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Classes and Objects
Pyhon Classes



Classes – Technical

A class is an entity with a name that contains data and functionality

A class defines a new data type

Data: stored variables,
called attributes

Functionality: consists of functions,
called methods

Classes are (often) separate .py files with the
same name

Name

attribute1

attribute2

· · ·

method1

method2

· · ·
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Classes – Conceptual

Classes facilitate to bundle the data that belongs together contentwise

Classes provide functionality that allows to perform queries based on the
data or operations on the data

Example

Coherent measurements

Functions to read out data

Functions to modify data
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Example – Earthquake Catalog
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Class for Measurement – First Try

Python Class Measurement

class Measurement:
date = ""
time = ""

latitude = 0
longitude = 0

magnitude = 0

Name of the class / data type

Attributes according to CSV header

Measurement

date (Empty string λ)

time (Empty string λ)

latitude (Number 0)

longitude (Number 0)

magnitude (Number 0)
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Classes and Objects
Python Objects



Objects – Instances of Classes

Classes describe the structure of objects, like a blueprint
ï Comparable with the header of the CSV file

Objects are instantiated according to the blueprint and will contain values
ï Comparable with the individual data rows in the CSV file

Example

Variables to store parameters of measurement

Function to display measurements lucidly

Function to compare measurements
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Object Instantiation

Objects are instances of classes

w = Measurement()

Instantiation of an object of
type “Measurement”

date

λtime

0latitude

0longitude

0magnitude

Measurement w

w.date = "2001/01/03"

Dot notation; instance.attribute

w.time = "11:11:20.4"
w.latitude = 46.446
w.longitude = 9.982
w.magnitude = 2.36
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Class for Measurement – Second Try

Measurement

date

time

latitude

longitude

magnitude

Coordinate

latitude

longitude

distance(self, other)

Method to use on objects of
type Coordinate

Better structuring

Latitude and longitude belong in their
own data type Coordinate

Object of type Measurement has an
attribute of type Coordinate

“Composition”
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Methods

Methods are function that are defined within a class

The first parameter is always self, which allows to refer to the current
instance

Again dot notation; Call analogously to append() for lists

Pre-defined functions with special functionality

Function __str__ defines what happens when instance is given to print()

class Coordinate:
def __str__(self):

return "Dies ist eine Koordinate"
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Methods in Classes

from math import *

class Coordinate:

latitude = 0
longitude = 0

def __str__(self):
return "Dies ist eine Koordinate"

# Computes the distance to the provided coordinate ’other’ in kilometers
def distance(self, other):

dlat = self.latitude - other.latitude

dlon = self.longitude - other.longitude
Hav = sin(dlat / 2)**2 + cos(self.latitude) * cos(other.latitude) * sin(dlon / 2)**2
return 6373 * 2 * atan2(sqrt(Hav), sqrt(1 - Hav))

First parameter is always selfEnables to access the current object from
within a method of that classHaversine formula
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Classes and Objects
Constructors



Constructors

Creating a Coordinate needs three steps

k = Coordinate()
k.latitude = 45.97
k.longitude = 7.65

Constructors facilitate to easily set the initial values of a newly created
object

k = Coordinate(45.97, 7.65)
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Constructors

from math import *

class Coordinate:

def __init__(self, deg_latitude, deg_longitude):
self.latitude = radians(deg_latitude) # Conversion from degree measure
self.longitude = radians(deg_longitude) # to radians measure

def distance(self, other):
dlat = self.latitude - other.latitude
dlon = self.longitude - other.longitude
Hav = sin(dlat / 2)**2 + cos(self.latitude) * cos(other.latitude) * sin(dlon / 2)**2
return 6373 * 2 * atan2(sqrt(Hav), sqrt(1 - Hav))

zurich = Coordinate(47.36667, 8.55)
brisbane = Coordinate(-27.46794, 153.02809)
print(int(zurich.distance(brisbane)))

Is executed when object is initialized;
parameter values are passed

to this function
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Managing an Earthquake Database



Managing an Earthquake Database

1. Implement data structure to represent earthquakes

2. Read in CSV file, create objects from the lines, insert them into a dictionary

3. Implement user interface to query data

30274940.00000; 2001/01/20 15:49:10; certain; earthquake; 45.856; 8.142; ”SED (ECOS-09)”; 13.; 2.56; 2.6;

