
Departement Informatik

Programming
and Problem-Solving
Graphs and Graph Algorithms

Manuela Fischer and Dennis Komm

Spring 2021 – May 27, 2021

Graphs
Searching in Networks

Social Network

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 1 / 29

Social Network

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 1 / 29

Social Network

Friends

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 1 / 29

Social Network

Friends

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 1 / 29

Social Network

Friends

Friends

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 1 / 29

Social Network

Friends

Friends

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 1 / 29

Social Network

Friends

Friends
Colleagues

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 1 / 29

Social Network

Friends

Friends
Colleagues

Friends

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 1 / 29

Social Network

Friends

Friends
Colleagues

Friends

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 1 / 29

Social Network

Friends

Friends
Colleagues

FriendsFriends

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 1 / 29

Social Network

Friends

Friends
Colleagues

FriendsFriends

Siblings

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 1 / 29

Social Network

Friends

Friends
Colleagues

FriendsFriends

Siblings

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 1 / 29

Social Network

Friends

Friends
Colleagues

FriendsFriends

Siblings

Friends

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 1 / 29

Social Network

Friends

Friends
Colleagues

FriendsFriends

Siblings

Friends Colleagues

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 1 / 29

Social Network

Friends

Friends
Colleagues

FriendsFriends

Siblings

Friends Colleagues

Friends

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 1 / 29

Social Network

Friends

Friends
Colleagues

FriendsFriends

Siblings

Friends Colleagues

Friends
Friends

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 1 / 29

Abstract Modelling

1 2

3
45

6

3

3
9

33

1

3 9

3
3

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 2 / 29

Abstract Modelling

A graph G = (V, E, w) consists of

1. a set V of vertices

2. a set E of edges between some of the vertices

3. (a weight function w)

Vertices are called v0, v1, v2, . . .

Graphs are either weighted or unweighted

Graphs are either directed or undirected

Graphs are either connected or unconnected

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 3 / 29

Abstract Modelling

A graph G = (V, E, w) consists of

1. a set V of vertices

2. a set E of edges between some of the vertices

3. (a weight function w)

Vertices are called v0, v1, v2, . . .

Graphs are either weighted or unweighted

Graphs are either directed or undirected

Graphs are either connected or unconnected

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 3 / 29

Abstract Modelling

A graph G = (V, E, w) consists of

1. a set V of vertices

2. a set E of edges between some of the vertices

3. (a weight function w)

Vertices are called v0, v1, v2, . . .

Graphs are either weighted or unweighted

Graphs are either directed or undirected

Graphs are either connected or unconnected

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 3 / 29

Abstract Modelling

A graph G = (V, E, w) consists of

1. a set V of vertices

2. a set E of edges between some of the vertices

3. (a weight function w)

Vertices are called v0, v1, v2, . . .

Graphs are either weighted or unweighted

Graphs are either directed or undirected

Graphs are either connected or unconnected

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 3 / 29

Abstract Modelling

A graph G = (V, E, w) consists of

1. a set V of vertices

2. a set E of edges between some of the vertices

3. (a weight function w)

Vertices are called v0, v1, v2, . . .

