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Abstract Modelling

A graph G = (V, E, w) consists of

1. a set V of vertices

2. a set E of edges between some of the vertices

3. (a weight function w)

Vertices are called v0, v1, v2, . . .

Graphs are either weighted or unweighted

Graphs are either directed or undirected

Graphs are either connected or unconnected
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Which type of graph is used depends on what we want to model

We mostly consider undirected, unweighted, connected graphs
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Graphs
On the Computer



Adjacency Matrices – Undirected Weighted Graphs
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0 0 8 0 0 2
5 0 0 5 2 0



Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 5 / 29



Adjacency Matrices – Undirected Weighted Graphs

v0

v1

v2
v3

v4

v5

5

2 7

1

8

5
2



0 1 7 2 0 5
1 0 0 0 0 0
7 0 0 0 8 0
2 0 0 0 0 5
0 0 8 0 0 2
5 0 0 5 2 0



Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 5 / 29



Adjacency Matrices – Directed Unweighted Graphs
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Adjacency Matrices – Directed / Undirected Graphs

Matrices of undirected graphs
are symmetric
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Matrices of directed graphs are
not (always) symmetric
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Adjacency Lists – Directed Unweighted Graphs
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Adjacency Matrices and Lists in Python

Use 2-dimensional lists

Matrix: Weighted

G = [ [ 0, 1, 7, 2, 0, 5 ],
[ 1, 0, 0, 0, 0, 0 ],
[ 7, 0, 0, 0, 8, 0 ],
[ 2, 0, 0, 0, 0, 5 ],
[ 0, 0, 8, 0, 0, 2 ],
[ 5, 0, 0, 5, 2, 0 ] ]

Matrix: Unweighted

G = [ [ 0, 1, 1, 0, 0, 0 ],
[ 1, 0, 1, 1, 0, 1 ],
[ 1, 1, 0, 0, 1, 0 ],
[ 0, 1, 0, 0, 1, 1 ],
[ 0, 0, 1, 1, 0, 0 ],
[ 0, 1, 0, 1, 0, 0 ] ]

List: Unweighted
G = [ [1,2], [0,2,3,5], [0,1,4], [1,4,5], [2,3], [1,3] ]
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Graph Algorithms
Breadth-First and Depth-First Search



Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices
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Breadth-First Search
Iteratively with a Queue



BFS with a Queue
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v3v4
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Queue:

Output:
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×
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Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 11 / 29



BFS with a Queue
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(root)

v1
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BFS with Queue and Adjacency Matrix

G = [ [0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
[1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0] ]

queue = []
visited = [ 0 for i in range(len(G)) ]

Consider first vertex in queue and print it

Add unvisited neighbors to queue

visited stores which vertices have been visited

Repeat as long as queue is not empty
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Exercise – BFS with Queue and Adjacency Matrix

Implement BFS

as a Python function

with a 2-dimensional list as parameter

using a queue

and an adjacency matrix

G = [ [0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
[1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0] ]
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BFS with Queue and a Adjacency Matrix

def BFS(G):
queue = []
visited = [ 0 for i in range(len(G)) ]
queue.append(0)
visited[0] = 1
while len(queue) > 0:

current = queue.pop(0)
print(current, end=" ")
for j in range(len(G)):

if G[current][j] == 1 and visited[j] == 0:
visited[j] = 1
queue.append(j)

BFS([ [0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
[1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0] ])
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Exercise – BFS with Queue and Adjacency List

Implement BFS

as a Python function

with a 2-dimensional list as parameter

using a queue

and an adjacency list

G = [ [2,4,5], [2,3,5], [0,1,3,4,5], [1,2],
[0,2,6], [0,1,2], [4] ]
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BFS with Queue and a Adjacency List

def BFS(G):
queue = []
visited = [ 0 for i in range(len(G)) ]
queue.append(0)
visited[0] = 1
while len(queue) > 0:

current = queue.pop(0)
print(current, end=" ")
for j in G[current]:

if visited[j] == 0:
visited[j] = 1
queue.append(j)

BFS([ [2,4,5], [2,3,5], [0,1,3,4,5], [1,2], [0,2,6], [0,1,2], [4] ])
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Depth-First Search
Iteratively with a Stack



DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

Stack:

Output:
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DFS with a Stack

v0
(root)
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v2

v3v4

v5

v6

×

Stack: v5 v4 v2

Output: v0
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DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

×

×

Stack: v5 v4

Output: v0 v2
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DFS with a Stack
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DFS with a Stack

v0
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Stack: v5 v4 v5 v4 v3 v5

Output: v0 v2 v1 v3
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DFS with a Stack

v0
(root)

v1
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v5

v6

×

×

×

×

×

Stack: v5 v4 v5 v4 v3

Output: v0 v2 v1 v3 v5
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DFS with a Stack

v0
(root)

v1

v2
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Stack: v5 v4 v5 v4

Output: v0 v2 v1 v3 v5
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Output: v0 v2 v1 v3 v5 v4
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DFS with a Stack
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×

