
Departement Informatik

Programming
and Problem-Solving
Complexity and Primality Testing

Dennis Komm

Spring 2021 – March 25, 2021



Time Complexity of Algorithms
Primality Testing



Exercise – Primality Testing

Write a function that

takes an integer x as parameter

calculates whether x is prime

uses the % operator

depending on that either returns True
or False

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 1 / 39



Primality Test

def primetest(x):
if x < 2:

return False
d = 2
while d < x:

if x % d == 0:
return False

d += 1
return True

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 2 / 39



Primality Test

How long does it take the algorithm to produce the output?

What is its time complexity?

This depends on the number of loop iterations

An absolute value does not make sense here

The loop is iterated (roughly) x times (if x is prime)

ï Time complexity grows with x

. . . but how fast?

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 3 / 39



Primality Test

How long does it take the algorithm to produce the output?

What is its time complexity?

This depends on the number of loop iterations

An absolute value does not make sense here

The loop is iterated (roughly) x times (if x is prime)

ï Time complexity grows with x

. . . but how fast?

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 3 / 39



Primality Test

How long does it take the algorithm to produce the output?

What is its time complexity?

This depends on the number of loop iterations

An absolute value does not make sense here

The loop is iterated (roughly) x times (if x is prime)

ï Time complexity grows with x

. . . but how fast?

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 3 / 39



Primality Test

How long does it take the algorithm to produce the output?

What is its time complexity?

This depends on the number of loop iterations

An absolute value does not make sense here

The loop is iterated (roughly) x times (if x is prime)

ï Time complexity grows with x . . . but how fast?

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 3 / 39



Time Complexity – Function of input size

We measure the time complexity as a function of the input size

The input of our algorithm is a single number x

In our computer, numbers are represented in binary

Ignoring leading zeros, for n bits we obtain

2n−1 is 10 . . . 00︸ ︷︷ ︸
n

, 2n−1 + 1 is 10 . . . 01︸ ︷︷ ︸
n

, . . . , and 2n − 1 is 11 . . . 11︸ ︷︷ ︸
n

A number that is encoded with n bits has size around 2n

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 4 / 39



Time Complexity – Function of input size

We measure the time complexity as a function of the input size

The input of our algorithm is a single number x

In our computer, numbers are represented in binary

Ignoring leading zeros, for n bits we obtain

2n−1 is 10 . . . 00︸ ︷︷ ︸
n

, 2n−1 + 1 is 10 . . . 01︸ ︷︷ ︸
n

, . . . , and 2n − 1 is 11 . . . 11︸ ︷︷ ︸
n

A number that is encoded with n bits has size around 2n

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 4 / 39



Time Complexity – Function of input size

We measure the time complexity as a function of the input size

The input of our algorithm is a single number x

In our computer, numbers are represented in binary

Ignoring leading zeros, for n bits we obtain

2n−1 is 10 . . . 00︸ ︷︷ ︸
n

, 2n−1 + 1 is 10 . . . 01︸ ︷︷ ︸
n

, . . . , and 2n − 1 is 11 . . . 11︸ ︷︷ ︸
n

A number that is encoded with n bits has size around 2n

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 4 / 39



Time Complexity – Function of input size

We measure the time complexity as a function of the input size

The input of our algorithm is a single number x

In our computer, numbers are represented in binary

Ignoring leading zeros, for n bits we obtain

2n−1 is 10 . . . 00︸ ︷︷ ︸
n

, 2n−1 + 1 is 10 . . . 01︸ ︷︷ ︸
n

, . . . , and 2n − 1 is 11 . . . 11︸ ︷︷ ︸
n

A number that is encoded with n bits has size around 2n

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 4 / 39



Time Complexity – Technology Model

Random Access Machine

Execution model: Instructions are executed one after the other (on one
processor core)

Memory model: Constant access time

Fundamental operations: Computations (+,−, ·, . . . ) comparisons,
assignment / copy, flow control (jumps)

Unit cost model: Fundamental operations provide a cost of 1

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 5 / 39



Time Complexity – Technology Model

Random Access Machine

Execution model: Instructions are executed one after the other (on one
processor core)

Memory model: Constant access time

Fundamental operations: Computations (+,−, ·, . . . ) comparisons,
assignment / copy, flow control (jumps)

Unit cost model: Fundamental operations provide a cost of 1

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 5 / 39



Time Complexity – Technology Model

Random Access Machine

Execution model: Instructions are executed one after the other (on one
processor core)

Memory model: Constant access time

Fundamental operations: Computations (+,−, ·, . . . ) comparisons,
assignment / copy, flow control (jumps)

Unit cost model: Fundamental operations provide a cost of 1

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 5 / 39



Time Complexity – Technology Model

Random Access Machine

Execution model: Instructions are executed one after the other (on one
processor core)

Memory model: Constant access time

Fundamental operations: Computations (+,−, ·, . . . ) comparisons,
assignment / copy, flow control (jumps)