Graphs are either weighted or unweighted

Graphs are either directed or undirected

Graphs are either connected or unconnected

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 3 / 29

Abstract Modelling

v0

v1

v2
v3

v4

v5

Undirected unweighted graph

v0

v1

v2v3

v4

1

2

1

4

2

Undirected weighted graph

v0

v1 v2

v3 v4

Directed unweighted graph

Which type of graph is used depends on what we want to model

We mostly consider undirected, unweighted, connected graphs

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 4 / 29

Abstract Modelling

v0

v1

v2
v3

v4

v5

Undirected unweighted graph

v0

v1

v2v3

v4

1

2

1

4

2

Undirected weighted graph

v0

v1 v2

v3 v4

Directed unweighted graph

Which type of graph is used depends on what we want to model

We mostly consider undirected, unweighted, connected graphs

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 4 / 29

Abstract Modelling

v0

v1

v2
v3

v4

v5

Undirected unweighted graph

v0

v1

v2v3

v4

1

2

1

4

2

Undirected weighted graph

v0

v1 v2

v3 v4

Directed unweighted graph

Which type of graph is used depends on what we want to model

We mostly consider undirected, unweighted, connected graphs

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 4 / 29

Abstract Modelling

v0

v1

v2
v3

v4

v5

Undirected unweighted graph

v0

v1

v2v3

v4

1

2

1

4

2

Undirected weighted graph

v0

v1 v2

v3 v4

Directed unweighted graph

Which type of graph is used depends on what we want to model

We mostly consider undirected, unweighted, connected graphs

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 4 / 29

Abstract Modelling

v0

v1

v2
v3

v4

v5

Undirected unweighted graph

v0

v1

v2v3

v4

1

2

1

4

2

Undirected weighted graph

v0

v1 v2

v3 v4

Directed unweighted graph

Which type of graph is used depends on what we want to model

We mostly consider undirected, unweighted, connected graphs

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 4 / 29

Graphs
On the Computer

Adjacency Matrices – Undirected Weighted Graphs

v0

v1

v2
v3

v4

v5

5

2 7

1

8

5
2

0 1 7 2 0 5
1 0 0 0 0 0
7 0 0 0 8 0
2 0 0 0 0 5
0 0 8 0 0 2
5 0 0 5 2 0

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 5 / 29

Adjacency Matrices – Undirected Weighted Graphs

v0

v1

v2
v3

v4

v5

5

2 7

1

8

5
2

0 1 7 2 0 5
1 0 0 0 0 0
7 0 0 0 8 0
2 0 0 0 0 5
0 0 8 0 0 2
5 0 0 5 2 0

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 5 / 29

Adjacency Matrices – Directed Unweighted Graphs

v0

v1

v2
v3

v4

v5

0 1 1 0 0 0
0 0 1 1 0 1
0 0 0 0 0 0
0 0 0 0 1 1
0 0 1 0 0 0
0 0 0 0 0 0

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 6 / 29

Adjacency Matrices – Directed Unweighted Graphs

v0

v1

v2
v3

v4

v5

0 1 1 0 0 0
0 0 1 1 0 1
0 0 0 0 0 0
0 0 0 0 1 1
0 0 1 0 0 0
0 0 0 0 0 0

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 6 / 29

Adjacency Matrices – Directed / Undirected Graphs

Matrices of undirected graphs
are symmetric

v0 v1

v2v3
v4

0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
0 0 0 1 0

Matrices of directed graphs are
not (always) symmetric

v0

v1 v2

v3 v4
0 1 1 0 0
0 0 0 1 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 7 / 29

Adjacency Matrices – Directed / Undirected Graphs

Matrices of undirected graphs
are symmetric

v0 v1

v2v3
v4

0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
0 0 0 1 0

Matrices of directed graphs are
not (always) symmetric

v0

v1 v2

v3 v4
0 1 1 0 0
0 0 0 1 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 7 / 29

Adjacency Lists – Directed Unweighted Graphs

v0

v1

v2
v3

v4

v5

((1, 2),
(2, 3, 5),
(),
(4, 5),
(2),
())

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 8 / 29

Adjacency Lists – Directed Unweighted Graphs

v0

v1

v2
v3

v4

v5

((1, 2),
(2, 3, 5),
(),
(4, 5),
(2),
())

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 8 / 29

Adjacency Matrices and Lists in Python

Use 2-dimensional lists

Matrix: Weighted

G = [[0, 1, 7, 2, 0, 5],
[1, 0, 0, 0, 0, 0],
[7, 0, 0, 0, 8, 0],
[2, 0, 0, 0, 0, 5],
[0, 0, 8, 0, 0, 2],
[5, 0, 0, 5, 2, 0]]

Matrix: Unweighted

G = [[0, 1, 1, 0, 0, 0],
[1, 0, 1, 1, 0, 1],
[1, 1, 0, 0, 1, 0],
[0, 1, 0, 0, 1, 1],
[0, 0, 1, 1, 0, 0],
[0, 1, 0, 1, 0, 0]]

List: Unweighted
G = [[1,2], [0,2,3,5], [0,1,4], [1,4,5], [2,3], [1,3]]

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 9 / 29

Adjacency Matrices and Lists in Python

Use 2-dimensional lists

Matrix: Weighted

G = [[0, 1, 7, 2, 0, 5],
[1, 0, 0, 0, 0, 0],
[7, 0, 0, 0, 8, 0],
[2, 0, 0, 0, 0, 5],
[0, 0, 8, 0, 0, 2],
[5, 0, 0, 5, 2, 0]]

Matrix: Unweighted

G = [[0, 1, 1, 0, 0, 0],
[1, 0, 1, 1, 0, 1],
[1, 1, 0, 0, 1, 0],
[0, 1, 0, 0, 1, 1],
[0, 0, 1, 1, 0, 0],
[0, 1, 0, 1, 0, 0]]

List: Unweighted
G = [[1,2], [0,2,3,5], [0,1,4], [1,4,5], [2,3], [1,3]]

