ETH zürich

Programming and Problem-Solving Graphs and Graph Algorithms

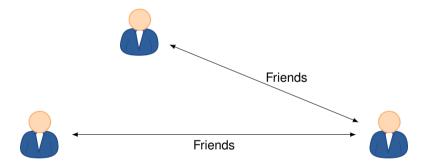
Manuela Fischer and Dennis Komm

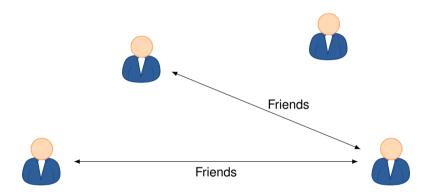
Spring 2021 - May 27, 2021

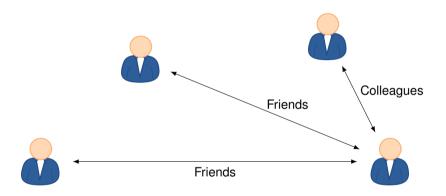
Programming and Problem-Solving - Graphs and Graph Algorithms

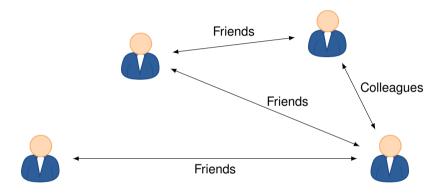
Spring 2021

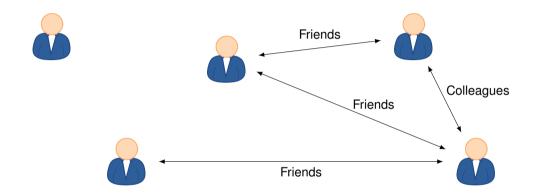
M. Fischer and D. Komm 1/29

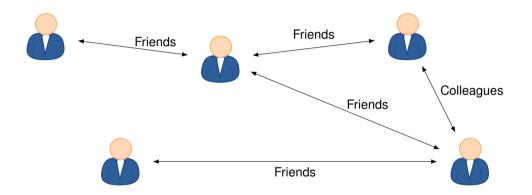


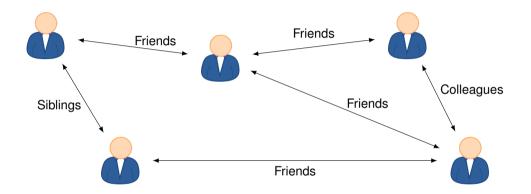


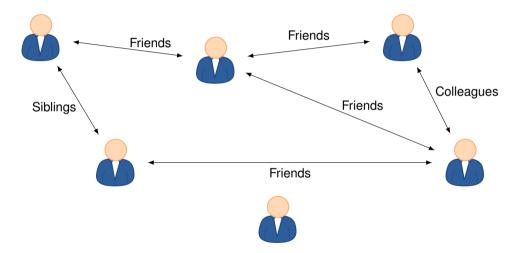


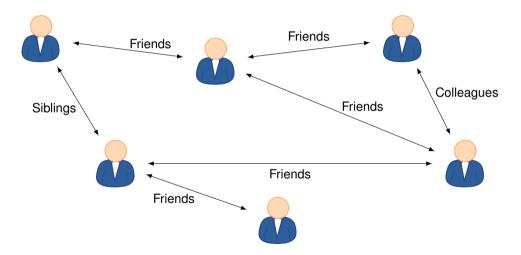


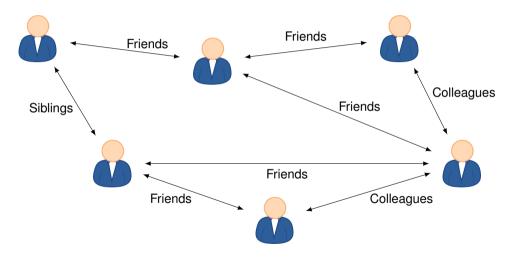


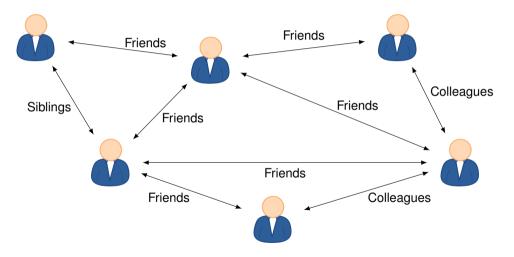


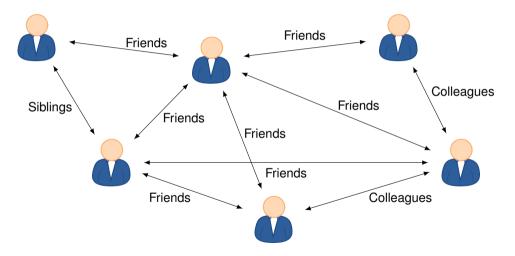


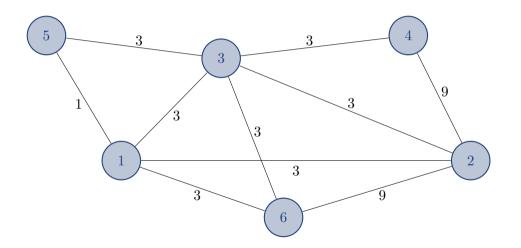












A graph G = (V, E, w) consists of

- 1. a set V of vertices
- 2. a set E of edges between some of the vertices
- 3. (a weight function w)

A graph G = (V, E, w) consists of

- 1. a set V of vertices
- 2. a set E of edges between some of the vertices
- 3. (a weight function w)

• Vertices are called v_0, v_1, v_2, \ldots

A graph G = (V, E, w) consists of

- 1. a set V of vertices
- 2. a set E of edges between some of the vertices
- 3. (a weight function w)
- Vertices are called v_0, v_1, v_2, \ldots
- Graphs are either weighted or unweighted

A graph G = (V, E, w) consists of

- 1. a set V of vertices
- 2. a set E of edges between some of the vertices
- 3. (a weight function w)
- Vertices are called v_0, v_1, v_2, \ldots
- Graphs are either weighted or unweighted
- Graphs are either directed or undirected

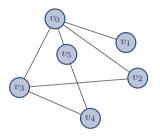
A graph G = (V, E, w) consists of

1. a set V of vertices

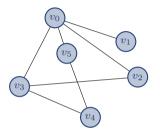
2. a set E of edges between some of the vertices