Unit cost model: Fundamental operations provide a cost of 1

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 5 / 39



Time Complexity – Note

We are not completely accurate here

Numbers can have arbitrarily large values

We assume that arithmetic operations can be done in constant time

The time needed to add two n-bit numbers depends on n

Encoding of a floating point number does not directly correspond to its size

Surely an addition is faster than a multiplication

Logarithmic cost model takes this into account, but we also won’t use it here

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 6 / 39



Time Complexity – Note

We are not completely accurate here

Numbers can have arbitrarily large values

We assume that arithmetic operations can be done in constant time

The time needed to add two n-bit numbers depends on n

Encoding of a floating point number does not directly correspond to its size

Surely an addition is faster than a multiplication

Logarithmic cost model takes this into account, but we also won’t use it here

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 6 / 39



Time Complexity – Note

We are not completely accurate here

Numbers can have arbitrarily large values

We assume that arithmetic operations can be done in constant time

The time needed to add two n-bit numbers depends on n

Encoding of a floating point number does not directly correspond to its size

Surely an addition is faster than a multiplication

Logarithmic cost model takes this into account, but we also won’t use it here

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 6 / 39



Time Complexity – Note

We are not completely accurate here

Numbers can have arbitrarily large values

We assume that arithmetic operations can be done in constant time

The time needed to add two n-bit numbers depends on n

Encoding of a floating point number does not directly correspond to its size

Surely an addition is faster than a multiplication

Logarithmic cost model takes this into account, but we also won’t use it here

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 6 / 39



Time Complexity of Our Primality Test

Suppose x is a prime number, encoded using n bits

Number of loop iterations grows with size of x ≈ 2n

Loop is iterated around 2n times

We would like to count the fundamental operations

Algorithm executes five operations per iteration

In total roughly 5 · 2n operations

We would like to know how time complexity behaves when n grows

Ignore constant 5

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 7 / 39



Time Complexity of Our Primality Test

Suppose x is a prime number, encoded using n bits

Number of loop iterations grows with size of x ≈ 2n

Loop is iterated around 2n times

We would like to count the fundamental operations

Algorithm executes five operations per iteration

In total roughly 5 · 2n operations

We would like to know how time complexity behaves when n grows

Ignore constant 5

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 7 / 39



Time Complexity of Our Primality Test

Suppose x is a prime number, encoded using n bits

Number of loop iterations grows with size of x ≈ 2n

Loop is iterated around 2n times

We would like to count the fundamental operations

Algorithm executes five operations per iteration

In total roughly 5 · 2n operations

We would like to know how time complexity behaves when n grows

Ignore constant 5

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 7 / 39



Time Complexity of Our Primality Test

Suppose x is a prime number, encoded using n bits

Number of loop iterations grows with size of x ≈ 2n

Loop is iterated around 2n times

We would like to count the fundamental operations

Algorithm executes five operations per iteration

In total roughly 5 · 2n operations

We would like to know how time complexity behaves when n grows

Ignore constant 5

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 7 / 39



Time Complexity of Algorithms
Asymptotic Upper Bounds



Asymptotic Upper Bounds

The exact time complexity can usually not be predicted even for small inputs

We are interested in upper bounds

We consider the asymptotic behavior of the algorithm

And ignore all constant factors

Example

Linear growth with gradient 5 is as good as linear growth with gradient 1
Quadratic growth with coefficient 10 is as good as quadratic growth with
coefficient 1

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 8 / 39



Asymptotic Upper Bounds

The exact time complexity can usually not be predicted even for small inputs

We are interested in upper bounds

We consider the asymptotic behavior of the algorithm

And ignore all constant factors

Example

Linear growth with gradient 5 is as good as linear growth with gradient 1
Quadratic growth with coefficient 10 is as good as quadratic growth with
coefficient 1

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 8 / 39



Asymptotic Upper Bounds

Big-O Notation

The set O(2n) contains all functions that do not grow faster than c · 2n for
some constant c

The set O(g(n)) contains all functions f(n) that do not grow faster than
c · g(n) for some constant c, where f and g are positive

Use asymptotic notation to specify the time complexity of algorithms

We write O(n2) and mean that the algorithm behaves for large n like n2: when
the input length is doubled, the time taken multiplies by four (at most)

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 9 / 39



Asymptotic Upper Bounds

Big-O Notation

The set O(2n) contains all functions that do not grow faster than c · 2n for
some constant c

The set O(g(n)) contains all functions f(n) that do not grow faster than
c · g(n) for some constant c, where f and g are positive

Use asymptotic notation to specify the time complexity of algorithms

We write O(n2) and mean that the algorithm behaves for large n like n2: when
the input length is doubled, the time taken multiplies by four (at most)

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 9 / 39



Asymptotic Upper Bounds

Big-O Notation

The set O(2n) contains all functions that do not grow faster than c · 2n for
some constant c

The set O(g(n)) contains all functions f(n) that do not grow faster than
c · g(n) for some constant c, where f and g are positive

Use asymptotic notation to specify the time complexity of algorithms

We write O(n2) and mean that the algorithm behaves for large n like n2: when
the input length is doubled, the time taken multiplies by four (at most)

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 9 / 39



Asymptotic Upper Bounds – Formal Definition

O Notation

The set O(g(n)) contains all functions f(n) that do not grow faster than
c · g(n) for some constant c, where f and g are positive

f(n) ∈ O(g(n))

⇐⇒

∃c > 0, n0 ∈ N such that ∀n ≥ n0 : f(n) ≤ c · g(n)

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 10 / 39



Asymptotic Upper Bounds – Formal Definition

O Notation

The set O(g(n)) contains all functions f(n) that do not grow faster than
c · g(n) for some constant c, where f and g are positive

f(n) ∈ O(g(n))

⇐⇒

∃c > 0, n0 ∈ N such that ∀n ≥ n0 : f(n) ≤ c · g(n)