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 9 / 29

Adjacency Matrices and Lists in Python

Use 2-dimensional lists

Matrix: Weighted

G = [[0, 1, 7, 2, 0, 5],
[1, 0, 0, 0, 0, 0],
[7, 0, 0, 0, 8, 0],
[2, 0, 0, 0, 0, 5],
[0, 0, 8, 0, 0, 2],
[5, 0, 0, 5, 2, 0]]

Matrix: Unweighted

G = [[0, 1, 1, 0, 0, 0],
[1, 0, 1, 1, 0, 1],
[1, 1, 0, 0, 1, 0],
[0, 1, 0, 0, 1, 1],
[0, 0, 1, 1, 0, 0],
[0, 1, 0, 1, 0, 0]]

List: Unweighted
G = [[1,2], [0,2,3,5], [0,1,4], [1,4,5], [2,3], [1,3]]

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 9 / 29

Adjacency Matrices and Lists in Python

Use 2-dimensional lists

Matrix: Weighted

G = [[0, 1, 7, 2, 0, 5],
[1, 0, 0, 0, 0, 0],
[7, 0, 0, 0, 8, 0],
[2, 0, 0, 0, 0, 5],
[0, 0, 8, 0, 0, 2],
[5, 0, 0, 5, 2, 0]]

Matrix: Unweighted

G = [[0, 1, 1, 0, 0, 0],
[1, 0, 1, 1, 0, 1],
[1, 1, 0, 0, 1, 0],
[0, 1, 0, 0, 1, 1],
[0, 0, 1, 1, 0, 0],
[0, 1, 0, 1, 0, 0]]

List: Unweighted
G = [[1,2], [0,2,3,5], [0,1,4], [1,4,5], [2,3], [1,3]]

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 9 / 29

Graph Algorithms
Breadth-First and Depth-First Search

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

v0

v1

v3
v4

v6

v2

v5

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

1 root

v1

v3
v4

v6

v2

v5

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

1 root

2

v3
v4

v6

v2

v5

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

1 root

2

3
v4

v6

v2

v5

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

1 root

2

3
4

v6

v2

v5

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

1 root

2

3
4

5

v2

v5

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

1 root

2

3
4

5

6

v5

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

1 root

2

3
4

5

6

7

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

1 root

2

3
4

5

6

7

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

v0

v1

v3

v1

v4

v5

v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

1 root

2

3
4

5

6

7

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

1 root

v1

v3

v1

v4

v5

v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

1 root

2

3
4

5

6

7

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

1 root

v1

v3

v1

v4

v5

v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

1 root

2

3
4

5

6

7

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

1 root

2

v3

v1

v4

v5

v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

1 root

2

3
4

5

6

7

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

1 root

2

3

v1

v4

v5

v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

1 root

2

3
4

5

6

7

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

1 root

2

3

4

v4

v5

v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

1 root

2

3
4

5

6

7

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

1 root

2

3

4

5

v5

v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

1 root

2

3
4

5

6

7

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

1 root

2

3

4

5

6

v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
Start and an arbitrary vertex
Follow edges through graph
Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the
Heap; break ties in favor of smaller indices

1 root

2

3
4

5

6

7

DFS: Go into the graph as deep as possible, then
broadly; again break ties in favor of smaller indices

1 root

2

3

4

5

6

7

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10 / 29

Breadth-First Search
Iteratively with a Queue

BFS with a Queue

v0
(root)

v1

v2

v3v4

v5

v6

Queue:

Output:

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 11 / 29

BFS with a Queue

v0
(root)

v1

v2

v3v4

v5

v6

×

Queue: v0

Output:

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 11 / 29

BFS with a Queue

v0
(root)

v1

v2

v3v4

v5

v6

×

Queue:

Output: v0

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 11 / 29

BFS with a Queue

v0
(root)

v1

v2

v3v4

v5

v6

×

××

×

Queue: v2 v4 v5

Output: v0

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 11 / 29

BFS with a Queue

v0
(root)

v1

v2

v3v4

v5

v6

×

××

×

Queue: v4 v5

Output: v0 v2

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 11 / 29

BFS with a Queue

v0
(root)

v1

v2

v3v4

v5

v6

×

××

×

×

×

Queue: v4 v5 v1 v3

Output: v0 v2

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 11 / 29

BFS with a Queue

v0
(root)

v1

v2

v3v4

v5

v6

×

××

×

×

×

Queue: v5 v1 v3

Output: v0 v2 v4

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 11 / 29

BFS with a Queue

v0
(root)

