
Departement Informatik

Programming
and Problem-Solving
Object Orientation

Dennis Komm

Spring 2021 – May 20, 2021

Classes and Objects
Pyhon Classes

Classes – Technical

A class is an entity with a name that contains data and functionality

A class defines a new data type

Data: stored variables,
called attributes

Functionality: consists of functions,
called methods

Classes are (often) separate .py files with the
same name

Name

attribute1

attribute2

· · ·

method1

method2

· · ·

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 1 / 28

Classes – Technical

A class is an entity with a name that contains data and functionality

A class defines a new data type

Data: stored variables,
called attributes

Functionality: consists of functions,
called methods

Classes are (often) separate .py files with the
same name

Name

attribute1

attribute2

· · ·

method1

method2

· · ·

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 1 / 28

Classes – Technical

A class is an entity with a name that contains data and functionality

A class defines a new data type

Data: stored variables,
called attributes

Functionality: consists of functions,
called methods

Classes are (often) separate .py files with the
same name

Name

attribute1

attribute2

· · ·

method1

method2

· · ·

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 1 / 28

Classes – Conceptual

Classes facilitate to bundle the data that belongs together contentwise

Classes provide functionality that allows to perform queries based on the
data or operations on the data

Example

Coherent measurements

Functions to read out data

Functions to modify data

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 2 / 28

Classes – Conceptual

Classes facilitate to bundle the data that belongs together contentwise

Classes provide functionality that allows to perform queries based on the
data or operations on the data

Example

Coherent measurements

Functions to read out data

Functions to modify data

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 2 / 28

Classes – Conceptual

Classes facilitate to bundle the data that belongs together contentwise

Classes provide functionality that allows to perform queries based on the
data or operations on the data

Example

Coherent measurements

Functions to read out data

Functions to modify data

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 2 / 28

Example – Earthquake Catalog

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 3 / 28

Example – Earthquake Catalog

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 3 / 28

Class for Measurement – First Try

Python Class Measurement

class Measurement:
date = ""
time = ""

latitude = 0
longitude = 0

magnitude = 0

Name of the class / data type

Attributes according to CSV header

Measurement

date (Empty string λ)

time (Empty string λ)

latitude (Number 0)

longitude (Number 0)

magnitude (Number 0)

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 4 / 28

Class for Measurement – First Try

Python Class Measurement

class Measurement:
date = ""
time = ""

latitude = 0
longitude = 0

magnitude = 0

Name of the class / data type

Attributes according to CSV header

Measurement

date (Empty string λ)

time (Empty string λ)

latitude (Number 0)

longitude (Number 0)

magnitude (Number 0)

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 4 / 28

Class for Measurement – First Try

Python Class Measurement

class Measurement:
date = ""
time = ""

latitude = 0
longitude = 0

magnitude = 0

Name of the class / data type

Attributes according to CSV header

Measurement

date (Empty string λ)

time (Empty string λ)

latitude (Number 0)

longitude (Number 0)

magnitude (Number 0)

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 4 / 28

Class for Measurement – First Try

Python Class Measurement

class Measurement:
date = ""
time = ""

latitude = 0
longitude = 0

magnitude = 0

Name of the class / data type

Attributes according to CSV header

Measurement

date (Empty string λ)

time (Empty string λ)

latitude (Number 0)

longitude (Number 0)

magnitude (Number 0)

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 4 / 28

Class for Measurement – First Try

Python Class Measurement

class Measurement:
date = ""
time = ""

latitude = 0
longitude = 0

magnitude = 0

Name of the class / data type

Attributes according to CSV header

Measurement

date (Empty string λ)

time (Empty string λ)

latitude (Number 0)

longitude (Number 0)

magnitude (Number 0)

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 4 / 28

Classes and Objects
Python Objects

Objects – Instances of Classes

Classes describe the structure of objects, like a blueprint
ï Comparable with the header of the CSV file

Objects are instantiated according to the blueprint and will contain values
ï Comparable with the individual data rows in the CSV file

Example

Variables to store parameters of measurement

Function to display measurements lucidly

Function to compare measurements

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 5 / 28

Objects – Instances of Classes

Classes describe the structure of objects, like a blueprint
ï Comparable with the header of the CSV file

Objects are instantiated according to the blueprint and will contain values
ï Comparable with the individual data rows in the CSV file