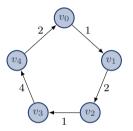
3. (a weight function w)

- Vertices are called v_0, v_1, v_2, \ldots
- Graphs are either weighted or unweighted
- Graphs are either directed or undirected
- Graphs are either connected or unconnected



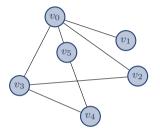
Undirected unweighted graph

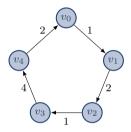


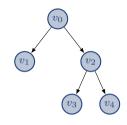


Undirected unweighted graph

Undirected weighted graph



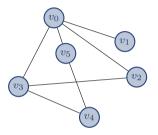


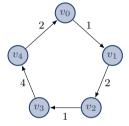


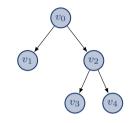
Undirected unweighted graph

Undirected weighted graph

Directed unweighted graph





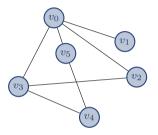


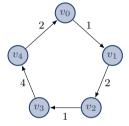
Undirected unweighted graph

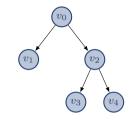
Undirected weighted graph

Directed unweighted graph

Which type of graph is used depends on what we want to model







Undirected unweighted graph

Undirected weighted graph

Directed unweighted graph

Which type of graph is used depends on what we want to model

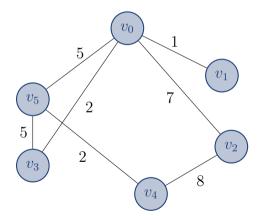
We mostly consider undirected, unweighted, connected graphs

Programming and Problem-Solving - Graphs and Graph Algorithms

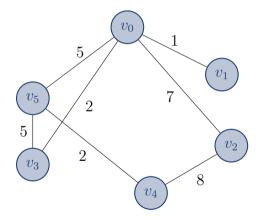
Spring 2021

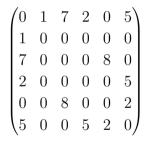
Graphs On the Computer

Adjacency Matrices – Undirected Weighted Graphs

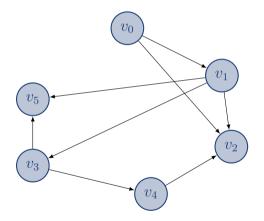


Adjacency Matrices – Undirected Weighted Graphs

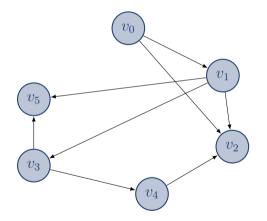


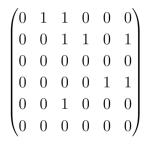


Adjacency Matrices – Directed Unweighted Graphs



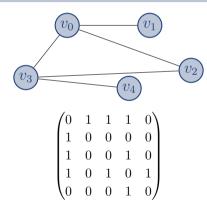
Adjacency Matrices – Directed Unweighted Graphs





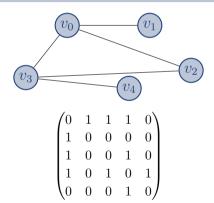
Adjacency Matrices – Directed / Undirected Graphs

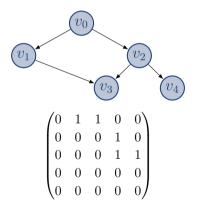
Matrices of undirected graphs are symmetric



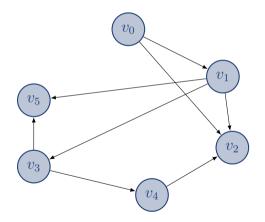
Adjacency Matrices – Directed / Undirected Graphs

Matrices of undirected graphs are symmetric Matrices of directed graphs are not (always) symmetric

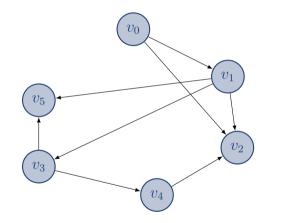


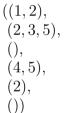


Adjacency Lists – Directed Unweighted Graphs



Adjacency Lists – Directed Unweighted Graphs





Use 2-dimensional lists

Use 2-dimensional lists

Matrix: Weighted

Use 2-dimensional lists

Use 2-dimensional lists

Matrix: Weighted Matrix	1atrix: Unweighted
Ŭ	$G = \begin{bmatrix} 0, 1, 1, 0, 0, 0 \end{bmatrix}, \\ \begin{bmatrix} 1, 0, 1, 1, 0, 1 \end{bmatrix}, \\ \begin{bmatrix} 1, 1, 0, 0, 1, 0 \end{bmatrix}, \\ \begin{bmatrix} 0, 1, 0, 0, 1, 0 \end{bmatrix}, \\ \begin{bmatrix} 0, 0, 1, 0, 0, 1, 1 \end{bmatrix}, \\ \begin{bmatrix} 0, 0, 1, 1, 0, 0 \end{bmatrix}, \\ \begin{bmatrix} 0, 1, 0, 1, 0, 0 \end{bmatrix}$

List: Unweighted

G = [1,2], [0,2,3,5], [0,1,4], [1,4,5], [2,3], [1,3]]

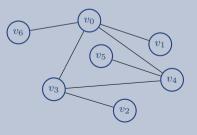
Graph Algorithms Breadth-First and Depth-First Search

Many applications need the systematic exploration of a given graph

- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order

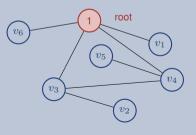
Many applications need the systematic exploration of a given graph

- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order



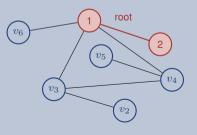
Many applications need the systematic exploration of a given graph

- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order



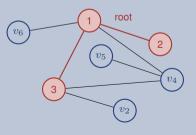
Many applications need the systematic exploration of a given graph

- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order



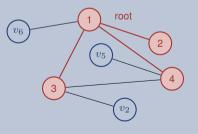
Many applications need the systematic exploration of a given graph

- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order



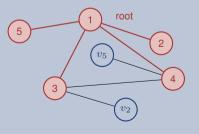
Many applications need the systematic exploration of a given graph

- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order



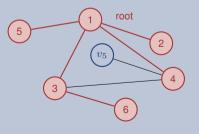
Many applications need the systematic exploration of a given graph

- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order



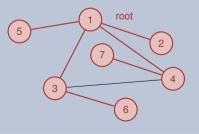
Many applications need the systematic exploration of a given graph

- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order



Many applications need the systematic exploration of a given graph

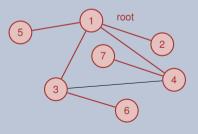
- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order



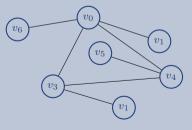
Many applications need the systematic exploration of a given graph

- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the Heap; break ties in favor of smaller indices



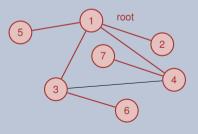
Programming and Problem-Solving – Graphs and Graph Algorithms



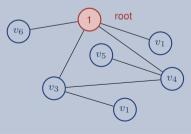
Many applications need the systematic exploration of a given graph

- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the Heap; break ties in favor of smaller indices



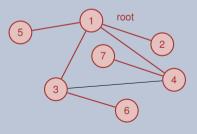
Programming and Problem-Solving – Graphs and Graph Algorithms



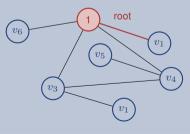
Many applications need the systematic exploration of a given graph

- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the Heap; break ties in favor of smaller indices



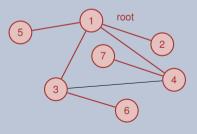
Programming and Problem-Solving – Graphs and Graph Algorithms



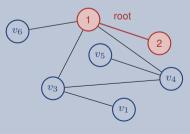
Many applications need the systematic exploration of a given graph

- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the Heap; break ties in favor of smaller indices



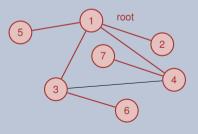
Programming and Problem-Solving - Graphs and Graph Algorithms



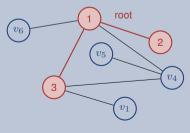
Many applications need the systematic exploration of a given graph

- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the Heap; break ties in favor of smaller indices



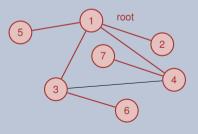
Programming and Problem-Solving - Graphs and Graph Algorithms



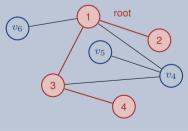
Many applications need the systematic exploration of a given graph

- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the Heap; break ties in favor of smaller indices



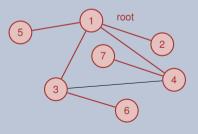
Programming and Problem-Solving - Graphs and Graph Algorithms



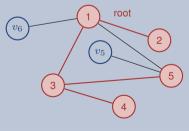
Many applications need the systematic exploration of a given graph

- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the Heap; break ties in favor of smaller indices



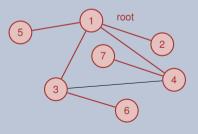
Programming and Problem-Solving - Graphs and Graph Algorithms



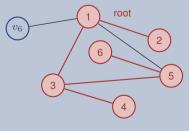
Many applications need the systematic exploration of a given graph

- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the Heap; break ties in favor of smaller indices



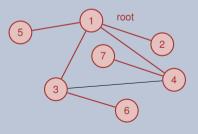
Programming and Problem-Solving - Graphs and Graph Algorithms



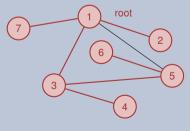
Many applications need the systematic exploration of a given graph

- Start and an arbitrary vertex
- Follow edges through graph
- Store vertices in the respective order

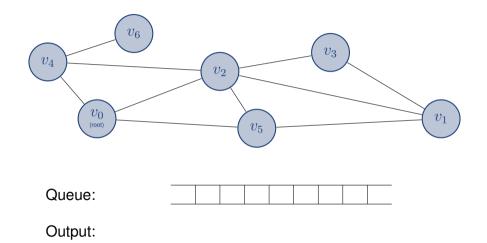
BFS: First go broadly and than deeply, just as with the Heap; break ties in favor of smaller indices

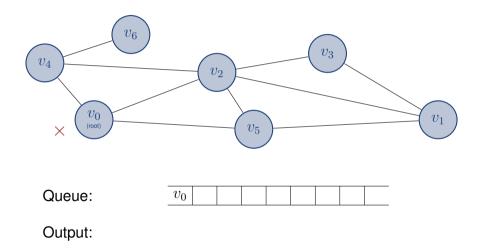


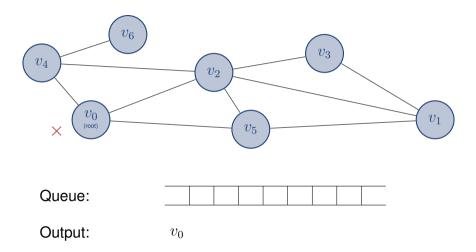
Programming and Problem-Solving - Graphs and Graph Algorithms

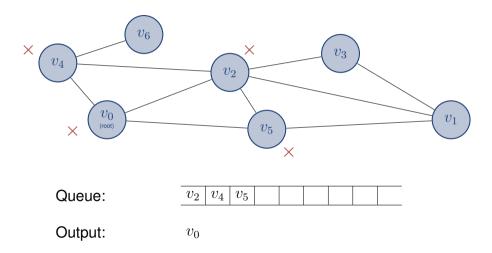


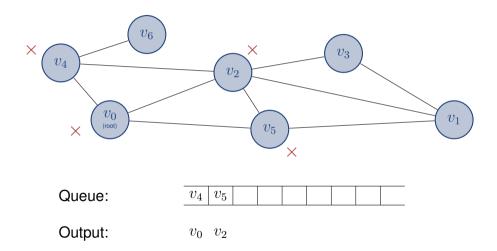
Breadth-First Search Iteratively with a Queue