v1

v2

v3v4

v5

v6

×

××

×

×

×

×

Queue: v5 v1 v3 v6

Output: v0 v2 v4

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 11 / 29

BFS with a Queue

v0
(root)

v1

v2

v3v4

v5

v6

×

××

×

×

×

×

Queue: v1 v3 v6

Output: v0 v2 v4 v5

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 11 / 29

BFS with a Queue

v0
(root)

v1

v2

v3v4

v5

v6

×

××

×

×

×

×

Queue: v3 v6

Output: v0 v2 v4 v5 v1

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 11 / 29

BFS with a Queue

v0
(root)

v1

v2

v3v4

v5

v6

×

××

×

×

×

×

Queue: v6

Output: v0 v2 v4 v5 v1 v3

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 11 / 29

BFS with a Queue

v0
(root)

v1

v2

v3v4

v5

v6

×

××

×

×

×

×

Queue:

Output: v0 v2 v4 v5 v1 v3 v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 11 / 29

BFS with Queue and Adjacency Matrix

G = [[0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
[1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0]]

queue = []
visited = [0 for i in range(len(G))]

Consider first vertex in queue and print it

Add unvisited neighbors to queue

visited stores which vertices have been visited

Repeat as long as queue is not empty

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 12 / 29

BFS with Queue and Adjacency Matrix

G = [[0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
[1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0]]

queue = []
visited = [0 for i in range(len(G))]

Consider first vertex in queue and print it

Add unvisited neighbors to queue

visited stores which vertices have been visited

Repeat as long as queue is not empty

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 12 / 29

BFS with Queue and Adjacency Matrix

G = [[0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
[1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0]]

queue = []
visited = [0 for i in range(len(G))]

Consider first vertex in queue and print it

Add unvisited neighbors to queue

visited stores which vertices have been visited

Repeat as long as queue is not empty

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 12 / 29

BFS with Queue and Adjacency Matrix

G = [[0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
[1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0]]

queue = []
visited = [0 for i in range(len(G))]

Consider first vertex in queue and print it

Add unvisited neighbors to queue

visited stores which vertices have been visited

Repeat as long as queue is not empty

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 12 / 29

BFS with Queue and Adjacency Matrix

G = [[0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
[1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0]]

queue = []
visited = [0 for i in range(len(G))]

Consider first vertex in queue and print it

Add unvisited neighbors to queue

visited stores which vertices have been visited

Repeat as long as queue is not empty

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 12 / 29

Exercise – BFS with Queue and Adjacency Matrix

Implement BFS

as a Python function

with a 2-dimensional list as parameter

using a queue

and an adjacency matrix

G = [[0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
[1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0]]

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 13 / 29

BFS with Queue and a Adjacency Matrix

def BFS(G):
queue = []
visited = [0 for i in range(len(G))]
queue.append(0)
visited[0] = 1
while len(queue) > 0:

current = queue.pop(0)
print(current, end=" ")
for j in range(len(G)):

if G[current][j] == 1 and visited[j] == 0:
visited[j] = 1
queue.append(j)

BFS([[0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
[1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0]])

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 14 / 29

Exercise – BFS with Queue and Adjacency List

Implement BFS

as a Python function

with a 2-dimensional list as parameter

using a queue

and an adjacency list

G = [[2,4,5], [2,3,5], [0,1,3,4,5], [1,2],
[0,2,6], [0,1,2], [4]]

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 15 / 29

BFS with Queue and a Adjacency List

def BFS(G):
queue = []
visited = [0 for i in range(len(G))]
queue.append(0)
visited[0] = 1
while len(queue) > 0:

current = queue.pop(0)
print(current, end=" ")
for j in G[current]:

if visited[j] == 0:
visited[j] = 1
queue.append(j)

BFS([[2,4,5], [2,3,5], [0,1,3,4,5], [1,2], [0,2,6], [0,1,2], [4]])

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 16 / 29

Depth-First Search
Iteratively with a Stack

DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

Stack:

Output:

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17 / 29

DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

Stack: v0

Output:

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17 / 29

DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

×

Stack:

Output: v0

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17 / 29

DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

×

Stack: v5 v4 v2

Output: v0

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17 / 29

DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

×

×

Stack: v5 v4

Output: v0 v2

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17 / 29

DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

×

×

Stack: v5 v4 v5 v4 v3 v1

Output: v0 v2

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17 / 29

DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

Stack: v5 v4 v5 v4 v3

Output: v0 v2 v1

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17 / 29

DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

Stack: v5 v4 v5 v4 v3 v5 v3

Output: v0 v2 v1

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17 / 29

DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

Stack: v5 v4 v5 v4 v3 v5

Output: v0 v2 v1 v3

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17 / 29

DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

Stack: v5 v4 v5 v4 v3

Output: v0 v2 v1 v3 v5

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17 / 29

DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

Stack: v5 v4 v5 v4

Output: v0 v2 v1 v3 v5

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17 / 29

DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

×

Stack: v5 v4 v5

Output: v0 v2 v1 v3 v5 v4

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17 / 29

DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

×

Stack: v5 v4 v5 v6

Output: v0 v2 v1 v3 v5 v4

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17 / 29

DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

×
×

Stack: v5 v4 v5

Output: v0 v2 v1 v3 v5 v4 v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17 / 29

DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

×
×

Stack: v5 v4

Output: v0 v2 v1 v3 v5 v4 v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17 / 29

DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

×
×

Stack: v5

Output: v0 v2 v1 v3 v5 v4 v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17 / 29

DFS with a Stack

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

×
×

Stack:

Output: v0 v2 v1 v3 v5 v4 v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17 / 29

DFS with Stack and Adjacency Matrix

G = [[0, 0, 1, 0, 1, 1, 0],
[0, 0, 1, 1, 0, 1, 0],
[1, 1, 0, 1, 1, 1, 0],
[0, 1, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 1],
[1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0]]

stack = []
visited = [0 for i in range(len(G))]

Consider first vertex in stack and print it
Add unvisited neighbors to stack
visited stores which vertices have been visited
Repeat as long as stack is not empty

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 18 / 29

DFS with Stack and Adjacency Matrix

G = [[0, 0, 1, 0, 1, 1, 0],
[0, 0, 1, 1, 0, 1, 0],
[1, 1, 0, 1, 1, 1, 0],
[0, 1, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 1],
[1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0]]

stack = []
visited = [0 for i in range(len(G))]

Consider first vertex in stack and print it

Add unvisited neighbors to stack
visited stores which vertices have been visited
Repeat as long as stack is not empty

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 18 / 29

DFS with Stack and Adjacency Matrix

G = [[0, 0, 1, 0, 1, 1, 0],
[0, 0, 1, 1, 0, 1, 0],
[1, 1, 0, 1, 1, 1, 0],
[0, 1, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 1],
[1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0]]

stack = []
visited = [0 for i in range(len(G))]

Consider first vertex in stack and print it
Add unvisited neighbors to stack

visited stores which vertices have been visited
Repeat as long as stack is not empty

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 18 / 29

DFS with Stack and Adjacency Matrix

G = [[0, 0, 1, 0, 1, 1, 0],
[0, 0, 1, 1, 0, 1, 0],
[1, 1, 0, 1, 1, 1, 0],
[0, 1, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 1],
[1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0]]

stack = []
visited = [0 for i in range(len(G))]

Consider first vertex in stack and print it
Add unvisited neighbors to stack
visited stores which vertices have been visited

Repeat as long as stack is not empty

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 18 / 29

DFS with Stack and Adjacency Matrix

G = [[0, 0, 1, 0, 1, 1, 0],
[0, 0, 1, 1, 0, 1, 0],
[1, 1, 0, 1, 1, 1, 0],
[0, 1, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 1],
[1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0]]

stack = []
visited = [0 for i in range(len(G))]

Consider first vertex in stack and print it
Add unvisited neighbors to stack
visited stores which vertices have been visited
Repeat as long as stack is not empty

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 18 / 29

Exercise – DFS with Stack and Adjacency Matrix

Implement DFS

as a Python function

with a 2-dimensional list as
parameter

using a stack

and an adjacency matrix

G = [[0,0,1,0,1,1,0], [0,0,1,1,0,1,0],
[1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
[1,0,1,0,0,0,1], [1,1,1,0,0,0,0],
[0,0,0,0,1,0,0]]

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 19 / 29

DFS with Stack and Adjacency Matrix

def DFS(G):
stack = []
visited = [0 for i in range(len(G))]
stack.append(0)
while len(stack) > 0:

current = stack.pop()
if visited[current] == 0:

visited[current] = 1
print(current, end=" ")
for j in reversed(range(len(G))):

if G[current][j] == 1 and visited[j] == 0:
stack.append(j)

DFS([[0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
[1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0]])

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 20 / 29

Exercise – DFS with Stack and Adjacency List

Implement DFS

as a Python function

with a 2-dimensional list as
parameter

using a stack

and an adjacency matrix

G = [[2,4,5], [2,3,5], [0,1,3,4,5], [1,2], [0,2,6], [0,1,2], [4]]