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 10 / 39



Asymptotic Upper Bounds – Formal Definition

O Notation

The set O(g(n)) contains all functions f(n) that do not grow faster than
c · g(n) for some constant c, where f and g are positive

f(n) ∈ O(g(n))

⇐⇒

∃c > 0, n0 ∈ N such that ∀n ≥ n0 : f(n) ≤ c · g(n)

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 10 / 39



Asymptotic Upper Bounds – Illustration

g(n) = n2

n

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 11 / 39



Asymptotic Upper Bounds – Illustration

g(n) = n2

f(n) ∈ O(g(n))

n0 n

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 11 / 39



Asymptotic Upper Bounds – Illustration

g(n) = n2

f(n) ∈ O(g(n))

h(n) ∈ O(g(n))

n0 n

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 11 / 39



Asymptotic Upper Bounds – Examples

O(g(n)) = {f : N→ R+ | ∃c > 0, n0 ∈ N : ∀n ≥ n0 : f(n) ≤ c · g(n)}

f(n) f ∈ O(?) Example

3n + 4

O(n) c = 4, n0 = 4

2n

O(n) c = 2, n0 = 0

n2 + 100n

O(n2) c = 2, n0 = 100

n +
√

n

O(n) c = 2, n0 = 1

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 12 / 39



Asymptotic Upper Bounds – Examples

O(g(n)) = {f : N→ R+ | ∃c > 0, n0 ∈ N : ∀n ≥ n0 : f(n) ≤ c · g(n)}

f(n) f ∈ O(?) Example

3n + 4 O(n) c = 4, n0 = 4
2n

O(n) c = 2, n0 = 0

n2 + 100n

O(n2) c = 2, n0 = 100

n +
√

n

O(n) c = 2, n0 = 1

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 12 / 39



Asymptotic Upper Bounds – Examples

O(g(n)) = {f : N→ R+ | ∃c > 0, n0 ∈ N : ∀n ≥ n0 : f(n) ≤ c · g(n)}

f(n) f ∈ O(?) Example

3n + 4 O(n) c = 4, n0 = 4
2n O(n) c = 2, n0 = 0
n2 + 100n

O(n2) c = 2, n0 = 100

n +
√

n

O(n) c = 2, n0 = 1

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 12 / 39



Asymptotic Upper Bounds – Examples

O(g(n)) = {f : N→ R+ | ∃c > 0, n0 ∈ N : ∀n ≥ n0 : f(n) ≤ c · g(n)}

f(n) f ∈ O(?) Example

3n + 4 O(n) c = 4, n0 = 4
2n O(n) c = 2, n0 = 0
n2 + 100n O(n2) c = 2, n0 = 100
n +
√

n

O(n) c = 2, n0 = 1

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 12 / 39



Asymptotic Upper Bounds – Examples

O(g(n)) = {f : N→ R+ | ∃c > 0, n0 ∈ N : ∀n ≥ n0 : f(n) ≤ c · g(n)}

f(n) f ∈ O(?) Example

3n + 4 O(n) c = 4, n0 = 4
2n O(n) c = 2, n0 = 0
n2 + 100n O(n2) c = 2, n0 = 100
n +
√

n O(n) c = 2, n0 = 1

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 12 / 39



Time Complexity of Algorithms
Time Complexity Analysis



Small n

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

20

40

60

log n
n

n2

n4 2n

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 13 / 39



Larger n

2 4 6 8 10 12 14 16 18 20 22 24
0

200 000

400 000

600 000

800 000

log n
n
n2

n4

2n

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 14 / 39



“Large” n

10 20 30 40 50 60 70 80 90 100
0

2 · 1019

4 · 1019

6 · 1019

8 · 1019

1 · 1020

log n
n
n2
n4

2n

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 15 / 39



Faster Primality Testing
First Attempt



Faster Primality Testing

Goal

Time complexity better than Ω(2n)

Observation

If x is not divisible by 2, then it also is not divisible by 4, 6, 8, etc.

We then only have to check odd numbers

Algorithm only has to test half the numbers

Loop is only iterated around x/2 times

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 16 / 39



Faster Primality Testing

Goal

Time complexity better than Ω(2n)

Observation

If x is not divisible by 2, then it also is not divisible by 4, 6, 8, etc.

We then only have to check odd numbers

Algorithm only has to test half the numbers

Loop is only iterated around x/2 times

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 16 / 39



Faster Primality Testing

Goal

Time complexity better than Ω(2n)

Observation

If x is not divisible by 2, then it also is not divisible by 4, 6, 8, etc.

We then only have to check odd numbers

Algorithm only has to test half the numbers

Loop is only iterated around x/2 times

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 16 / 39



Faster Primality Testing

def primetest2(x):
if x < 2 or (x > 2 and x % 2 == 0):

return False

d = 3
while d < x:

if x % d == 0:
return False

d += 2

return True

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 17 / 39



Faster Primality Testing

def primetest2(x):
if x < 2 or (x > 2 and x % 2 == 0):

return False

d = 3
while d < x:

if x % d == 0:
return False

d += 2

return True

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 17 / 39



Faster Primality Testing

What is the gain?

Loop is iterated roughly x/2 times instead of x times

Time complexity improves by a factor of 2
Again assume x is encoded using n bits

Around 5 · 2n/2 = 2.5 · 2n fundamental operations in total

Time complexity is still in O(2n)
ï No asymptotic improvement

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 18 / 39



Faster Primality Testing

What is the gain?