Example

Variables to store parameters of measurement

Function to display measurements lucidly

Function to compare measurements

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 5 / 28

Objects – Instances of Classes

Classes describe the structure of objects, like a blueprint
ï Comparable with the header of the CSV file

Objects are instantiated according to the blueprint and will contain values
ï Comparable with the individual data rows in the CSV file

Example

Variables to store parameters of measurement

Function to display measurements lucidly

Function to compare measurements

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 5 / 28

Object Instantiation

Objects are instances of classes

w = Measurement()

Instantiation of an object of
type “Measurement”

date

λtime

0latitude

0longitude

0magnitude

Measurement w

w.date = "2001/01/03"

Dot notation; instance.attribute

w.time = "11:11:20.4"
w.latitude = 46.446
w.longitude = 9.982
w.magnitude = 2.36

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 6 / 28

Object Instantiation

Objects are instances of classes

w = Measurement()

Instantiation of an object of
type “Measurement”

λdate

λtime

0latitude

0longitude

0magnitude

Measurement w

w.date = "2001/01/03"

Dot notation; instance.attribute

w.time = "11:11:20.4"
w.latitude = 46.446
w.longitude = 9.982
w.magnitude = 2.36

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 6 / 28

Object Instantiation

Objects are instances of classes

w = Measurement()

Instantiation of an object of
type “Measurement”

λdate

λtime

0latitude

0longitude

0magnitude

Measurement w

w.date = "2001/01/03"

Dot notation; instance.attribute

w.time = "11:11:20.4"
w.latitude = 46.446
w.longitude = 9.982
w.magnitude = 2.36

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 6 / 28

Object Instantiation

Objects are instances of classes

w = Measurement()

Instantiation of an object of
type “Measurement”

λdate

λtime

0latitude

0longitude

0magnitude

Measurement w

w.date = "2001/01/03"

Dot notation; instance.attribute

w.time = "11:11:20.4"
w.latitude = 46.446
w.longitude = 9.982
w.magnitude = 2.36

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 6 / 28

Object Instantiation

Objects are instances of classes

w = Measurement()

Instantiation of an object of
type “Measurement”

2001/01/03date

λtime

0latitude

0longitude

0magnitude

Measurement w

w.date = "2001/01/03"

Dot notation; instance.attribute

w.time = "11:11:20.4"
w.latitude = 46.446
w.longitude = 9.982
w.magnitude = 2.36

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 6 / 28

Object Instantiation

Objects are instances of classes

w = Measurement()

Instantiation of an object of
type “Measurement”

2001/01/03date

λtime

0latitude

0longitude

0magnitude

Measurement w

w.date = "2001/01/03"

Dot notation; instance.attribute

w.time = "11:11:20.4"
w.latitude = 46.446
w.longitude = 9.982
w.magnitude = 2.36

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 6 / 28

Object Instantiation

Objects are instances of classes

w = Measurement()

Instantiation of an object of
type “Measurement”

2001/01/03date

11:11:20.4time

0latitude

0longitude

0magnitude

Measurement w

w.date = "2001/01/03"

Dot notation; instance.attribute

w.time = "11:11:20.4"

w.latitude = 46.446
w.longitude = 9.982
w.magnitude = 2.36

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 6 / 28

Object Instantiation

Objects are instances of classes

w = Measurement()

Instantiation of an object of
type “Measurement”

2001/01/03date

11:11:20.4time

46.446latitude

0longitude

0magnitude

Measurement w

w.date = "2001/01/03"

Dot notation; instance.attribute

w.time = "11:11:20.4"
w.latitude = 46.446

w.longitude = 9.982
w.magnitude = 2.36

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 6 / 28

Object Instantiation

Objects are instances of classes

w = Measurement()

Instantiation of an object of
type “Measurement”

2001/01/03date

11:11:20.4time

46.446latitude

9.982longitude

0magnitude

Measurement w

w.date = "2001/01/03"

Dot notation; instance.attribute

w.time = "11:11:20.4"
w.latitude = 46.446
w.longitude = 9.982

w.magnitude = 2.36

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 6 / 28

Object Instantiation

Objects are instances of classes

w = Measurement()

Instantiation of an object of
type “Measurement”

2001/01/03date

11:11:20.4time

46.446latitude

9.982longitude

2.36magnitude

Measurement w

w.date = "2001/01/03"