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 21 / 29

DFS with Stack and Adjacency List

def DFS(G):
stack = []
visited = [0 for i in range(len(G))]
stack.append(0)
while len(stack) > 0:

current = stack.pop()
if visited[current] == 0:

visited[current] = 1
print(current, end=" ")
for j in reversed(G[current]):

if visited[j] == 0:
stack.append(j)

DFS([[2,4,5], [2,3,5], [0,1,3,4,5], [1,2], [0,2,6], [0,1,2], [4]])

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 22 / 29

Depth-First Search
Recursively

Recursive DFS

Global list visited

Function DFS, which is called recursively
Two parameters

1. graph G
2. Start vertex current

visited = [0 for i in range(len(G))]
def DFS(G, current):

visited[current] = 1
print(current, end=" ")
for i in range(len(G)):

if G[current][i] == 1 and visited[i] == 0:
DFS(G, i)

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 23 / 29

Recursive DFS

Global list visited
Function DFS, which is called recursively

Two parameters

1. graph G
2. Start vertex current

visited = [0 for i in range(len(G))]
def DFS(G, current):

visited[current] = 1
print(current, end=" ")
for i in range(len(G)):

if G[current][i] == 1 and visited[i] == 0:
DFS(G, i)

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 23 / 29

Recursive DFS

Global list visited
Function DFS, which is called recursively
Two parameters

1. graph G
2. Start vertex current

visited = [0 for i in range(len(G))]
def DFS(G, current):

visited[current] = 1
print(current, end=" ")
for i in range(len(G)):

if G[current][i] == 1 and visited[i] == 0:
DFS(G, i)

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 23 / 29

Recursive DFS

Global list visited
Function DFS, which is called recursively
Two parameters

1. graph G
2. Start vertex current

visited = [0 for i in range(len(G))]
def DFS(G, current):

visited[current] = 1
print(current, end=" ")
for i in range(len(G)):

if G[current][i] == 1 and visited[i] == 0:
DFS(G, i)

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 23 / 29

Recursive DFS

v0
(root)

v1

v2

v3v4

v5

v6

Output:

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 24 / 29

Recursive DFS

v0
(root)

v1

v2

v3v4

v5

v6

×

DFS(G,0)

Output: v0

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 24 / 29

Recursive DFS

v0
(root)

v1

v2

v3v4

v5

v6

×

×

DFS(G,0) DFS(G,2)

Output: v0 v2

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 24 / 29

Recursive DFS

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

DFS(G,0) DFS(G,2) DFS(G,1)

Output: v0 v2 v1

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 24 / 29

Recursive DFS

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

DFS(G,0) DFS(G,2) DFS(G,1) DFS(G,3)

Output: v0 v2 v1 v3

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 24 / 29

Recursive DFS

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

DFS(G,0) DFS(G,2) DFS(G,1)

Output: v0 v2 v1 v3

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 24 / 29

Recursive DFS

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

DFS(G,0) DFS(G,2) DFS(G,1) DFS(G,5)

Output: v0 v2 v1 v3 v5

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 24 / 29

Recursive DFS

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

DFS(G,0) DFS(G,2) DFS(G,1)

Output: v0 v2 v1 v3 v5

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 24 / 29

Recursive DFS

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

DFS(G,0) DFS(G,2)

Output: v0 v2 v1 v3 v5

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 24 / 29

Recursive DFS

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

×

DFS(G,0) DFS(G,2) DFS(G,4)

Output: v0 v2 v1 v3 v5 v4

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 24 / 29

Recursive DFS

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

×
×

DFS(G,0) DFS(G,2) DFS(G,4) DFS(G,6)

Output: v0 v2 v1 v3 v5 v4 v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 24 / 29

Recursive DFS

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

×
×

DFS(G,0) DFS(G,2) DFS(G,4)

Output: v0 v2 v1 v3 v5 v4 v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 24 / 29

Recursive DFS

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

×
×

DFS(G,0) DFS(G,2)

Output: v0 v2 v1 v3 v5 v4 v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 24 / 29

Recursive DFS

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

×
×

DFS(G,0)

Output: v0 v2 v1 v3 v5 v4 v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 24 / 29

Recursive DFS

v0
(root)

v1

v2

v3v4

v5

v6

×

×

×

×

×

×
×

Output: v0 v2 v1 v3 v5 v4 v6

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 24 / 29

Recursive DFS
Applications

Applications

Is graph connected?

ï DFS from arbitrary vertex; are all vertices visited when done?

Is vertex w reachable from vertex v?

ï DFS from v; is w visited when done?

Is a graph 2-colorable?