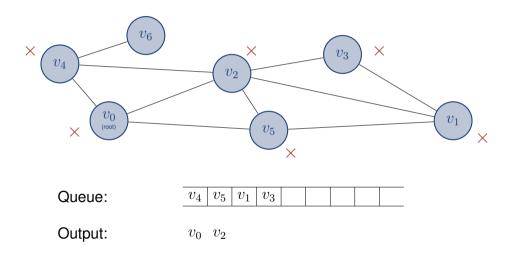


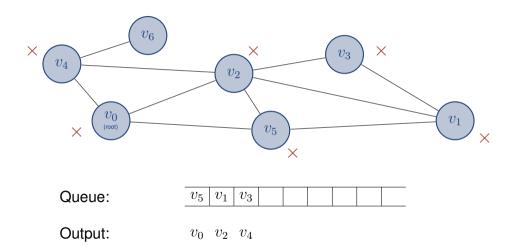


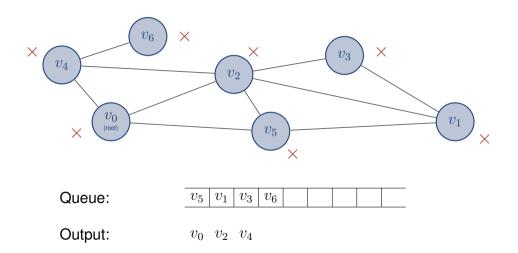


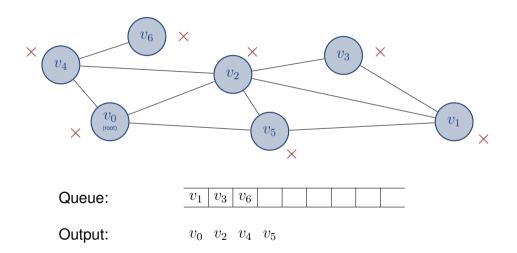


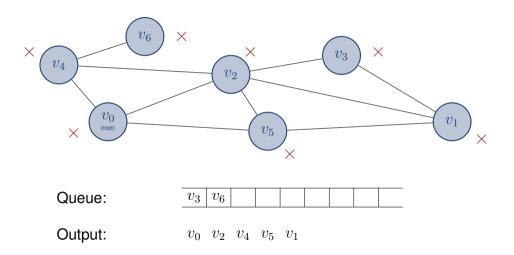




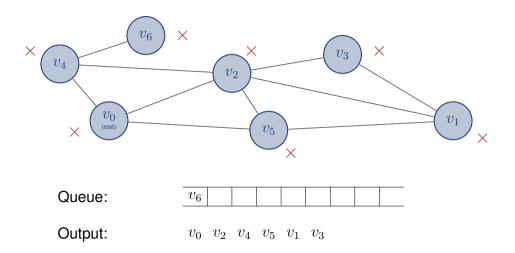








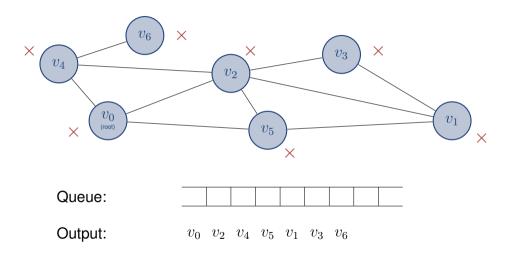
BFS with a Queue



Programming and Problem-Solving - Graphs and Graph Algorithms

Spring 2021

BFS with a Queue



Programming and Problem-Solving - Graphs and Graph Algorithms

Spring 2021

```
G = [ [0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
        [1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0] ]
queue = []
visited = [ 0 for i in range(len(G)) ]
```

```
G = [ [0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
        [1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0] ]
queue = []
visited = [ 0 for i in range(len(G)) ]
```

Consider first vertex in queue and print it

```
G = [ [0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
        [1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0] ]
queue = []
visited = [ 0 for i in range(len(G)) ]
```

- Consider first vertex in queue and print it
- Add unvisited neighbors to queue

```
G = [ [0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
        [1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0] ]
queue = []
visited = [ 0 for i in range(len(G)) ]
```

- Consider first vertex in queue and print it
- Add unvisited neighbors to queue
- visited stores which vertices have been visited

```
G = [ [0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
        [1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0] ]
queue = []
visited = [ 0 for i in range(len(G)) ]
```

- Consider first vertex in queue and print it
- Add unvisited neighbors to queue
- visited stores which vertices have been visited
- Repeat as long as queue is not empty

Exercise – BFS with Queue and Adjacency Matrix

Implement BFS

- as a Python function
- with a 2-dimensional list as parameter
- using a queue
- and an adjacency matrix

 $G = [[0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0], \\ [1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0]]$

```
def BFS(G):
    queue = []
    visited = [ 0 for i in range(len(G)) ]
    queue.append(0)
    visited[0] = 1
    while len(queue) > 0:
         current = queue.pop(0)
         print(current, end=" ")
         for j in range(len(G)):
             if G[current][j] == 1 and visited[j] == 0:
                  visited[i] = 1
                  queue.append(j)
BFS([ [0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
     [1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0]])
```

Exercise – BFS with Queue and Adjacency List

Implement BFS

- as a Python function
- with a 2-dimensional list as parameter
- using a queue
- and an adjacency list

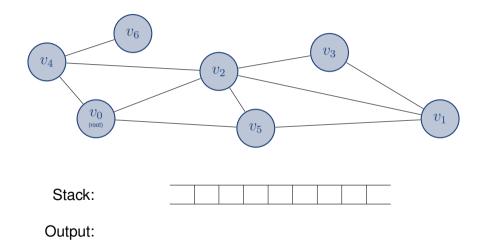
G = [[2,4,5], [2,3,5], [0,1,3,4,5], [1,2], [0,2,6], [0,1,2], [4]]

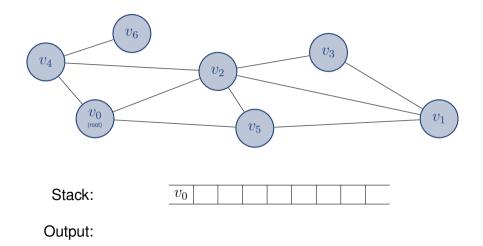
BFS with Queue and a Adjacency List

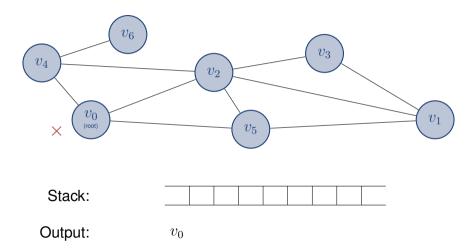
```
def BFS(G):
    queue = []
    visited = [ 0 for i in range(len(G)) ]
    queue.append(0)
    visited[0] = 1
    while len(queue) > 0:
         current = queue.pop(0)
         print(current, end=" ")
         for j in G[current]:
              if visited[i] == 0:
                  visited[i] = 1
                  queue.append(j)
```