Loop is iterated roughly x/2 times instead of x times

Time complexity improves by a factor of 2

Again assume x is encoded using n bits

Around 5 · 2n/2 = 2.5 · 2n fundamental operations in total

Time complexity is still in O(2n)
ï No asymptotic improvement

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 18 / 39



Faster Primality Testing

What is the gain?

Loop is iterated roughly x/2 times instead of x times

Time complexity improves by a factor of 2
Again assume x is encoded using n bits

Around 5 · 2n/2 = 2.5 · 2n fundamental operations in total

Time complexity is still in O(2n)
ï No asymptotic improvement

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 18 / 39



Faster Primality Testing

What is the gain?

Loop is iterated roughly x/2 times instead of x times

Time complexity improves by a factor of 2
Again assume x is encoded using n bits

Around 5 · 2n/2 = 2.5 · 2n fundamental operations in total

Time complexity is still in O(2n)

ï No asymptotic improvement

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 18 / 39



Faster Primality Testing

What is the gain?

Loop is iterated roughly x/2 times instead of x times

Time complexity improves by a factor of 2
Again assume x is encoded using n bits

Around 5 · 2n/2 = 2.5 · 2n fundamental operations in total

Time complexity is still in O(2n)
ï No asymptotic improvement

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 18 / 39



Faster Primality Testing
Second Attempt



Faster Primality Testing

Observation

If x with x > 2 is not a prime number, then x is divisible by a number a with

1 < a < x

Then x is also divisible by a number b with

a · b = x and 1 < b < x

It cannot be the case that

a >
√

x and b >
√

x,

since then
a · b > x

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 19 / 39



Faster Primality Testing

Observation

If x with x > 2 is not a prime number, then x is divisible by a number a with

1 < a < x

Then x is also divisible by a number b with

a · b = x and 1 < b < x

It cannot be the case that

a >
√

x and b >
√

x,

since then
a · b > x

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 19 / 39



Faster Primality Testing

Observation

If x with x > 2 is not a prime number, then x is divisible by a number a with

1 < a < x

Then x is also divisible by a number b with

a · b = x and 1 < b < x

It cannot be the case that

a >
√

x and b >
√

x,

since then
a · b > x

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 19 / 39



Faster Primality Testing
Including Modules



Including Modules

So far all functions have been defined in a single file

Modules

Distribute functions over multiple files

Files cannot “see” each other

Functions can be imported

Structured code

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 20 / 39



Including Modules

So far all functions have been defined in a single file

Modules

Distribute functions over multiple files

Files cannot “see” each other

Functions can be imported

Structured code

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 20 / 39



Including Modules

File functions.py

def square_root(n):
i = 1
while i * i < n: # Computer root of next larger square number

i += 1
return i

File applications.py

print(square_root(81))

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 21 / 39



Including Modules

File functions.py

def square_root(n):
i = 1
while i * i < n: # Computer root of next larger square number

i += 1
return i

File applications.py

print(square_root(81))

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 21 / 39



Including Modules

File functions.py

def square_root(n):
i = 1
while i * i < n: # Computer root of next larger square number

i += 1
return i

File applications.py

from functions import square_root

print(square_root(81))

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 21 / 39



Including Modules

File functions.py

def square_root(n):
i = 1
while i * i < n: # Computer root of next larger square number

i += 1
return i

File applications.py

from functions import *

print(square_root(81))

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 21 / 39



Including Modules

A large number of modules already exists

For instance, there is a module math which includes a function sqrt() to
compute square roots

print(sqrt(9))

NameError: name ’sqrt’ is not defined

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 22 / 39



Including Modules

A large number of modules already exists

For instance, there is a module math which includes a function sqrt() to
compute square roots

print(sqrt(9))

NameError: name ’sqrt’ is not defined

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 22 / 39



Including Modules

A large number of modules already exists

For instance, there is a module math which includes a function sqrt() to
compute square roots

print(sqrt(9))

NameError: name ’sqrt’ is not defined

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 22 / 39



Including Modules

A large number of modules already exists

For instance, there is a module math which includes a function sqrt() to
compute square roots

from math import sqrt

print(sqrt(9))

Output: 3

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 22 / 39



Faster Primality Testing

def primetest3(x):
if x < 2 or (x > 2 and x % 2 == 0):

return False

d = 3
while d < x:

if x % d == 0:
return False

d += 2
return True

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 23 / 39



Faster Primality Testing

from math import sqrt

def primetest3(x):
if x < 2 or (x > 2 and x % 2 == 0):

return False

d = 3
while d <= sqrt(x):

if x % d == 0:
return False

d += 2
return True

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 23 / 39



Faster Primality Testing

What is the gain this time?

What is the time complexity of this algorithm?

Loop is iterated
√

x/2 times

Time complexity “grows” with
√

x

Time complexity is in O(
√

2n) = O(2n/2) = O(1.415n)

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 24 / 39



Faster Primality Testing

What is the gain this time?

What is the time complexity of this algorithm?

Loop is iterated
√

x/2 times

Time complexity “grows” with
√

x

Time complexity is in O(
√

2n) = O(2n/2) = O(1.415n)

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 24 / 39



Faster Primality Testing

What is the gain this time?

What is the time complexity of this algorithm?

Loop is iterated
√

x/2 times

Time complexity “grows” with
√

x

Time complexity is in O(
√

2n) = O(2n/2) = O(1.415n)

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 24 / 39



Faster Primality Testing

What is the gain this time?