Dot notation; instance.attribute

w.time = "11:11:20.4"
w.latitude = 46.446
w.longitude = 9.982
w.magnitude = 2.36

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 6 / 28

Class for Measurement – Second Try

Measurement

date

time

latitude

longitude

magnitude

Coordinate

latitude

longitude

distance(self, other)

Method to use on objects of
type Coordinate

Better structuring

Latitude and longitude belong in their
own data type Coordinate

Object of type Measurement has an
attribute of type Coordinate

“Composition”

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 7 / 28

Class for Measurement – Second Try

Measurement

date

time

latitude

longitude

magnitude

Coordinate

latitude

longitude

distance(self, other)

Method to use on objects of
type Coordinate

Better structuring

Latitude and longitude belong in their
own data type Coordinate

Object of type Measurement has an
attribute of type Coordinate

“Composition”

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 7 / 28

Class for Measurement – Second Try

Measurement

date

time

coordinate

magnitude

Coordinate

latitude

longitude

distance(self, other)

Method to use on objects of
type Coordinate

Better structuring

Latitude and longitude belong in their
own data type Coordinate

Object of type Measurement has an
attribute of type Coordinate

“Composition”

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 7 / 28

Class for Measurement – Second Try

Measurement

date

time

coordinate

magnitude

Coordinate

latitude

longitude

distance(self, other)

Method to use on objects of
type Coordinate

Better structuring

Latitude and longitude belong in their
own data type Coordinate

Object of type Measurement has an
attribute of type Coordinate

“Composition”

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 7 / 28

Methods

Methods are function that are defined within a class

The first parameter is always self, which allows to refer to the current
instance

Again dot notation; Call analogously to append() for lists

Pre-defined functions with special functionality

Function __str__ defines what happens when instance is given to print()

class Coordinate:
def __str__(self):

return "Dies ist eine Koordinate"

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 8 / 28

Methods

Methods are function that are defined within a class

The first parameter is always self, which allows to refer to the current
instance

Again dot notation; Call analogously to append() for lists

Pre-defined functions with special functionality

Function __str__ defines what happens when instance is given to print()

class Coordinate:
def __str__(self):

return "Dies ist eine Koordinate"

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 8 / 28

Methods

Methods are function that are defined within a class

The first parameter is always self, which allows to refer to the current
instance

Again dot notation; Call analogously to append() for lists

Pre-defined functions with special functionality

Function __str__ defines what happens when instance is given to print()

class Coordinate:
def __str__(self):

return "Dies ist eine Koordinate"

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 8 / 28

Methods

Methods are function that are defined within a class

The first parameter is always self, which allows to refer to the current
instance

Again dot notation; Call analogously to append() for lists

Pre-defined functions with special functionality

Function __str__ defines what happens when instance is given to print()

class Coordinate:
def __str__(self):

return "Dies ist eine Koordinate"

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 8 / 28

Methods

Methods are function that are defined within a class

The first parameter is always self, which allows to refer to the current
instance

Again dot notation; Call analogously to append() for lists

Pre-defined functions with special functionality

Function __str__ defines what happens when instance is given to print()

class Coordinate:
def __str__(self):

return "Dies ist eine Koordinate"

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 8 / 28

Methods in Classes

from math import *

class Coordinate:

latitude = 0
longitude = 0

def __str__(self):
return "Dies ist eine Koordinate"

Computes the distance to the provided coordinate ’other’ in kilometers
def distance(self, other):

dlat = self.latitude - other.latitude

dlon = self.longitude - other.longitude
Hav = sin(dlat / 2)**2 + cos(self.latitude) * cos(other.latitude) * sin(dlon / 2)**2
return 6373 * 2 * atan2(sqrt(Hav), sqrt(1 - Hav))

First parameter is always selfEnables to access the current object from
within a method of that classHaversine formula

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 9 / 28

Methods in Classes

from math import *

class Coordinate:

latitude = 0
longitude = 0

def __str__(self):
return "Dies ist eine Koordinate"

Computes the distance to the provided coordinate ’other’ in kilometers
def distance(self, other):

dlat = self.latitude - other.latitude

dlon = self.longitude - other.longitude
Hav = sin(dlat / 2)**2 + cos(self.latitude) * cos(other.latitude) * sin(dlon / 2)**2
return 6373 * 2 * atan2(sqrt(Hav), sqrt(1 - Hav))

First parameter is always self

Enables to access the current object from
within a method of that classHaversine formula

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 9 / 28

Methods in Classes

from math import *

class Coordinate:

latitude = 0
longitude = 0

def __str__(self):
return "Dies ist eine Koordinate"