ï DFS from arbitrary vertex and color levels differently

Does a graph contain a cycle?

ï DFS from arbitrary vertex; is there a back edge?

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 25 / 29

Applications

Is graph connected?

ï DFS from arbitrary vertex; are all vertices visited when done?

Is vertex w reachable from vertex v?

ï DFS from v; is w visited when done?

Is a graph 2-colorable?

ï DFS from arbitrary vertex and color levels differently

Does a graph contain a cycle?

ï DFS from arbitrary vertex; is there a back edge?

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 25 / 29

Applications

Is graph connected?

ï DFS from arbitrary vertex; are all vertices visited when done?

Is vertex w reachable from vertex v?

ï DFS from v; is w visited when done?

Is a graph 2-colorable?

ï DFS from arbitrary vertex and color levels differently

Does a graph contain a cycle?

ï DFS from arbitrary vertex; is there a back edge?

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 25 / 29

Applications

Is graph connected?

ï DFS from arbitrary vertex; are all vertices visited when done?

Is vertex w reachable from vertex v?

ï DFS from v; is w visited when done?

Is a graph 2-colorable?

ï DFS from arbitrary vertex and color levels differently

Does a graph contain a cycle?

ï DFS from arbitrary vertex; is there a back edge?

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 25 / 29

Applications

Is graph connected?

ï DFS from arbitrary vertex; are all vertices visited when done?

Is vertex w reachable from vertex v?

ï DFS from v; is w visited when done?

Is a graph 2-colorable?

ï DFS from arbitrary vertex and color levels differently

Does a graph contain a cycle?

ï DFS from arbitrary vertex; is there a back edge?

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 25 / 29

Applications

Is graph connected?

ï DFS from arbitrary vertex; are all vertices visited when done?

Is vertex w reachable from vertex v?

ï DFS from v; is w visited when done?

Is a graph 2-colorable?

ï DFS from arbitrary vertex and color levels differently

Does a graph contain a cycle?

ï DFS from arbitrary vertex; is there a back edge?

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 25 / 29

Applications

Is graph connected?

ï DFS from arbitrary vertex; are all vertices visited when done?

Is vertex w reachable from vertex v?

ï DFS from v; is w visited when done?

Is a graph 2-colorable?

ï DFS from arbitrary vertex and color levels differently

Does a graph contain a cycle?

ï DFS from arbitrary vertex; is there a back edge?

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 25 / 29

Applications

Is graph connected?

ï DFS from arbitrary vertex; are all vertices visited when done?

Is vertex w reachable from vertex v?

ï DFS from v; is w visited when done?

Is a graph 2-colorable?

ï DFS from arbitrary vertex and color levels differently

Does a graph contain a cycle?

ï DFS from arbitrary vertex; is there a back edge?
Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 25 / 29

Recursive DFS
Graph Coloring

Graph Coloring

Consider arbitrary graph

Can it be colored with two colors?

Connected vertices (“neighbors”) have different color

Compute recursively

List color instead of visited

0: not yet visited

1: colored green

2: colored red

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 26 / 29

Graph Coloring

Consider arbitrary graph

Can it be colored with two colors?

Connected vertices (“neighbors”) have different color

Compute recursively

List color instead of visited

0: not yet visited

1: colored green

2: colored red

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 26 / 29

Graph Coloring

Consider arbitrary graph

Can it be colored with two colors?

Connected vertices (“neighbors”) have different color

Compute recursively

v0

v1

v2
v3

v4

v5

List color instead of visited

0: not yet visited

1: colored green

2: colored red

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 26 / 29

Graph Coloring

Consider arbitrary graph

Can it be colored with two colors?

Connected vertices (“neighbors”) have different color

Compute recursively

v0

v1

v2
v3

v4

v5

List color instead of visited

0: not yet visited

1: colored green

2: colored red

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 26 / 29

Graph Coloring

Consider arbitrary graph

Can it be colored with two colors?

Connected vertices (“neighbors”) have different color

Compute recursively

v0

v1

v2
v3

v4

v5

List color instead of visited

0: not yet visited

1: colored green

2: colored red

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 26 / 29

Graph Coloring

Consider arbitrary graph

Can it be colored with two colors?

Connected vertices (“neighbors”) have different color

Compute recursively

v0

v1

v2
v3

v4

v5

List color instead of visited

0: not yet visited

1: colored green

2: colored red

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 26 / 29

Graph Coloring

Consider arbitrary graph

Can it be colored with two colors?

