
System Construction Course 2018,

Assignment 11

Felix Friedrich, ETH Zürich, 2018

Multicore Computing on FPGAs – Implementation of the Simon
Game.

• Understand the features and limits of a message passing architecture.

• Understand how software code can be mapped to and deployed on a multicore archi-
tecture on FPGA.

• Understand how configurable hardware can be adapted to satisfy software require-
ments.

Lessons to Learn

Introduction

The Simon Game was a very simple electronic game popular in the
early 1980s. The objective of the player was to reproduce a se-
quence of light signals by pushing buttons in the order how they
were previously presented by the computer.
In the original game, the lighting of the buttons was accompanied
by audio signals, which significantly helped to memorize the order
of the sequence. As a side effect of this lab, you can implement the
game on a Spartan 3 FPGA, solely using buttons and LEDs.

We work with a message-passing architecture on an FPGA. The system consists of three pro-
cessors – Tiny Register Machines (TRMs ) – that are connected to each other over FIFOs. In
addition, the processors are wired to hardware signals such as clock, reset and interaction inter-
faces such as LEDs, a 7-digit LED display and buttons. We provide the following architecture for
this lab.

You may wonder why there is a separate component for the 7-digit display. The reason is that
controlling the 7-digit display, on a first glance, is not so trivial, so we solved it with a little software
loop being implemented on TRM.

It is your task to implement a variant of the game that has been roughly described above. But first
and foremost, you are asked to solve some technical problems with the given implementation.



System Construction Course 2018, 11 2

Preparation

1. Update your repository.

2. Open a console in directory assignments/assignment11

3. Extract the contained file source.zip in the same directory.

4. Linux users do

• Extract linux64.zip.

• Check that file linux64/LoadHWL.txt provides the correct Xilinx bin path. The default
is AcXilinx.SetIseBinPath "/opt/Xilinx/14.7/ISE_DS/ISE/bin/lin64/"

• chmod +x oberon64

• Start the Oberon/ActiveCells toolchain using ./oberon64 run linuxSettings.

5. Windows users do

• Extract win64.zip.

• Check that file win64/LoadHWL.txt provides the correct Xilinx bin path. The default is
AcXilinx.SetIseBinPath "c:/Xilinx/14.7/ISE_DS/ISE/bin/nt/"

• Start the Oberon/ActiveCells toolchain using oberon64 run windowsSettings.

6. We have prepared shortcuts for the most important commands, loaded automatically from
the shell from file Shell.Alias:

(a) Compilation. Shell command: compile, a shortcut for executing the compilation com-
mands in file CompileGame.txt.

(b) Loading the Hardware Library. Shell command load, a shortcut for executing the com-
pilation commands in file LoadHWL.txt contained in directory linux64 or win64.

(c) Building the hardware. Type build, a shortcut for AcHdlBackend.Build
--target="Spartan3StarterBoard" -p="ISE" --outputPath="Ac3Projects" "Game.Toplevel".

(d) If you change the hardware library, you have to force a rebuild of the application, which
can be done using rebuild.

7. Deploy the application to the FPGA using impact (bitstream is in Ac3Projects/Toplevel/Toplevel.bit.

8. Once uploaded to the FPGA, the program should give LED-feedback on button pushes and
should show the number of button pushes on the 7-digit display. Only the three buttons to
the right are active. The left most button serves as reset signal.

9. If you want to make use of the A2 GUI (deprecated at this stage of the course), you can
start it using command run a2.

Task

The 7-digit LED display is currently programmed with a software loop on a separate core. When
a digit is selected for output, all other digits currently switch off. This is due to the mechanism
how the digits are controlled. Please read Chapter 3 of the user manual of the spartan board
in order to understand how it works. Only the fact that it happens so often (and potentially the
luminescence of the digits) can make this invisible to a human.

First modify the software such that the flickering on the display goes away.1

1We left the flickering in on purpose in order to visualize the mechanism.

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/assignments/assignment11
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/assignments/assignment11//Shell.Alias
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/assignments/assignment11/CompileGame.txt


System Construction Course 2018, 11 3

Then implement a driver for the 4-digits LED display in order to get rid of the software loop. Modify
the existing LED digits hardware module in file HardwareLibrary/IO/LEDDigits.v. Do not change
its semantics and interface, only insert a loop in hardware that replaces the software loop. You
need to register the digits data coming from the user but other than that the interface can stay
as it is. Once you have changed this hardware module, you need to rebuild. If you get error
messages, open ISE and continue from there.

In order to try your modifications of the hardware code, we suggest you to reduce the Game
module to just one cell. The reason is the great amount of time saving for synthesis and routing.
Once you know it works, you can integrate the solution in the game module as it was and remove
the digits TRM Cell.

When you apply hardware changes, you may want to work within ISE. The project file can be
found in Ac3Projects/Toplevel/ISE/Toplevel.xise. Once you have applied all changes in
ISE (and rebuilt the hardware), do not forget to run build within the Oberon shell (in order to
patch the instruction stream into the bit files).

Implement the game (optional)

1. The game starts with one single ternary signal (left, middle or right) displayed on the LEDs.
Duration of signal display should be, say, 300ms.

2. When a sequence of signals (alternating corresponding LEDs on and all LEDs off) has been
presented, the user is to repeat the sequence by button pushes.

3. If the entered sequence has been entered correctly, the length of the sequence is increased
by one.

4. The 7-digit display should show the length of the correctly entered signal sequence.

You are free in the choice of how to implement the game. The choice of interconnect is motivated
by the minimal requirements of this game. To add more channels between the cores is not pos-
sible because of the very limited resources of the exercise Spartan3 board. However, if required
you can implement further logical channels in software, for example from input to display core.

Try to make use of the fact that you have three independent cores. For example, you may want
to implement a protocol for processing whole sequences of signals on the display core or to send
a sequence of signals to the input core for which the button input is verified autonomously.

Known Problems

1. when the cable drivers do not work: run impact with super user account. Make sure the
cable is connected (physically and also logically in a VM) before trying to connect from
impact.

2. when the build script reports problems when calling data2mem: make sure you have enough
main memory allocated (to your virtual machine). You need more than 1GB.

Documents

• Spartan-3 Starter Kit Board User Guide. File documents/DigilentSpartan3/S3BOARD RM.pdf

• Active Cells papers in directory documents/ActiveCells.

• Slides from the lecture homepage.

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/assignments/assignment11/HardwareLibrary/IO/LEDDigits.v
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/documents/DigilentSpartan3/S3BOARD_RM.pdf
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2018/shared/documents/ActiveCells
http://lec.inf.ethz.ch/syscon