What is the time complexity of this algorithm?

Loop is iterated
√

x/2 times

Time complexity “grows” with
√

x

Time complexity is in O(
√

2n) = O(2n/2) = O(1.415n)

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 24 / 39



Faster Primality Testing

What is the gain this time?

What is the time complexity of this algorithm?

Loop is iterated
√

x/2 times

Time complexity “grows” with
√

x

Time complexity is in O(
√

2n) = O(2n/2) = O(1.415n)

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 24 / 39



Faster Primality Testing

5 10 15 20 25 30 35 40 45

0

2 000 000

4 000 000

6 000 000

8 000 000

10 000 000

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 25 / 39



Faster Primality Testing

5 10 15 20 25 30 35 40 45

0

2 000 000

4 000 000

6 000 000

8 000 000

10 000 000

2n

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 25 / 39



Faster Primality Testing

5 10 15 20 25 30 35 40 45

0

2 000 000

4 000 000

6 000 000

8 000 000

10 000 000

2n 1.415n

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 25 / 39



Faster Primality Testing

Suppose our computer can do 1000 iterations of the loop per second

; for
x = 100 000 000 000 031 this means:

. . . d < x . . .

100 000 000 000 031 iterations
1000 iterations

second

> 100 000 000 000 seconds

> 3100 years

. . . d <= sqrt(x) . . .

√
100 000 000 000 031 iterations

1000 iterations
second

<
10 000 000 iterations

1000 iterations
second

< 3 hours

Even if the computer that runs the slower program is 100 time faster, it still
needs 31 years

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 26 / 39



Faster Primality Testing

Suppose our computer can do 1000 iterations of the loop per second; for
x = 100 000 000 000 031 this means:

. . . d < x . . .

100 000 000 000 031 iterations
1000 iterations

second

> 100 000 000 000 seconds

> 3100 years

. . . d <= sqrt(x) . . .

√
100 000 000 000 031 iterations

1000 iterations
second

<
10 000 000 iterations

1000 iterations
second

< 3 hours

Even if the computer that runs the slower program is 100 time faster, it still
needs 31 years

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 26 / 39



Faster Primality Testing

Suppose our computer can do 1000 iterations of the loop per second; for
x = 100 000 000 000 031 this means:

. . . d < x . . .

100 000 000 000 031 iterations
1000 iterations

second

> 100 000 000 000 seconds

> 3100 years

. . . d <= sqrt(x) . . .

√
100 000 000 000 031 iterations

1000 iterations
second

<
10 000 000 iterations

1000 iterations
second

< 3 hours

Even if the computer that runs the slower program is 100 time faster, it still
needs 31 years

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 26 / 39



Faster Primality Testing

Suppose our computer can do 1000 iterations of the loop per second; for
x = 100 000 000 000 031 this means:

. . . d < x . . .

100 000 000 000 031 iterations
1000 iterations

second

> 100 000 000 000 seconds

> 3100 years

. . . d <= sqrt(x) . . .

√
100 000 000 000 031 iterations

1000 iterations
second

<
10 000 000 iterations

1000 iterations
second

< 3 hours

Even if the computer that runs the slower program is 100 time faster, it still
needs 31 years

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 26 / 39



Faster Primality Testing

Or the other way around. . .

Suppose we want to spend 10 minutes

Then there are at most “testable” primes in the magnitude of:

. . . d < x . . .

x iterations
1000 iterations

second

= 600 seconds

⇐⇒ x = 600 000

. . . d <= sqrt(x) . . .

√
x iterations

1000 iterations
second

= 600 seconds

⇐⇒ x = 600 0002

⇐⇒ x = 360 000 000 000

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 27 / 39



Faster Primality Testing

Or the other way around. . .

Suppose we want to spend 10 minutes

Then there are at most “testable” primes in the magnitude of:

. . . d < x . . .

x iterations
1000 iterations

second

= 600 seconds

⇐⇒ x = 600 000

. . . d <= sqrt(x) . . .

√
x iterations

1000 iterations
second

= 600 seconds

⇐⇒ x = 600 0002

⇐⇒ x = 360 000 000 000

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 27 / 39



Faster Primality Testing

Or the other way around. . .

Suppose we want to spend 10 minutes

Then there are at most “testable” primes in the magnitude of:

. . . d < x . . .

x iterations
1000 iterations

second

= 600 seconds

⇐⇒ x = 600 000

. . . d <= sqrt(x) . . .

√
x iterations

1000 iterations
second

= 600 seconds

⇐⇒ x = 600 0002

⇐⇒ x = 360 000 000 000

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 27 / 39



Faster Primality Testing

Or the other way around. . .

Suppose we want to spend 10 minutes

Then there are at most “testable” primes in the magnitude of:

. . . d < x . . .

x iterations
1000 iterations

second

= 600 seconds

⇐⇒ x = 600 000

. . . d <= sqrt(x) . . .

