules.Mos contains the root of a linked list of all cur-
rently loaded modules. You will find that currently the data structure Modules.Module is not
prepared for keeping track of imported modules. However, changing the actual interface of the
type Modules.Module would require a change of the linker. (Why?) Develop an alternative. You
will find a hint in the file Modules.Mos. In general, in order to give some hints there are comments
starting with STUDENT in the source code that guide you where you need to amend or modify the
source code.

Check that your module unloading works properly by calling the (already prepared) command

Minos.UnloadModule <moduleName>

in module Minos.Mos. .

Documents

• BCM2835 ARM Peripherals Technical Manual in the documents/rpi folder of the repository

• A2 Quickstart Guide in documents/oberon folder of the repository

• System Construction Lecture 2 slides from the course-homepage http://lec.inf.ethz.

ch/syscon

More documents that are not strictly required for this exercise can be found in the repository .

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/assignments/assignment2/Minos/Modules.Mos
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/assignments/assignment2/Minos/Modules.Mos
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/assignments/assignment2/Minos/Minos.Mos
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/documents/rpi/BCM2835-ARM-Peripherals.pdf
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/documents/oberon/A2QuickStartGuide.pdf
http://lec.inf.ethz.ch/syscon
http://lec.inf.ethz.ch/syscon

	Introductory example
	Module unloading