Computes the distance to the provided coordinate ’other’ in kilometers
def distance(self, other):

dlat = self.latitude - other.latitude

dlon = self.longitude - other.longitude
Hav = sin(dlat / 2)**2 + cos(self.latitude) * cos(other.latitude) * sin(dlon / 2)**2
return 6373 * 2 * atan2(sqrt(Hav), sqrt(1 - Hav))

First parameter is always self

Enables to access the current object from
within a method of that class

Haversine formula

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 9 / 28

Methods in Classes

from math import *

class Coordinate:

latitude = 0
longitude = 0

def __str__(self):
return "Dies ist eine Koordinate"

Computes the distance to the provided coordinate ’other’ in kilometers
def distance(self, other):

dlat = self.latitude - other.latitude

dlon = self.longitude - other.longitude
Hav = sin(dlat / 2)**2 + cos(self.latitude) * cos(other.latitude) * sin(dlon / 2)**2
return 6373 * 2 * atan2(sqrt(Hav), sqrt(1 - Hav))

First parameter is always selfEnables to access the current object from
within a method of that class

Haversine formula

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 9 / 28

Classes and Objects
Constructors

Constructors

Creating a Coordinate needs three steps

k = Coordinate()
k.latitude = 45.97
k.longitude = 7.65

Constructors facilitate to easily set the initial values of a newly created
object

k = Coordinate(45.97, 7.65)

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 10 / 28

Constructors

Creating a Coordinate needs three steps

k = Coordinate()
k.latitude = 45.97
k.longitude = 7.65

Constructors facilitate to easily set the initial values of a newly created
object

k = Coordinate(45.97, 7.65)

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 10 / 28

Constructors

Creating a Coordinate needs three steps

k = Coordinate()
k.latitude = 45.97
k.longitude = 7.65

Constructors facilitate to easily set the initial values of a newly created
object

k = Coordinate(45.97, 7.65)

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 10 / 28

Constructors

from math import *

class Coordinate:

def __init__(self, deg_latitude, deg_longitude):
self.latitude = radians(deg_latitude) # Conversion from degree measure
self.longitude = radians(deg_longitude) # to radians measure

def distance(self, other):
dlat = self.latitude - other.latitude
dlon = self.longitude - other.longitude
Hav = sin(dlat / 2)**2 + cos(self.latitude) * cos(other.latitude) * sin(dlon / 2)**2
return 6373 * 2 * atan2(sqrt(Hav), sqrt(1 - Hav))

zurich = Coordinate(47.36667, 8.55)
brisbane = Coordinate(-27.46794, 153.02809)
print(int(zurich.distance(brisbane)))

Is executed when object is initialized;
parameter values are passed

to this function

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 11 / 28

Constructors

from math import *

class Coordinate:

def __init__(self, deg_latitude, deg_longitude):
self.latitude = radians(deg_latitude) # Conversion from degree measure
self.longitude = radians(deg_longitude) # to radians measure

def distance(self, other):
dlat = self.latitude - other.latitude
dlon = self.longitude - other.longitude
Hav = sin(dlat / 2)**2 + cos(self.latitude) * cos(other.latitude) * sin(dlon / 2)**2
return 6373 * 2 * atan2(sqrt(Hav), sqrt(1 - Hav))

zurich = Coordinate(47.36667, 8.55)
brisbane = Coordinate(-27.46794, 153.02809)
print(int(zurich.distance(brisbane)))

Is executed when object is initialized;
parameter values are passed

to this function

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 11 / 28

Constructors

from math import *

class Coordinate:

def __init__(self, deg_latitude, deg_longitude):
self.latitude = radians(deg_latitude) # Conversion from degree measure
self.longitude = radians(deg_longitude) # to radians measure

def distance(self, other):
dlat = self.latitude - other.latitude
dlon = self.longitude - other.longitude
Hav = sin(dlat / 2)**2 + cos(self.latitude) * cos(other.latitude) * sin(dlon / 2)**2
return 6373 * 2 * atan2(sqrt(Hav), sqrt(1 - Hav))

zurich = Coordinate(47.36667, 8.55)
brisbane = Coordinate(-27.46794, 153.02809)
print(int(zurich.distance(brisbane)))