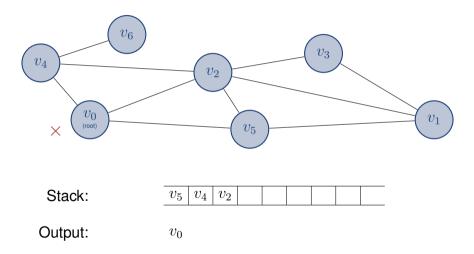
BFS([[2,4,5], [2,3,5], [0,1,3,4,5], [1,2], [0,2,6], [0,1,2], [4]])

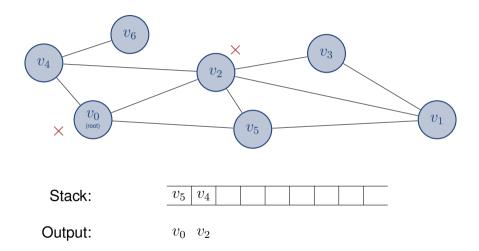
Depth-First Search Iteratively with a Stack

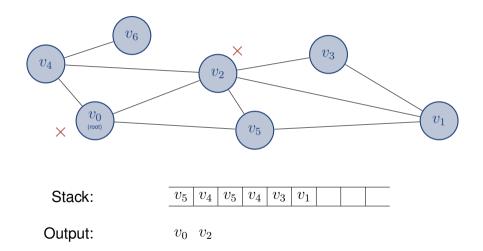




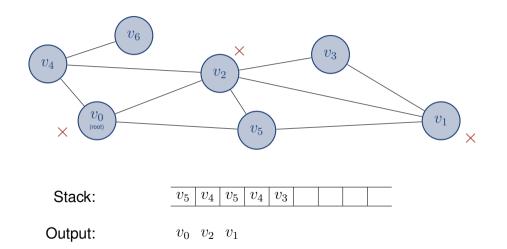


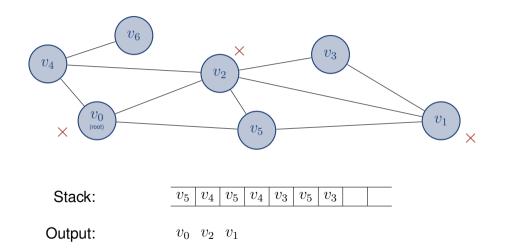




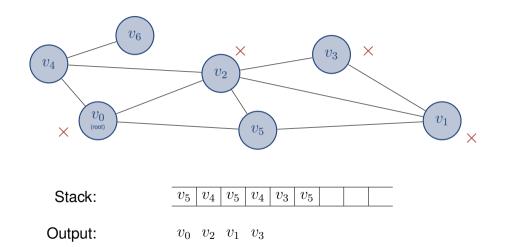


Programming and Problem-Solving - Graphs and Graph Algorithms

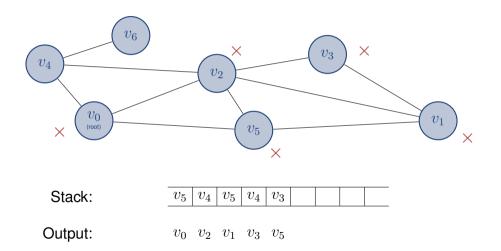


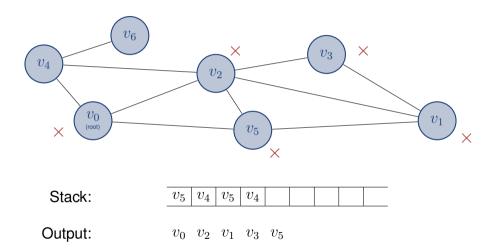


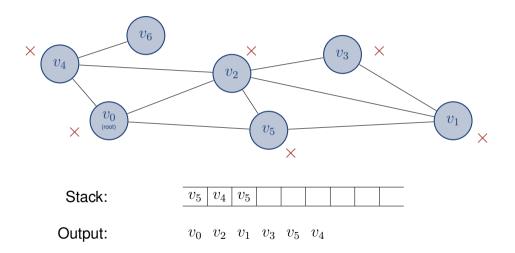
Programming and Problem-Solving - Graphs and Graph Algorithms