√
x iterations

1000 iterations
second

= 600 seconds

⇐⇒ x = 600 0002

⇐⇒ x = 360 000 000 000

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 27 / 39



Faster Primality Testing
Best and Worst Case Analysis



Best and Worst Case Analysis

Which algorithm is faster?

def primetest3(x):
if x < 2 or (x > 2 and x % 2 == 0):

return False

d = 3
while d <= sqrt(x):

if x % d == 0:
return False

d += 2
return True

def primetest4(x):
if x < 2 or (x > 2 and x % 2 == 0):

return False

d = 3
isprime = True
while d <= sqrt(x):

if x % d == 0:
isprime = False

d += 2
return isprime

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 28 / 39



Best and Worst Case Analysis

Suppose x is a multiple of 3

Then the left algorithm is faster

ï Loop is left after first iteration

"‘Early Exit"’

Right algorithm makes roughly 1.415n/2 comparisons

Suppose x is prime

Then both algorithms make 1.415n/2 comparisons

(Of course, still the left one should be implemented)

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 29 / 39



Best and Worst Case Analysis

Suppose x is a multiple of 3

Then the left algorithm is faster

ï Loop is left after first iteration

"‘Early Exit"’

Right algorithm makes roughly 1.415n/2 comparisons

Suppose x is prime

Then both algorithms make 1.415n/2 comparisons

(Of course, still the left one should be implemented)

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 29 / 39



Best and Worst Case Analysis

Suppose x is a multiple of 3

Then the left algorithm is faster

ï Loop is left after first iteration

"‘Early Exit"’

Right algorithm makes roughly 1.415n/2 comparisons

Suppose x is prime

Then both algorithms make 1.415n/2 comparisons

(Of course, still the left one should be implemented)

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 29 / 39



What else can we do?



Primality test

Test every number
between 1 and x

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 30 / 39



Primality test

Test every number
between 1 and x

Test every second number
between 1 and x

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 30 / 39



Primality test

Test every number
between 1 and x

Test every second number
between 1 and x

Test every second number
between 1 and

√
x

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 30 / 39



Primality test

Randomized Monte
Carlo algorithm

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 30 / 39



Primality test

Randomized Monte
Carlo algorithm

Polynomial AKS
algorithm

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 30 / 39



Monte-Carlo Algorithm



Monte-Carlo Algorithm – Basic Idea

Randomized Algorithms make random decisions

Input x does not “determine” output anymore

The same x may result in different outputs

Monte-Carlo Algorithm (MC Algorithm) has bounded error probability

For True/False problems (primality test etc.) there are MC algorithms with
one-sided error (1MC algorithms)

Las Vegas Algorithm has error probability 0

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 31 / 39



Monte-Carlo Algorithm – Basic Idea

Randomized Algorithms make random decisions

Input x does not “determine” output anymore

The same x may result in different outputs

Monte-Carlo Algorithm (MC Algorithm) has bounded error probability

For True/False problems (primality test etc.) there are MC algorithms with
one-sided error (1MC algorithms)

Las Vegas Algorithm has error probability 0

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 31 / 39



Monte-Carlo Algorithm – Basic Idea

Randomized Algorithms make random decisions

Input x does not “determine” output anymore

The same x may result in different outputs

Monte-Carlo Algorithm (MC Algorithm) has bounded error probability

For True/False problems (primality test etc.) there are MC algorithms with
one-sided error (1MC algorithms)

Las Vegas Algorithm has error probability 0

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 31 / 39



Monte-Carlo Algorithm (1MC) – Example

Consider urn with 10100 balls colored white (and possibly red)

Claim: Not all balls in the urn are white

How to test?

Random sample

ï If there is a red ball in the sample ï Claim proven

ï If there is no red ball in the sample ï Claim possibly false

One-sided error

Red balls are witnesses for claim

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 32 / 39



Monte-Carlo Algorithm (1MC) – Example

Consider urn with 10100 balls colored white (and possibly red)

Claim: Not all balls in the urn are white

How to test?

Random sample

ï If there is a red ball in the sample ï Claim proven

ï If there is no red ball in the sample ï Claim possibly false

One-sided error

Red balls are witnesses for claim

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 32 / 39



Monte-Carlo Algorithm (1MC) – Example

Consider urn with 10100 balls colored white (and possibly red)

Claim: Not all balls in the urn are white

How to test?

Random sample

ï If there is a red ball in the sample ï Claim proven

ï If there is no red ball in the sample ï Claim possibly false

One-sided error

Red balls are witnesses for claim

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 32 / 39



Monte-Carlo Algorithm (1MC) – Example

Consider urn with 10100 balls colored white (and possibly red)

Claim: Not all balls in the urn are white

How to test?

Random sample

ï If there is a red ball in the sample ï Claim proven

ï If there is no red ball in the sample ï Claim possibly false

One-sided error

Red balls are witnesses for claim

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 32 / 39



Monte-Carlo Algorithm (1MC) – Example

Consider urn with 10100 balls colored white (and possibly red)

Claim: Not all balls in the urn are white

How to test?

Random sample

ï If there is a red ball in the sample ï Claim proven

ï If there is no red ball in the sample ï Claim possibly false

One-sided error

Red balls are witnesses for claim

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 32 / 39



Simplified Solovay-Strassen Algorithm



Simplified Solovay-Strassen Algorithm (1MC)

Test whether x is a prime

Claim: x is not a prime
Consider set {2, . . . , x− 1} as urn
Divisor of x is witness for the claim
Random sample

ï If there is a divisor of x in sample ï Claim proven
ï If there are no divisors of x in sample ï Claim possibly false

One-sided error

For x = p · q with p and q being primes, probability to find a witness is

2
x− 2

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 33 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Test whether x is a prime
Claim: x is not a prime
Consider set {2, . . . , x− 1} as urn
Divisor of x is witness for the claim
Random sample