Connected vertices (“neighbors”) have different color

Compute recursively

v0

v1

v2
v3

v4

v5

List color instead of visited

0: not yet visited

1: colored green

2: colored red

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 26 / 29

Graph Coloring

Consider arbitrary graph

Can it be colored with two colors?

Connected vertices (“neighbors”) have different color

Compute recursively

v0

v1

v2
v3

v4

v5

List color instead of visited

0: not yet visited

1: colored green

2: colored red

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 26 / 29

Graph Coloring

We use recursive DFS

All neighbors of current get a color different from that of current

If neighbor already has same color as current, coloring is invalid

def coloring(G, current):
for i in range(len(G)):

if G[current][i] == 1 and color[i] == 0:
color[i] = 3 - color[current]
coloring(G, i)

elif G[current][i] == 1 and color[i] == color[current]:
print(”Coloring impossible.”)
return

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 27 / 29

Graph Coloring

We use recursive DFS

All neighbors of current get a color different from that of current

If neighbor already has same color as current, coloring is invalid

def coloring(G, current):
for i in range(len(G)):

if G[current][i] == 1 and color[i] == 0:
color[i] = 3 - color[current]
coloring(G, i)

elif G[current][i] == 1 and color[i] == color[current]:
print(”Coloring impossible.”)
return

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 27 / 29

Graph Coloring

We use recursive DFS

All neighbors of current get a color different from that of current

If neighbor already has same color as current, coloring is invalid

def coloring(G, current):
for i in range(len(G)):

if G[current][i] == 1 and color[i] == 0:
color[i] = 3 - color[current]
coloring(G, i)

elif G[current][i] == 1 and color[i] == color[current]:
print(”Coloring impossible.”)
return

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 27 / 29

Recursive DFS
Finding Cycles

Finding Cycles

v0
(Wurzel)

v1

v2

v3v4

v5

v6

DFS computes this

Traverse graph as before

Is there an edge to a vertex we already visited?

Back-Edge

Attention: Single edge is not a cycle

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 28 / 29

Finding Cycles

v0
(Wurzel)

v1

v2

v3v4

v5

v6

DFS computes this

Traverse graph as before

Is there an edge to a vertex we already visited?

Back-Edge

Attention: Single edge is not a cycle

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 28 / 29

Finding Cycles

v0
(Wurzel)

v1

v2

v3v4

v5

v6

DFS computes this

Traverse graph as before

Is there an edge to a vertex we already visited?

Back-Edge

Attention: Single edge is not a cycle

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 28 / 29

Finding Cycles

v0
(Wurzel)

v1

v2

v3v4

v5

v6

DFS computes this

Traverse graph as before

Is there an edge to a vertex we already visited?

Back-Edge

Attention: Single edge is not a cycle

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 28 / 29

Finding Cycles

v0
(Wurzel)

v1

v2

v3v4

v5

v6

DFS computes this

Traverse graph as before

Is there an edge to a vertex we already visited?

Back-Edge

Attention: Single edge is not a cycle

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 28 / 29

Finding Cycles

v0
(Wurzel)

v1

v2

v3v4

v5

v6

DFS computes this

Traverse graph as before

Is there an edge to a vertex we already visited?

Back-Edge

Attention: Single edge is not a cycle

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 28 / 29

Finding Cycles

v0
(Wurzel)

v1

v2

v3v4

v5

v6

DFS computes this

Traverse graph as before

Is there an edge to a vertex we already visited?

Back-Edge

Attention: Single edge is not a cycle
Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 28 / 29

Finding Cycles

Compute whether graph contains a cycle

Extend DFS such that parent is considered

def find_cycle(G, current, parent):
visited[current] = 1
print(current, end=" ")
for i in range(len(G)):

if G[current][i] == 1 and visited[i] == 0:
find_cycle(G, i, current)

elif G[current][i] == 1 and visited[i] == 1 and i != parent:
print(”Found cycle.”)
return

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 29 / 29

Finding Cycles

Compute whether graph contains a cycle

Extend DFS such that parent is considered

def find_cycle(G, current, parent):
visited[current] = 1
print(current, end=" ")
for i in range(len(G)):

if G[current][i] == 1 and visited[i] == 0:
find_cycle(G, i, current)

elif G[current][i] == 1 and visited[i] == 1 and i != parent:
print(”Found cycle.”)
return

Programming and Problem-Solving – Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 29 / 29

Thanks for your
attention

	Graphs
	Searching in Networks
	On the Computer

	Graph Algorithms
	Breadth-First and Depth-First Search
	Breadth-First Search
	Depth-First Search
	Recursive DFS
	Applications
	Graph Coloring
	Finding Cycles