×
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×

×

Stack: v5 v4 v5 v6

Output: v0 v2 v1 v3 v5 v4
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DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6
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×
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Stack: v5
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DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6
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×
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×

×
×

Stack:

Output: v0 v2 v1 v3 v5 v4 v6
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DFS with Stack and Adjacency Matrix

G = [ [0, 0, 1, 0, 1, 1, 0],
[0, 0, 1, 1, 0, 1, 0],
[1, 1, 0, 1, 1, 1, 0],
[0, 1, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 1],
[1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0] ]

stack = []
visited = [ 0 for i in range(len(G)) ]

Consider first vertex in stack and print it
Add unvisited neighbors to stack
visited stores which vertices have been visited
Repeat as long as stack is not empty
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Exercise – DFS with Stack and Adjacency Matrix

Implement DFS

as a Python function

with a 2-dimensional list as
parameter

using a stack

and an adjacency matrix

G = [ [0,0,1,0,1,1,0], [0,0,1,1,0,1,0],
[1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
[1,0,1,0,0,0,1], [1,1,1,0,0,0,0],
[0,0,0,0,1,0,0] ]
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DFS with Stack and Adjacency Matrix

def DFS(G):
stack = []
visited = [ 0 for i in range(len(G)) ]
stack.append(0)
while len(stack) > 0:

current = stack.pop()
if visited[current] == 0:

visited[current] = 1
print(current, end=" ")
for j in reversed(range(len(G))):

if G[current][j] == 1 and visited[j] == 0:
stack.append(j)

DFS( [ [0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
[1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0] ] )

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 20 / 29



Exercise – DFS with Stack and Adjacency List

Implement DFS

as a Python function

with a 2-dimensional list as
parameter

using a stack

and an adjacency matrix

G = [ [2,4,5], [2,3,5], [0,1,3,4,5], [1,2], [0,2,6], [0,1,2], [4] ]

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 21 / 29



DFS with Stack and Adjacency List

def DFS(G):
stack = []
visited = [ 0 for i in range(len(G)) ]
stack.append(0)
while len(stack) > 0:

current = stack.pop()
if visited[current] == 0:

visited[current] = 1
print(current, end=" ")
for j in reversed(G[current]):

if visited[j] == 0:
stack.append(j)

DFS([ [2,4,5], [2,3,5], [0,1,3,4,5], [1,2], [0,2,6], [0,1,2], [4] ])
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Depth-First Search
Recursively



Recursive DFS

Global list visited

Function DFS, which is called recursively
Two parameters

1. graph G
2. Start vertex current

visited = [ 0 for i in range(len(G)) ]
def DFS(G, current):

visited[current] = 1
print(current, end=" ")
for i in range(len(G)):

if G[current][i] == 1 and visited[i] == 0:
DFS(G, i)
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Recursive DFS

v0
(root)

v1

v2

v3v4

v5

v6

Output:
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Recursive DFS

v0
(root)
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v5
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×

DFS(G,0)

Output: v0
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Recursive DFS
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DFS(G,0) DFS(G,2)
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Recursive DFS
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Recursive DFS

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

×

DFS(G,0) DFS(G,2) DFS(G,4)

Output: v0 v2 v1 v3 v5 v4

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 24 / 29



Recursive DFS
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Recursive DFS
Applications



Applications

Is graph connected?

ï DFS from arbitrary vertex; are all vertices visited when done?

Is vertex w reachable from vertex v?

ï DFS from v; is w visited when done?

Is a graph 2-colorable?

ï DFS from arbitrary vertex and color levels differently

Does a graph contain a cycle?

ï DFS from arbitrary vertex; is there a back edge?
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Recursive DFS
Graph Coloring



Graph Coloring

Consider arbitrary graph

Can it be colored with two colors?

Connected vertices (“neighbors”) have different color

Compute recursively

List color instead of visited

0: not yet visited

1: colored green

2: colored red
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Graph Coloring

We use recursive DFS

All neighbors of current get a color different from that of current

If neighbor already has same color as current, coloring is invalid

def coloring(G, current):
for i in range(len(G)):

if G[current][i] == 1 and color[i] == 0:
color[i] = 3 - color[current]
coloring(G, i)

elif G[current][i] == 1 and color[i] == color[current]:
print(”Coloring impossible.”)
return
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Recursive DFS
Finding Cycles



Finding Cycles

v0
(Wurzel)

v1

v2

v3v4

v5

v6

DFS computes this

Traverse graph as before

Is there an edge to a vertex we already visited?

Back-Edge

Attention: Single edge is not a cycle
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Finding Cycles

Compute whether graph contains a cycle

Extend DFS such that parent is considered

def find_cycle(G, current, parent):
visited[current] = 1
print(current, end=" ")
for i in range(len(G)):

if G[current][i] == 1 and visited[i] == 0:
find_cycle(G, i, current)

elif G[current][i] == 1 and visited[i] == 1 and i != parent:
print(”Found cycle.”)
return
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