Is executed when object is initialized;
parameter values are passed

to this function

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 11 / 28

Managing an Earthquake Database

Managing an Earthquake Database

1. Implement data structure to represent earthquakes

2. Read in CSV file, create objects from the lines, insert them into a dictionary

3. Implement user interface to query data

30274940.00000; 2001/01/20 15:49:10; certain; earthquake; 45.856; 8.142; ”SED (ECOS-09)”; 13.; 2.56; 2.6;

Of interest are

Index 0: Keys for dictionary; is converted to natural number

Index 1: Date and time; is split at space

Index 4: Longitude; is converted to floating-point number

Index 5: Latitude; is converted to floating-point number

Index 9: Magnitude on Richter scale; is converted to floating-point number

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 12 / 28

Managing an Earthquake Database

1. Implement data structure to represent earthquakes

2. Read in CSV file, create objects from the lines, insert them into a dictionary

3. Implement user interface to query data

30274940.00000; 2001/01/20 15:49:10; certain; earthquake; 45.856; 8.142; ”SED (ECOS-09)”; 13.; 2.56; 2.6;

Of interest are

Index 0: Keys for dictionary; is converted to natural number

Index 1: Date and time; is split at space

Index 4: Longitude; is converted to floating-point number

Index 5: Latitude; is converted to floating-point number

Index 9: Magnitude on Richter scale; is converted to floating-point number

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 12 / 28

Managing an Earthquake Database

1. Implement data structure to represent earthquakes

2. Read in CSV file, create objects from the lines, insert them into a dictionary

3. Implement user interface to query data

30274940.00000; 2001/01/20 15:49:10; certain; earthquake; 45.856; 8.142; ”SED (ECOS-09)”; 13.; 2.56; 2.6;

Of interest are

Index 0: Keys for dictionary; is converted to natural number

Index 1: Date and time; is split at space

Index 4: Longitude; is converted to floating-point number

Index 5: Latitude; is converted to floating-point number

Index 9: Magnitude on Richter scale; is converted to floating-point number
Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 12 / 28

Managing an Earthquake Database

1. Implement data structure to represent earthquakes

class Coordinate:
def __init__(self, deg_latitude, deg_longitude):

self.latitude = radians(deg_latitude)
self.longitude = radians(deg_longitude)

def __str__(self):
return str(self.latitude) + ", " + str(self.longitude)

class Measurement:
def __init__(self, date, time, magnitude, coordinate):

self.date = date
self.time = time
self.magnitude = magnitude
self.coordinate = coordinate

def __str__(self):
return "Erdbeben der Stärke " + str(self.magnitude) + ", gemessen am " \

+ str(self.date) + " um " + str(self.time) + " an Position " + str(self.coordinate)

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 13 / 28

Managing an Earthquake Database

1. Implement data structure to represent earthquakes
class Coordinate:

def __init__(self, deg_latitude, deg_longitude):
self.latitude = radians(deg_latitude)
self.longitude = radians(deg_longitude)

def __str__(self):
return str(self.latitude) + ", " + str(self.longitude)

class Measurement:
def __init__(self, date, time, magnitude, coordinate):

self.date = date
self.time = time
self.magnitude = magnitude
self.coordinate = coordinate

def __str__(self):
return "Erdbeben der Stärke " + str(self.magnitude) + ", gemessen am " \

+ str(self.date) + " um " + str(self.time) + " an Position " + str(self.coordinate)

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 13 / 28

Managing an Earthquake Database

2. Read in CSV, create objects from the lines, insert them into a dictionary

def read_measurements(filename):

Datei Zeile für Zeile einlesen
with open(filename) as file:

lines = file.read().splitlines()
measurements = {}

Alle Zeilen nacheinander verarbeiten
for i in range(1, len(lines)):

tmp = lines[i].split(";")
tmp_coord = Coordinate(float(tmp[4]), float(tmp[5]))
tmp_date_time = tmp[1].split(" ")
tmp_magnitude = float(tmp[9])
tmp_meas = Measurement(tmp_date_time[1], tmp_date_time[2], tmp_magnitude, tmp_coord)
measurements[int(float(tmp[0]))] = tmp_meas

return measurements

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 14 / 28

Managing an Earthquake Database

2. Read in CSV, create objects from the lines, insert them into a dictionary
def read_measurements(filename):

Datei Zeile für Zeile einlesen
with open(filename) as file:

lines = file.read().splitlines()
measurements = {}

Alle Zeilen nacheinander verarbeiten
for i in range(1, len(lines)):