Of interest are

Index 0: Keys for dictionary; is converted to natural number

Index 1: Date and time; is split at space

Index 4: Longitude; is converted to floating-point number

Index 5: Latitude; is converted to floating-point number

Index 9: Magnitude on Richter scale; is converted to floating-point number
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Managing an Earthquake Database

1. Implement data structure to represent earthquakes

class Coordinate:
def __init__(self, deg_latitude, deg_longitude):

self.latitude = radians(deg_latitude)
self.longitude = radians(deg_longitude)

def __str__(self):
return str(self.latitude) + ", " + str(self.longitude)

class Measurement:
def __init__(self, date, time, magnitude, coordinate):

self.date = date
self.time = time
self.magnitude = magnitude
self.coordinate = coordinate

def __str__(self):
return "Erdbeben der Stärke " + str(self.magnitude) + ", gemessen am " \

+ str(self.date) + " um " + str(self.time) + " an Position " + str(self.coordinate)
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Managing an Earthquake Database

2. Read in CSV, create objects from the lines, insert them into a dictionary

def read_measurements(filename):

# Datei Zeile für Zeile einlesen
with open(filename) as file:

lines = file.read().splitlines()
measurements = {}

# Alle Zeilen nacheinander verarbeiten
for i in range(1, len(lines)):

tmp = lines[i].split(";")
tmp_coord = Coordinate(float(tmp[4]), float(tmp[5]))
tmp_date_time = tmp[1].split(" ")
tmp_magnitude = float(tmp[9])
tmp_meas = Measurement(tmp_date_time[1], tmp_date_time[2], tmp_magnitude, tmp_coord)
measurements[int(float(tmp[0]))] = tmp_meas

return measurements
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Managing an Earthquake Database

3. Implement user interface to query data

earthquakes = read_measurements("earthquakes.csv")

while True:
user_input = input("Geben Sie eine Erdbeben-ID ein (Abbrechen mit exit): ")
if user_input == "exit":

print("Programm beendet.")
break

else:
quake_id = int(user_input)
if quake_id not in earthquakes:

print("Erdbeben-ID nicht gefunden.")
else:

print(earthquakes[quake_id])
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print("Programm beendet.")
break

else:
quake_id = int(user_input)
if quake_id not in earthquakes:

print("Erdbeben-ID nicht gefunden.")
else:

print(earthquakes[quake_id])

Programming and Problem-Solving – Object-Oriented Programming Spring 2021 Dennis Komm 15 / 28



Managing a Student Database



Exercise – Managing a Student Database

Write a class the represents students with
attributes

student_id
name
grade

Enable the user to create student objects
using input()

Save them into a dictionary

Output every student using a for ... in
loop
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Exercise – Managing a Student Database

class Student:

def __init__(self, s_id, name, grade):
self.s_id = s_id
self.name = name
self.grade = grade

def __str__(self):
return "Die / Der Studierende "

+ str(self.name)
+ " (" + str(self.s_id)
+ ") hat die Note "
+ str(self.grade)
+ " erhalten."

students = {}

while True:
user_input = input("Weitere Daten eingeben? [J/N]")
if user_input == "J":

tmp_id = int(input(" ID: "))
tmp_name = input(" Name: ")
tmp_grade = float(input(" Note: "))
tmp_student = Student(tmp_id, tmp_name, tmp_grade)
students[tmp_id] = tmp_student

elif user_input == "N":
print("Programm beendet.")
break

else:
print("Ungültige Eingabe.")

for id in students:
print(students[id])
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Heaps



Lists and Dictonaries

Complexity on lists and dictionaries with n elements

Lists

Access with [] O(1)
Insertion with append() O(1)
Insertion with insert() O(n)

Removal with pop(0) O(1)
Removal with pop() O(1)

Find minimum O(n)

Dictionaries

Access with [] O(1)
Insertion with [] O(1)

Find minimum O(n)
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Heaps

Design data structure for special usage
ï Minimum can be computed efficiently (Using lists and dictionaries O(n))

Data structure with
the following operations

Insertion

O(log n)

Get minimum

O(1)

Pop minimum

O(log n)

Use a “tree”

Embed this tree into list

Root (first element of list) contains
smallest element

After removing an element, tree
needs to be rearranged

When inserting element, tree needs
to be rearranged as well
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Heaps