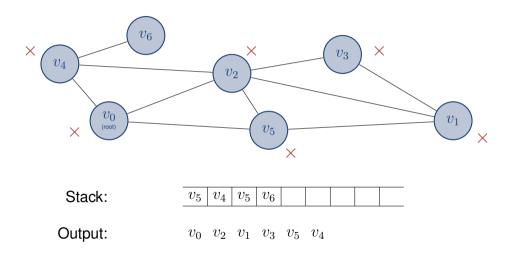


Programming and Problem-Solving - Graphs and Graph Algorithms

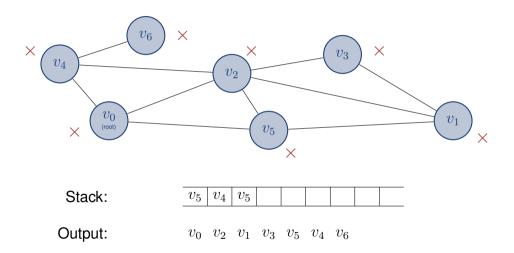


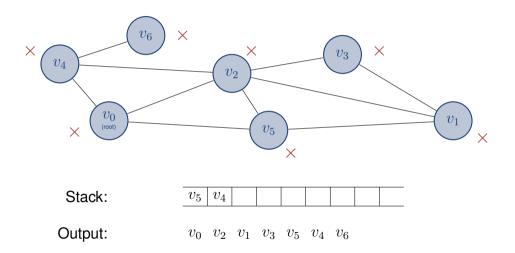


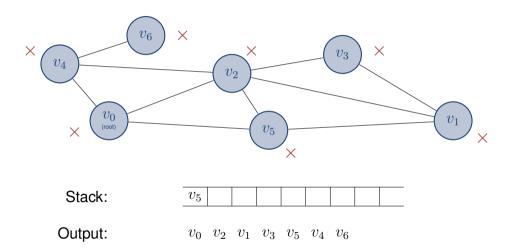


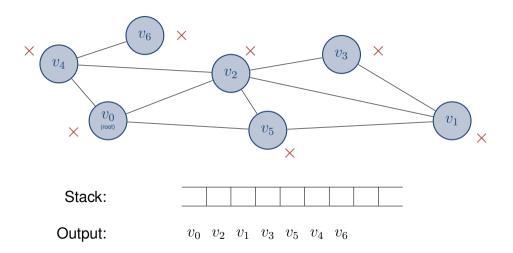


Programming and Problem-Solving - Graphs and Graph Algorithms









Programming and Problem-Solving - Graphs and Graph Algorithms

Spring 2021

```
G = [ [0, 0, 1, 0, 1, 1, 0],
      [0, 0, 1, 1, 0, 1, 0],
      [1, 1, 0, 1, 1, 0],
      [0, 1, 1, 0, 0, 0, 0],
      [1, 0, 1, 0, 0, 0, 0],
      [1, 1, 1, 0, 0, 0, 0],
      [0, 0, 0, 0, 1, 0, 0] ]
stack = []
visited = [ 0 for i in range(len(G)) ]
```

```
G = [ [0, 0, 1, 0, 1, 1, 0],
      [0, 0, 1, 1, 0, 1, 0],
      [1, 1, 0, 1, 1, 0],
      [0, 1, 1, 0, 0, 0, 0],
      [1, 0, 1, 0, 0, 0, 0],
      [1, 1, 1, 0, 0, 0, 0],
      [0, 0, 0, 0, 1, 0, 0] ]
stack = []
visited = [ 0 for i in range(len(G)) ]
```

Consider first vertex in stack and print it

```
G = [ [0, 0, 1, 0, 1, 1, 0],
      [0, 0, 1, 1, 0, 1, 0],
      [1, 1, 0, 1, 1, 0],
      [0, 1, 1, 0, 0, 0, 0],
      [1, 0, 1, 0, 0, 0, 0],
      [1, 1, 1, 0, 0, 0, 0],
      [0, 0, 0, 0, 1, 0, 0] ]
stack = []
visited = [ 0 for i in range(len(G)) ]
```

Consider first vertex in stack and print it
 Add unvisited neighbors to stack

```
G = [ [0, 0, 1, 0, 1, 1, 0], \\ [0, 0, 1, 1, 0, 1, 0], \\ [1, 1, 0, 1, 1, 1, 0], \\ [0, 1, 1, 0, 0, 0, 0], \\ [1, 0, 1, 0, 0, 0, 0], \\ [1, 1, 1, 0, 0, 0, 0], \\ [0, 0, 0, 0, 1, 0, 0] ] \\ stack = [] \\ visited = [ 0 for i in range(len(G)) ]
```

- Consider first vertex in stack and print it
- Add unvisited neighbors to stack
- visited stores which vertices have been visited

```
G = [ [0, 0, 1, 0, 1, 1, 0], \\ [0, 0, 1, 1, 0, 1, 0], \\ [1, 1, 0, 1, 1, 1, 0], \\ [0, 1, 1, 0, 0, 0, 0], \\ [1, 0, 1, 0, 0, 0, 0], \\ [1, 1, 1, 0, 0, 0, 0], \\ [0, 0, 0, 0, 1, 0, 0] ] \\ stack = [] \\ visited = [ 0 for i in range(len(G)) ]
```

- Consider first vertex in stack and print it
- Add unvisited neighbors to stack
- visited stores which vertices have been visited
- Repeat as long as stack is not empty

Programming and Problem-Solving – Graphs and Graph Algorithms

Exercise – DFS with Stack and Adjacency Matrix

Implement DFS

- as a Python function
- with a 2-dimensional list as parameter
- using a stack
- and an adjacency matrix

```
 G = [ [0,0,1,0,1,1,0], [0,0,1,1,0,1,0], \\ [1,1,0,1,1,1,0], [0,1,1,0,0,0,0], \\ [1,0,1,0,0,0,1], [1,1,1,0,0,0,0], \\ [0,0,0,0,1,0,0] ]
```



```
def DFS(G):
   stack = []
   visited = [ 0 for i in range(len(G)) ]
   stack.append(0)
   while len(stack) > 0:
       current = stack.pop()
         if visited[current] == 0:
             visited[current] = 1
             print(current, end=" ")
             for j in reversed(range(len(G))):
                 if G[current][j] == 1 and visited[j] == 0:
                     stack.append(j)
DFS( [ [0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
     [1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0]]
```

Exercise – DFS with Stack and Adjacency List

Implement DFS

- as a Python function
- with a 2-dimensional list as parameter
- using a stack
- and an adjacency matrix

G = [2,4,5], [2,3,5], [0,1,3,4,5], [1,2], [0,2,6], [0,1,2], [4]]

DFS with Stack and Adjacency List

```
def DFS(G):
   stack = []
   visited = [ 0 for i in range(len(G)) ]
   stack.append(0)
   while len(stack) > 0:
       current = stack.pop()
       if visited[current] == 0:
            visited[current] = 1
            print(current, end=" ")
            for j in reversed(G[current]):
               if visited[j] == 0:
                   stack.append(j)
DFS([[2,4,5], [2,3,5], [0,1,3,4,5], [1,2], [0,2,6], [0,1,2], [4]])
```

Depth-First Search Recursively

Global list visited

- Global list visited
- Function DFS, which is called recursively

- Global list visited
- Function DFS, which is called recursively

Two parameters

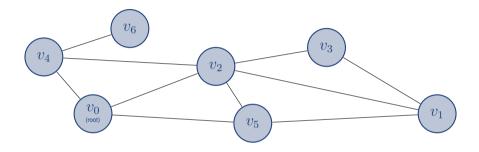
- 1. graph G
- 2. Start vertex current

- Global list visited
- Function DFS, which is called recursively

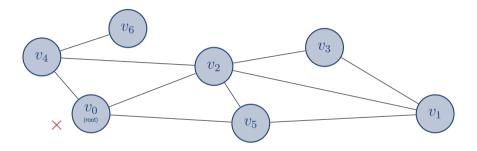
Two parameters

- 1. graph G
- 2. Start vertex current

```
visited = [ 0 for i in range(len(G)) ]
def DFS(G, current):
    visited[current] = 1
    print(current, end=" ")
    for i in range(len(G)):
        if G[current][i] == 1 and visited[i] == 0:
            DFS(G, i)
```