tmp = lines[i].split(";")
tmp_coord = Coordinate(float(tmp[4]), float(tmp[5]))
tmp_date_time = tmp[1].split(" ")
tmp_magnitude = float(tmp[9])
tmp_meas = Measurement(tmp_date_time[1], tmp_date_time[2], tmp_magnitude, tmp_coord)
measurements[int(float(tmp[0]))] = tmp_meas

return measurements

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 14 / 28

Managing an Earthquake Database

3. Implement user interface to query data

earthquakes = read_measurements("earthquakes.csv")

while True:
user_input = input("Geben Sie eine Erdbeben-ID ein (Abbrechen mit exit): ")
if user_input == "exit":

print("Programm beendet.")
break

else:
quake_id = int(user_input)
if quake_id not in earthquakes:

print("Erdbeben-ID nicht gefunden.")
else:

print(earthquakes[quake_id])

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 15 / 28

Managing an Earthquake Database

3. Implement user interface to query data

earthquakes = read_measurements("earthquakes.csv")

while True:
user_input = input("Geben Sie eine Erdbeben-ID ein (Abbrechen mit exit): ")
if user_input == "exit":

print("Programm beendet.")
break

else:
quake_id = int(user_input)
if quake_id not in earthquakes:

print("Erdbeben-ID nicht gefunden.")
else:

print(earthquakes[quake_id])

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 15 / 28

Managing a Student Database

Exercise – Managing a Student Database

Write a class the represents students with
attributes

student_id
name
grade

Enable the user to create student objects
using input()

Save them into a dictionary

Output every student using a for ... in
loop

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 16 / 28

Exercise – Managing a Student Database

class Student:

def __init__(self, s_id, name, grade):
self.s_id = s_id
self.name = name
self.grade = grade

def __str__(self):
return "Die / Der Studierende "

+ str(self.name)
+ " (" + str(self.s_id)
+ ") hat die Note "
+ str(self.grade)
+ " erhalten."

students = {}

while True:
user_input = input("Weitere Daten eingeben? [J/N]")
if user_input == "J":

tmp_id = int(input(" ID: "))
tmp_name = input(" Name: ")
tmp_grade = float(input(" Note: "))
tmp_student = Student(tmp_id, tmp_name, tmp_grade)
students[tmp_id] = tmp_student

elif user_input == "N":
print("Programm beendet.")
break

else:
print("Ungültige Eingabe.")

for id in students:
print(students[id])

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 17 / 28

Heaps

Lists and Dictonaries

Complexity on lists and dictionaries with n elements

Lists

Access with [] O(1)
Insertion with append() O(1)
Insertion with insert() O(n)

Removal with pop(0) O(1)
Removal with pop() O(1)

Find minimum O(n)

Dictionaries

Access with [] O(1)
Insertion with [] O(1)

Find minimum O(n)

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 18 / 28

Heaps

Design data structure for special usage
ï Minimum can be computed efficiently (Using lists and dictionaries O(n))

Data structure with
the following operations

Insertion

O(log n)

Get minimum

O(1)

Pop minimum

O(log n)

Use a “tree”

Embed this tree into list

Root (first element of list) contains
smallest element

After removing an element, tree
needs to be rearranged

When inserting element, tree needs
to be rearranged as well

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 19 / 28

Heaps

Design data structure for special usage
ï Minimum can be computed efficiently (Using lists and dictionaries O(n))

Data structure with
the following operations

Insertion O(log n)
Get minimum O(1)
Pop minimum O(log n)

Use a “tree”

Embed this tree into list

Root (first element of list) contains
smallest element

After removing an element, tree
needs to be rearranged

When inserting element, tree needs
to be rearranged as well

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 19 / 28

Heaps

Design data structure for special usage
ï Minimum can be computed efficiently (Using lists and dictionaries O(n))

Data structure with
the following operations

Insertion O(log n)
Get minimum O(1)
Pop minimum O(log n)

Use a “tree”