ï If there is a divisor of x in sample ï Claim proven
ï If there are no divisors of x in sample ï Claim possibly false

One-sided error

For x = p · q with p and q being primes, probability to find a witness is

2
x− 2

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 33 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Test whether x is a prime
Claim: x is not a prime
Consider set {2, . . . , x− 1} as urn
Divisor of x is witness for the claim
Random sample

ï If there is a divisor of x in sample ï Claim proven
ï If there are no divisors of x in sample ï Claim possibly false

One-sided error

For x = p · q with p and q being primes, probability to find a witness is

2
x− 2

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 33 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Test whether x is a prime
Claim: x is not a prime
Consider set {2, . . . , x− 1} as urn
Divisor of x is witness for the claim
Random sample

ï If there is a divisor of x in sample ï Claim proven
ï If there are no divisors of x in sample ï Claim possibly false

One-sided error

For x = p · q with p and q being primes, probability to find a witness is

2
x− 2

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 33 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Test whether x is a prime
Claim: x is not a prime
Consider set {2, . . . , x− 1} as urn
Divisor of x is witness for the claim
Random sample

ï If there is a divisor of x in sample ï Claim proven
ï If there are no divisors of x in sample ï Claim possibly false

One-sided error

For x = p · q with p and q being primes, probability to find a witness is

2
x− 2

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 33 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Find “better witnesses”

(Not exactly trivial number theory)

Fermat’s little theorem

If x is prime ï ax−1 ≡ 1 (mod x) ∀a ∈ {2, . . . , x− 1}

Pierre de Fermat (1607–1665)

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 34 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Find “better witnesses”

(Not exactly trivial number theory)

Fermat’s little theorem

If x is prime ï ax−1 ≡ 1 (mod x) ∀a ∈ {2, . . . , x− 1}

Pierre de Fermat (1607–1665)

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 34 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Find “better witnesses”

(Not exactly trivial number theory)

Fermat’s little theorem

If x is prime ï ax−1 ≡ 1 (mod x) ∀a ∈ {2, . . . , x− 1}

Pierre de Fermat (1607–1665)

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 34 / 39



Simplified Solovay-Strassen Algorithm (1MC)

If x is prime ï ax−1 mod x = 1 ∀a ∈ {2, . . . , x− 1}

x = 3: 22 ≡ 1 (mod 3)
x = 5: 24 ≡ 34 ≡ 1 (mod 5)

If for one a we have: ax−1 mod x 6= 1
x is definitely no prime
a is witness that x is no prime
It can be proven that there are > (x− 2)/2 witnesses

Otherwise x is possibly a prime

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 35 / 39



Simplified Solovay-Strassen Algorithm (1MC)

If x is prime ï ax−1 mod x = 1 ∀a ∈ {2, . . . , x− 1}

x = 3: 22 ≡ 1 (mod 3)
x = 5: 24 ≡ 34 ≡ 1 (mod 5)

If for one a we have: ax−1 mod x 6= 1
x is definitely no prime
a is witness that x is no prime
It can be proven that there are > (x− 2)/2 witnesses

Otherwise x is possibly a prime

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 35 / 39



Simplified Solovay-Strassen Algorithm (1MC)

If x is prime ï ax−1 mod x = 1 ∀a ∈ {2, . . . , x− 1}

x = 3: 22 ≡ 1 (mod 3)
x = 5: 24 ≡ 34 ≡ 1 (mod 5)

If for one a we have: ax−1 mod x 6= 1
x is definitely no prime
a is witness that x is no prime
It can be proven that there are > (x− 2)/2 witnesses

Otherwise x is possibly a prime

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 35 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Input: Number x

Choose a randomly from ∈ {2, . . . , x− 1}
Compute z = ax−1 mod x

If z 6= 1: Output “x is no prime”

Otherwise: Output “x is possibly prime”

Can be computed in polynomial time

Time complexity O(n3) instead of O(1.415n)
Efficient algorithm

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 36 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Input: Number x

Choose a randomly from ∈ {2, . . . , x− 1}

Compute z = ax−1 mod x

If z 6= 1: Output “x is no prime”

Otherwise: Output “x is possibly prime”

Can be computed in polynomial time

Time complexity O(n3) instead of O(1.415n)
Efficient algorithm

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 36 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Input: Number x

Choose a randomly from ∈ {2, . . . , x− 1}
Compute z = ax−1 mod x

If z 6= 1: Output “x is no prime”

Otherwise: Output “x is possibly prime”

Can be computed in polynomial time

Time complexity O(n3) instead of O(1.415n)
Efficient algorithm

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 36 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Input: Number x

Choose a randomly from ∈ {2, . . . , x− 1}
Compute z = ax−1 mod x

If z 6= 1: Output “x is no prime”

Otherwise: Output “x is possibly prime”

Can be computed in polynomial time

Time complexity O(n3) instead of O(1.415n)
Efficient algorithm

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 36 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Input: Number x

Choose a randomly from ∈ {2, . . . , x− 1}
Compute z = ax−1 mod x

If z 6= 1: Output “x is no prime”

Otherwise: Output “x is possibly prime”

Can be computed in polynomial time

Time complexity O(n3) instead of O(1.415n)
Efficient algorithm

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 36 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Input: Number x

Choose a randomly from ∈ {2, . . . , x− 1}
Compute z = ax−1 mod x

If z 6= 1: Output “x is no prime”

Otherwise: Output “x is possibly prime”