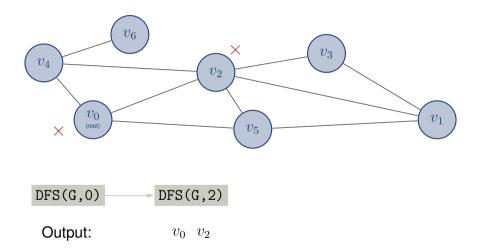
Output:

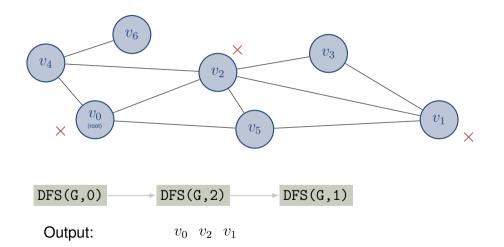


DFS(G,0)

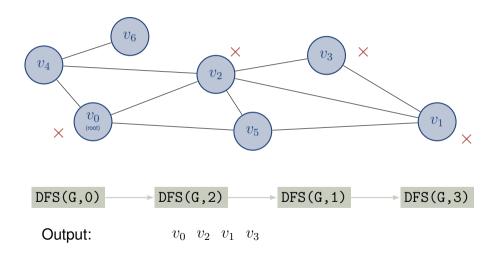
Output: v_0

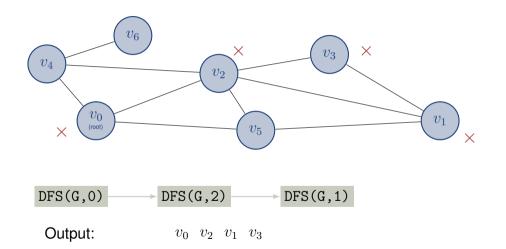
Programming and Problem-Solving - Graphs and Graph Algorithms

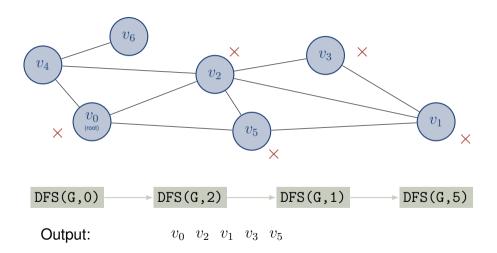


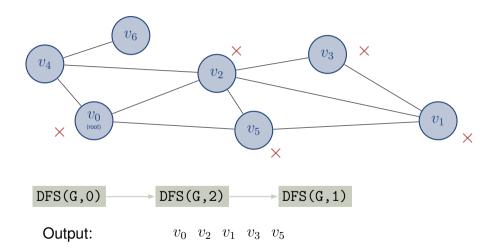


Programming and Problem-Solving - Graphs and Graph Algorithms

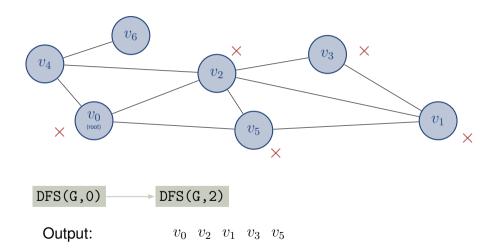


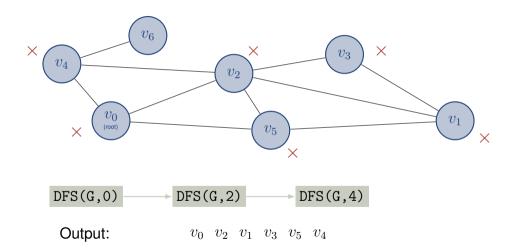


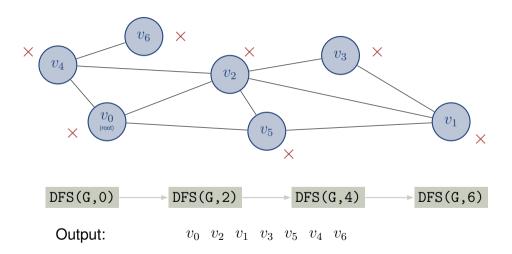


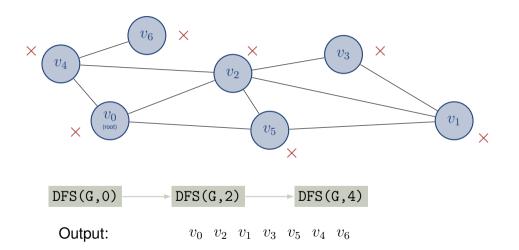


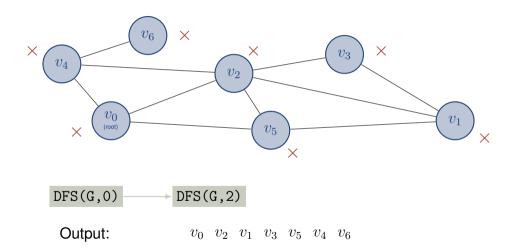
Programming and Problem-Solving - Graphs and Graph Algorithms



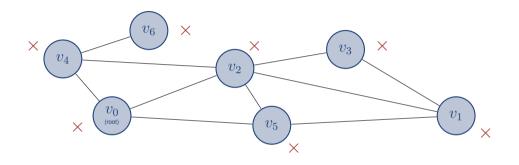








Programming and Problem-Solving - Graphs and Graph Algorithms

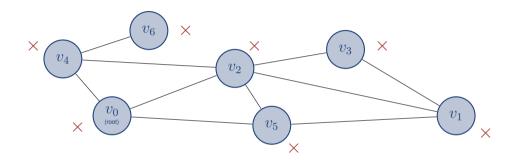


DFS(G,0)

Output: $v_0 v_2 v_1 v_3 v_5 v_4 v_6$

Programming and Problem-Solving - Graphs and Graph Algorithms

Spring 2021



Output: $v_0 v_2 v_1 v_3 v_5 v_4 v_6$

Programming and Problem-Solving - Graphs and Graph Algorithms

Spring 2021

Recursive DFS Applications

Is graph connected?

Is graph connected?

⇒ DFS from arbitrary vertex; are all vertices visited when done?

Is graph connected?

⇒ DFS from arbitrary vertex; are all vertices visited when done?

Is vertex w reachable from vertex v?

Is graph connected?

⇒ DFS from arbitrary vertex; are all vertices visited when done?

Is vertex w reachable from vertex v?

 \Rightarrow DFS from *v*; is *w* visited when done?

Is graph connected?

⇒ DFS from arbitrary vertex; are all vertices visited when done?