Embed this tree into list

Root (first element of list) contains
smallest element

After removing an element, tree
needs to be rearranged

When inserting element, tree needs
to be rearranged as well

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 19 / 28

Heaps

1

2 4

17 9 25 36

42 100

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 20 / 28

Heaps

1

2 4

17 9 25 36

42 100 � 2 is parent of 17 and 9

� 17 is left child of 2
� 9 is right child of 2

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 20 / 28

Heaps

1

2 4

17 9 25 36

42 100 Children always have larger
values than their parents

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 20 / 28

Heaps

1

2 4

17 9 25 36

42 100
Enumerate nodes of the tree from

left to right, level by level,
and write values into a list in that order

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 20 / 28

Heaps

1

2 4

17 9 25 36

42 100 1 2 4 17 9 25 36 42 100

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 20 / 28

Heaps

1

2 4

17 9 25 36

42 100 1 2 4 17 9 25 36 42 100

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 20 / 28

Heaps

1

22 4

17 9 25 36

42 100 1 2 4 17 9 25 36 42 100

� The left child of index 0 has index 1
� The right child of index 0 has index 2

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 20 / 28

Heaps

1

2 4

17 9 25 36

42 100 1 2 4 17 9 25 36 42 100

� The left child of index 1 has index 3
� The right child of index 1 has index 4

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 20 / 28

Heaps

1

2 4

17 9 25 36

42 100 1 2 4 17 9 25 36 42 100

� The left child of index 2 has index 5
� The right child of index 2 has index 6

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 20 / 28

Heaps

1

2 4

17 9 25 36

42 100 1 2 4 17 9 25 36 42 100

� The left child of index 3 has index 7
� The right child of index 3 has index 8

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 20 / 28

Heaps

1

2 4

17 9 25 36

42 100 1 2 4 17 9 25 36 42 100

� The left child of index i has index 2i+ 1
� The right child of index i has index 2i+ 2

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 20 / 28

Heaps

Create class Heap with functions

add(self, x) Insert element in O(log n)
getmin(self) Output element in O(1)
popmin(self) Remove minimum in O(log n)

class Heap:
...
def add(self, x):

...
def getmin(self):

...
def popmin(self):

...

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 21 / 28

Heaps

Create class Heap with functions

add(self, x) Insert element in O(log n)
getmin(self) Output element in O(1)
popmin(self) Remove minimum in O(log n)

class Heap:
...
def add(self, x):

...
def getmin(self):

...
def popmin(self):

...

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 21 / 28

Heaps – Initialization

Constructor creates list
def __init__(self):

self.data = []

Create helper functions; the underscore at the beginning indicates that they
are for “internal use” only

def _swap(self, i, j):
self.data[i], self.data[j] = self.data[j], self.data[i]

def _parent(self, i):
return (i-1) // 2

def _left_child(self, i):
return 2 * i + 1

def _right_child(self, i):
return 2 * i + 2

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 22 / 28

Heaps – Initialization

Constructor creates list
def __init__(self):

self.data = []

Create helper functions; the underscore at the beginning indicates that they
are for “internal use” only

def _swap(self, i, j):
self.data[i], self.data[j] = self.data[j], self.data[i]

def _parent(self, i):
return (i-1) // 2

def _left_child(self, i):
return 2 * i + 1

def _right_child(self, i):
return 2 * i + 2

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 22 / 28

Heaps – Insert Element

add(self, x) – Insert element x

Append x at the end

Now consider last position of heap

If this element is smaller than its parent, swap them

Now consider position of parent and repeat

getmin(self) – Return smallest element

Return the first element of list data

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 23 / 28

Heaps – Insert Element

add(self, x) – Insert element x

Append x at the end

Now consider last position of heap

If this element is smaller than its parent, swap them

Now consider position of parent and repeat

getmin(self) – Return smallest element

Return the first element of list data

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 23 / 28

Heaps – Insert Element

add(self, x) – Insert element x

Append x at the end

Now consider last position of heap

If this element is smaller than its parent, swap them

Now consider position of parent and repeat

getmin(self) – Return smallest element

Return the first element of list data

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 23 / 28

Heaps – Insert Element

add(self, x) – Insert element x

Append x at the end

Now consider last position of heap

If this element is smaller than its parent, swap them

Now consider position of parent and repeat

getmin(self) – Return smallest element

Return the first element of list data

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 23 / 28

Heaps – Insert Element

def add(self, x):
self.data.append(x)
a = len(self.data) - 1
while a > 0 and self.data[a] < self.data[self._parent(a)]:

self._swap(a, self._parent(a))
a = self._parent(a)

def getmin(self):
return self.data[0]

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 24 / 28

Heaps – Insert Element

def add(self, x):
self.data.append(x)
a = len(self.data) - 1
while a > 0 and self.data[a] < self.data[self._parent(a)]:

self._swap(a, self._parent(a))
a = self._parent(a)

def getmin(self):
return self.data[0]