Can be computed in polynomial time

Time complexity O(n3) instead of O(1.415n)
Efficient algorithm

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 36 / 39



Simplified Solovay-Strassen Algorithm (1MC)

20 40 60 80 100 120 140 160 180 200

0

10 000 000

20 000 000

30 000 000

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 37 / 39



Simplified Solovay-Strassen Algorithm (1MC)

20 40 60 80 100 120 140 160 180 200

0

10 000 000

20 000 000

30 000 000

2n 1.415n

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 37 / 39



Simplified Solovay-Strassen Algorithm (1MC)

20 40 60 80 100 120 140 160 180 200

0

10 000 000

20 000 000

30 000 000

2n 1.415n

n3

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 37 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Algorithm has one-sided error

Suppose x is a prime

According to Fermat’s little therom there is no witness in {2, . . . , x− 1}
Correct output with probability 1
Suppose x is no prime

At least half of {2, . . . , x− 1} are witnesses

Correct output with probability 1/2

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 38 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Algorithm has one-sided error

Suppose x is a prime

According to Fermat’s little therom there is no witness in {2, . . . , x− 1}
Correct output with probability 1
Suppose x is no prime

At least half of {2, . . . , x− 1} are witnesses

Correct output with probability 1/2

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 38 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Algorithm has one-sided error

Suppose x is a prime

According to Fermat’s little therom there is no witness in {2, . . . , x− 1}

Correct output with probability 1
Suppose x is no prime

At least half of {2, . . . , x− 1} are witnesses

Correct output with probability 1/2

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 38 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Algorithm has one-sided error

Suppose x is a prime

According to Fermat’s little therom there is no witness in {2, . . . , x− 1}
Correct output with probability 1

Suppose x is no prime

At least half of {2, . . . , x− 1} are witnesses

Correct output with probability 1/2

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 38 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Algorithm has one-sided error

Suppose x is a prime

According to Fermat’s little therom there is no witness in {2, . . . , x− 1}
Correct output with probability 1
Suppose x is no prime

At least half of {2, . . . , x− 1} are witnesses

Correct output with probability 1/2

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 38 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Algorithm has one-sided error

Suppose x is a prime

According to Fermat’s little therom there is no witness in {2, . . . , x− 1}
Correct output with probability 1
Suppose x is no prime

At least half of {2, . . . , x− 1} are witnesses

Correct output with probability 1/2

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 38 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Algorithm has one-sided error

Suppose x is a prime

According to Fermat’s little therom there is no witness in {2, . . . , x− 1}
Correct output with probability 1
Suppose x is no prime

At least half of {2, . . . , x− 1} are witnesses

Correct output with probability 1/2

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 38 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Probability amplification by repeated execution each with an independent
choice of a

Run algorithm k times on the same x

if x is a prime, then error probability is 0
Else only one witness has to be found

Probability <1/2 that no witness it found in 1. run

Probability <1/4 that no witness is found in 1. and 2. run

Probability <1/k that no witness i found in all k runs

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 39 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Probability amplification by repeated execution each with an independent
choice of a

Run algorithm k times on the same x

if x is a prime, then error probability is 0
Else only one witness has to be found

Probability <1/2 that no witness it found in 1. run

Probability <1/4 that no witness is found in 1. and 2. run

Probability <1/k that no witness i found in all k runs

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 39 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Probability amplification by repeated execution each with an independent
choice of a

Run algorithm k times on the same x

if x is a prime, then error probability is 0

Else only one witness has to be found

Probability <1/2 that no witness it found in 1. run

Probability <1/4 that no witness is found in 1. and 2. run

Probability <1/k that no witness i found in all k runs

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 39 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Probability amplification by repeated execution each with an independent
choice of a

Run algorithm k times on the same x

if x is a prime, then error probability is 0
Else only one witness has to be found

Probability <1/2 that no witness it found in 1. run

Probability <1/4 that no witness is found in 1. and 2. run

Probability <1/k that no witness i found in all k runs

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 39 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Probability amplification by repeated execution each with an independent
choice of a

Run algorithm k times on the same x

if x is a prime, then error probability is 0
Else only one witness has to be found

Probability <1/2 that no witness it found in 1. run

Probability <1/4 that no witness is found in 1. and 2. run

Probability <1/k that no witness i found in all k runs

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 39 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Probability amplification by repeated execution each with an independent
choice of a

Run algorithm k times on the same x

if x is a prime, then error probability is 0
Else only one witness has to be found

Probability <1/2 that no witness it found in 1. run

Probability <1/4 that no witness is found in 1. and 2. run

Probability <1/k that no witness i found in all k runs

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 39 / 39



Simplified Solovay-Strassen Algorithm (1MC)

Probability amplification by repeated execution each with an independent
choice of a

Run algorithm k times on the same x

if x is a prime, then error probability is 0
Else only one witness has to be found

Probability <1/2 that no witness it found in 1. run

Probability <1/4 that no witness is found in 1. and 2. run

Probability <1/k that no witness i found in all k runs

Programming and Problem-Solving – Complexity and Primality Testing Spring 2021 Dennis Komm 39 / 39



Thanks for your
attention


	Time Complexity of Algorithms
	Primality Testing
	Asymptotic Upper Bounds
	Time Complexity Analysis

	Faster Primality Testing
	First Attempt
	Second Attempt
	Including Modules
	Best and Worst Case Analysis
	Monte-Carlo-Algorithm