Is vertex w reachable from vertex v?

 \Rightarrow DFS from v; is w visited when done?

Is a graph 2-colorable?

Is graph connected?

⇒ DFS from arbitrary vertex; are all vertices visited when done?

Is vertex w reachable from vertex v?

 \Rightarrow DFS from v; is w visited when done?

Is a graph 2-colorable?

⇒ DFS from arbitrary vertex and color levels differently

Is graph connected?

⇒ DFS from arbitrary vertex; are all vertices visited when done?

Is vertex w reachable from vertex v?

 \Rightarrow DFS from *v*; is *w* visited when done?

Is a graph 2-colorable?

⇒ DFS from arbitrary vertex and color levels differently

Does a graph contain a cycle?

Is graph connected?

DFS from arbitrary vertex; are all vertices visited when done?

Is vertex w reachable from vertex v?

 \Rightarrow DFS from *v*; is *w* visited when done?

Is a graph 2-colorable?

⇒ DFS from arbitrary vertex and color levels differently

Does a graph contain a cycle?

⇒ DFS from arbitrary vertex; is there a back edge?

Programming and Problem-Solving - Graphs and Graph Algorithms

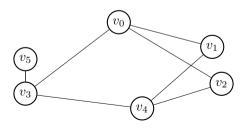
Spring 2021

Recursive DFS Graph Coloring

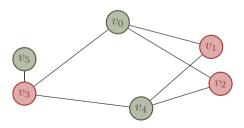
- Can it be colored with two colors?
- Connected vertices ("neighbors") have different color

- Can it be colored with two colors?
- Connected vertices ("neighbors") have different color
- Compute recursively

- Can it be colored with two colors?
- Connected vertices ("neighbors") have different color
- Compute recursively

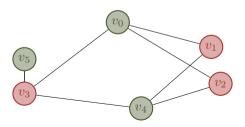


- Can it be colored with two colors?
- Connected vertices ("neighbors") have different color
- Compute recursively



Consider arbitrary graph

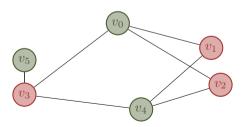
- Can it be colored with two colors?
- Connected vertices ("neighbors") have different color
- Compute recursively



List color instead of visited

Consider arbitrary graph

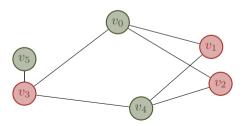
- Can it be colored with two colors?
- Connected vertices ("neighbors") have different color
- Compute recursively



- List color instead of visited
- 0: not yet visited

Consider arbitrary graph

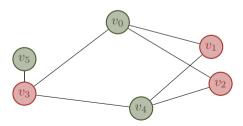
- Can it be colored with two colors?
- Connected vertices ("neighbors") have different color
- Compute recursively



- List color instead of visited
- 0: not yet visited
- 1: colored green

Consider arbitrary graph

- Can it be colored with two colors?
- Connected vertices ("neighbors") have different color
- Compute recursively



- List color instead of visited
- 0: not yet visited
- 1: colored green
- 2: colored red

We use recursive DFS

All neighbors of current get a color different from that of current

We use recursive DFS

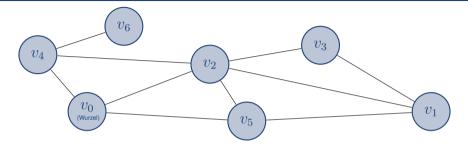
- All neighbors of current get a color different from that of current
- If neighbor already has same color as current, coloring is invalid

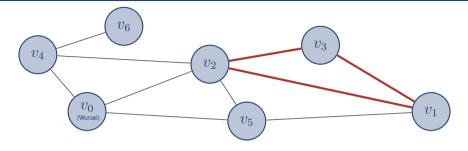
We use recursive DFS

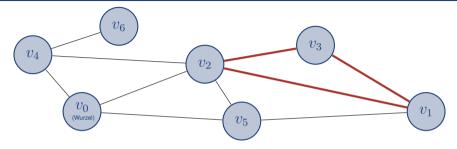
- All neighbors of current get a color different from that of current
- If neighbor already has same color as current, coloring is invalid

```
def coloring(G, current):
    for i in range(len(G)):
        if G[current][i] == 1 and color[i] == 0:
            color[i] = 3 - color[current]
            coloring(G, i)
        elif G[current][i] == 1 and color[i] == color[current]:
            print("Coloring impossible.")
            return
```

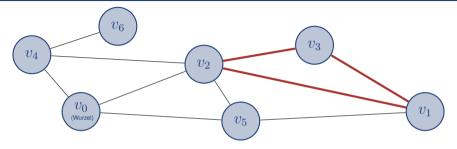
Recursive DFS Finding Cycles



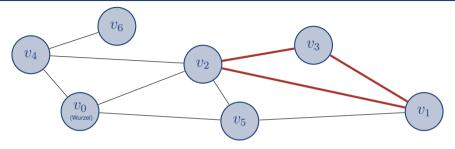




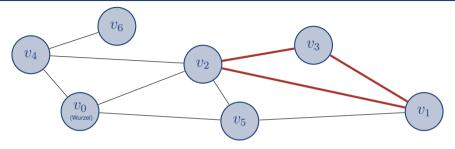
DFS computes this



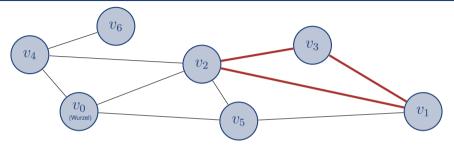
- DFS computes this
- Traverse graph as before



- DFS computes this
- Traverse graph as before
- Is there an edge to a vertex we already visited?



- DFS computes this
- Traverse graph as before
- Is there an edge to a vertex we already visited?
- Back-Edge



- DFS computes this
- Traverse graph as before
- Is there an edge to a vertex we already visited?
- Back-Edge
- Attention: Single edge is not a cycle

Compute whether graph contains a cycle

Compute whether graph contains a cycle

Extend DFS such that parent is considered

```
def find_cycle(G, current, parent):
    visited[current] = 1
    print(current, end=" ")
    for i in range(len(G)):
        if G[current][i] == 1 and visited[i] == 0:
            find_cycle(G, i, current)
        elif G[current][i] == 1 and visited[i] == 1 and i != parent:
            print("Found cycle.")
            return
```

Thanks for your attention