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 24 / 28

Heaps – Remove Minimum

pop_min(self) – Remove smallest element

The element is located at the root, that is, the first position of the heap

We cannot simply remove it and leave the remainder

Overwrite first element with last element and remove the latter using
data.pop()

Now there is a wrong element located at the root

Reorder tree from top to bottom

To this end, swap root with larger child

Now look at position of child and repeat

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 25 / 28

Heaps – Remove Minimum

pop_min(self) – Remove smallest element

The element is located at the root, that is, the first position of the heap

We cannot simply remove it and leave the remainder

Overwrite first element with last element and remove the latter using
data.pop()

Now there is a wrong element located at the root

Reorder tree from top to bottom

To this end, swap root with larger child

Now look at position of child and repeat

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 25 / 28

Heaps – Remove Minimum

pop_min(self) – Remove smallest element

The element is located at the root, that is, the first position of the heap

We cannot simply remove it and leave the remainder

Overwrite first element with last element and remove the latter using
data.pop()

Now there is a wrong element located at the root

Reorder tree from top to bottom

To this end, swap root with larger child

Now look at position of child and repeat
Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 25 / 28

Heaps – Remove Minimum

def popmin(self):
self.data[0] = self.data[-1]
self.data.pop()
a = 0
while True:

m = a
if self._left_child(a) < len(self.data) and \

self.data[self._left_child(a)] < self.data[m]:
m = self._left_child(a)

if self._right_child(a) < len(self.data) and \
self.data[self._right_child(a)] < self.data[m]:
m = self._right_child(a)

if m > a:
self._swap(a, m)
a = m

else:
return

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 26 / 28

Heapsort
Sorting with Heaps

Heaps – Complexity

Suppose there are n elements in the heap

Then the heap has roughly height log n

add() only considers one node per level

pop_min() considers only two nodes per level

Both functions have a complexity in O(log n)

With this, n elements can be inserted in O(n log n)
Then, the respective minimum can be extracted n times in O(n log n)

Heapsort: With this strategy we can sort in O(n log n)

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 27 / 28

Heaps – Complexity

Suppose there are n elements in the heap

Then the heap has roughly height log n
add() only considers one node per level

pop_min() considers only two nodes per level

Both functions have a complexity in O(log n)

With this, n elements can be inserted in O(n log n)
Then, the respective minimum can be extracted n times in O(n log n)

Heapsort: With this strategy we can sort in O(n log n)

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 27 / 28

Heaps – Complexity

Suppose there are n elements in the heap

Then the heap has roughly height log n
add() only considers one node per level

pop_min() considers only two nodes per level

Both functions have a complexity in O(log n)

With this, n elements can be inserted in O(n log n)
Then, the respective minimum can be extracted n times in O(n log n)

Heapsort: With this strategy we can sort in O(n log n)

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 27 / 28

Heaps – Complexity

Suppose there are n elements in the heap

Then the heap has roughly height log n
add() only considers one node per level

pop_min() considers only two nodes per level

Both functions have a complexity in O(log n)

With this, n elements can be inserted in O(n log n)
Then, the respective minimum can be extracted n times in O(n log n)

Heapsort: With this strategy we can sort in O(n log n)

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 27 / 28

Heaps – Complexity

Suppose there are n elements in the heap

Then the heap has roughly height log n
add() only considers one node per level

pop_min() considers only two nodes per level

Both functions have a complexity in O(log n)

With this, n elements can be inserted in O(n log n)
Then, the respective minimum can be extracted n times in O(n log n)

Heapsort: With this strategy we can sort in O(n log n)

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 27 / 28

Heaps – Complexity

Suppose there are n elements in the heap

Then the heap has roughly height log n
add() only considers one node per level

pop_min() considers only two nodes per level

Both functions have a complexity in O(log n)

With this, n elements can be inserted in O(n log n)
Then, the respective minimum can be extracted n times in O(n log n)
Heapsort: With this strategy we can sort in O(n log n)

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 27 / 28

Heapsort

def heapsort(data):
tmp = Heap()
sorted_data = []
for element in data:

tmp.add(element)
for i in range(len(data)):

sorted_data.append(tmp.getmin())
tmp.popmin()

return sorted_data

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 28 / 28

Thanks for your
attention

	Classes and Objects
	Python Classes
	Python Objects
	Constructors

	Managing an Earthquake Database
	Managing a Student Database
	Heaps
	Heapsort