1

2 4

17 9 25 36

42 100
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Heaps

1

2 4

17 9 25 36

42 100 � 2 is parent of 17 and 9

� 17 is left child of 2
� 9 is right child of 2
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Heaps

1

2 4

17 9 25 36

42 100 Children always have larger
values than their parents
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Heaps

1

2 4

17 9 25 36

42 100
Enumerate nodes of the tree from

left to right, level by level,
and write values into a list in that order
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Heaps

1

2 4

17 9 25 36

42 100 1 2 4 17 9 25 36 42 100
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Heaps

1

22 4

17 9 25 36

42 100 1 2 4 17 9 25 36 42 100

� The left child of index 0 has index 1
� The right child of index 0 has index 2
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Heaps

1

2 4

17 9 25 36

42 100 1 2 4 17 9 25 36 42 100

� The left child of index 1 has index 3
� The right child of index 1 has index 4
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Heaps

1

2 4

17 9 25 36

42 100 1 2 4 17 9 25 36 42 100

� The left child of index 2 has index 5
� The right child of index 2 has index 6
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Heaps

1

2 4

17 9 25 36

42 100 1 2 4 17 9 25 36 42 100

� The left child of index 3 has index 7
� The right child of index 3 has index 8
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Heaps

1

2 4

17 9 25 36

42 100 1 2 4 17 9 25 36 42 100

� The left child of index i has index 2i+ 1
� The right child of index i has index 2i+ 2
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Heaps

Create class Heap with functions

add(self, x) Insert element in O(log n)
getmin(self) Output element in O(1)
popmin(self) Remove minimum in O(log n)

class Heap:
...
def add(self, x):

...
def getmin(self):

...
def popmin(self):

...
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Heaps

Create class Heap with functions
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Heaps – Initialization

Constructor creates list
def __init__(self):

self.data = []

Create helper functions; the underscore at the beginning indicates that they
are for “internal use” only

def _swap(self, i, j):
self.data[i], self.data[j] = self.data[j], self.data[i]

def _parent(self, i):
return (i-1) // 2

def _left_child(self, i):
return 2 * i + 1

def _right_child(self, i):
return 2 * i + 2
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Heaps – Insert Element

add(self, x) – Insert element x

Append x at the end

Now consider last position of heap

If this element is smaller than its parent, swap them

Now consider position of parent and repeat

getmin(self) – Return smallest element

Return the first element of list data
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Heaps – Insert Element

def add(self, x):
self.data.append(x)
a = len(self.data) - 1
while a > 0 and self.data[a] < self.data[self._parent(a)]:

self._swap(a, self._parent(a))
a = self._parent(a)

def getmin(self):
return self.data[0]
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Heaps – Insert Element

def add(self, x):
self.data.append(x)
a = len(self.data) - 1
while a > 0 and self.data[a] < self.data[self._parent(a)]:

self._swap(a, self._parent(a))
a = self._parent(a)
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Heaps – Remove Minimum

pop_min(self) – Remove smallest element

The element is located at the root, that is, the first position of the heap

We cannot simply remove it and leave the remainder

Overwrite first element with last element and remove the latter using
data.pop()

Now there is a wrong element located at the root

Reorder tree from top to bottom

To this end, swap root with larger child

Now look at position of child and repeat
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Heaps – Remove Minimum

def popmin(self):
self.data[0] = self.data[-1]
self.data.pop()
a = 0
while True:

m = a
if self._left_child(a) < len(self.data) and \

self.data[self._left_child(a)] < self.data[m]:
m = self._left_child(a)

if self._right_child(a) < len(self.data) and \
self.data[self._right_child(a)] < self.data[m]:
m = self._right_child(a)

if m > a:
self._swap(a, m)
a = m

else:
return
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Heapsort
Sorting with Heaps



Heaps – Complexity

Suppose there are n elements in the heap

Then the heap has roughly height log n

add() only considers one node per level

pop_min() considers only two nodes per level

Both functions have a complexity in O(log n)

With this, n elements can be inserted in O(n log n)
Then, the respective minimum can be extracted n times in O(n log n)

Heapsort: With this strategy we can sort in O(n log n)
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Heapsort

def heapsort(data):
tmp = Heap()
sorted_data = []
for element in data:

tmp.add(element)
for i in range(len(data)):

sorted_data.append(tmp.getmin())
tmp.popmin()

return sorted_data
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Thanks for your
attention
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