Departement Informatik

ETHziirich

Graphs

Searching in Networks

Programming
and Problem-Solving

Graphs and Graph Algorithms

Manuela Fischer and Dennis Komm

Spring 2021 — May 27, 2021

Social Network Abstract Modelling

Frlends A/E'Eld,s/ “

Siblings
Friends
F
Friends
‘;;;EEE\\\\\\‘ CoHeagues

Spring 2021 M. Fischer and D. Komm 1/29

Colleagues
Friends

riends

Spring 2021 M. Fischer and D. Komm 2/29

Programming and Problem-Solving — Graphs and Graph Algorithms

Programming and Problem-Solving — Graphs and Graph Algorithms




Abstract Modelling Abstract Modelling

A graph G = (V, E,w) consists of
1. aset V of vertices

m Vertices are called Vo, V1, V2, - - . Undirected unweighted graph Undirected weighted graph Directed unweighted graph
m Graphs are either weighted or unweighted

2. aset F of edges between some of the vertices
3. (a weight function w)

m Graphs are either directed or undirected Which type of graph is used depends on what we want to model

m Graphs are either connected or unconnected
We mostly consider undirected, unweighted, connected graphs

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 3/29 Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 4/29

Adjacency Matrices — Undirected Weighted Graphs

017205

Graphs 100000
On the Computer 700080
200005

00800 2

5005 20

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 5/29




Adjacency Matrices — Directed Unweighted Graphs

011000
@ 001101

@ S 000000
‘ 0000T171

001000

@ @ 000000

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm

6/29

Adjacency Lists — Directed Unweighted Graphs

(1,2),
'@ (2,3,5),
@ ‘ %’,)5),
(») 0)

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm

8/29

Adjacency Matrices — Directed / Undirected Graphs

Matrices of undirected graphs
are symmetric

D
1
0
1
0
1

= =)
S OO O
O = OO =
S = O O O

Programming and Problem-Solving — Graphs and Graph Algorithms

Matrices of directed graphs are
not (always) symmetric

01100
00010
00011
000 0O
00 00O

Spring 2021 M. Fischer and D. Komm

7/29

Adjacency Matrices and Lists in Python

Use 2-dimensional lists

Matrix: Weighted

List: Unweighted

Programming and Problem-Solving — Graphs and Graph Algorithms

¢G=1((C[0,1,7,2,0,51,
, 0,0,0,0,01,
,0,0,0,8,01,

[2, 0,0,0,0,5]1],
[o,0,8,0,0,21,
[5,0,0,5, 2,011

Matrix: Unweighted

G=1[

>
>

O O B O +» O

-
-

OO?'—‘HO
= o krkEroOR
oroorrH
= 2O oo
O O » B O O
[ W Ty S B

G=7[ (1,21, [0,2,8,5], [0,1,4], [1,4,5], [2,3], [1,3] ]

Spring 2021 M. Fischer and D. Komm

9/29




Graph Algorithms
Breadth-First and Depth-First Search

Breadth-First (BFS) and Depth-First Search (DFS)

Many applications need the systematic exploration of a given graph
m Start and an arbitrary vertex

m Follow edges through graph

m Store vertices in the respective order

BFS: First go broadly and than deeply, just as with the DFS: Go into the graph as deep as possible, then
Heap; break ties in favor of smaller indices broadly; again break ties in favor of smaller indices

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 10/29

Breadth-First Search
Iteratively with a Queue

BFS with a Queue

Queue: valvafvs|vs| | [ | |

Output: Vo V2 U4 Us U1 Uz Us

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 11/29




BFS with Queue and Adjacency Matrix

¢G=1[ [0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
[1,0,1,0,0,0,1], [1,1,1,0,0,0,0], [0,0,0,0,1,0,0] ]

queue = []

visited = [ 0 for i in range(len(G)) ]

m Consider first vertex in queue and print it

m Add unvisited neighbors to queue

m visited stores which vertices have been visited

m Repeat as long as queue is not empty
Programming and Problem-Solving — Graphs and Graph Algorithms

Spring 2021 M. Fischer and D. Komm

12/29

BFS with Queue and a Adjacency Matrix

def BFS(G):
queue = []
visited = [ 0 for i in range(len(G)) ]
queue. append (0)
visited[0] = 1
while len(queue) > O:
current = queue.pop(0)
print(current, end=" ")
for j in range(len(G)):
if G[current] [j] == 1 and visited[j] ==
visited[j] = 1
queue.append (j)
Brs([ [0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
[1,0,1,0,0,0,11, [1,1,1,0,0,0,0], [0,0,0,0,1,0,0] 1)

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm

14/29

Exercise — BFS with Queue and Adjacency Matrix

Implement BFS

m as a Python function

m with a 2-dimensional list as parameter
B using a queue

m and an adjacency matrix

G=1[ [0,0,1,0,1,1,0], [0,0,1,1,0,1,0], [1,1,0,1,1,1,0], [0,1,1,0,0,0,0],
[1,0,1,0,0,0,11, [1,1,1,0,0,0,0], [0,0,0,0,1,0,0] ]

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm

13/29

Exercise — BFS with Queue and Adjacency List

Implement BFS

m as a Python function

m with a 2-dimensional list as parameter
B using a queue

m and an adjacency list

G=1[ [2,4,5], [2,3,5], [0,1,3,4,5], [1,2],
[0,2,6]1, [0,1,2], [4] ]

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm

15/29




BFS with Queue and a Adjacency List

def BFS(G):
queue = []
visited = [ 0 for i in range(len(G)) 1]
queue. append (0)
visited[0] = 1
while len(queue) > O:
current = queue.pop(0)
print(current, end=" ")
for j in G[current]:
if visited[j] ==
visited[j] = 1
queue.append (j)

BFS([ [2,4,5], [2,3,5], [0,1,3,4,5], [1,2], [0,2,6], [0,1,2], [4] 1)

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 16/29

DFS with a Stack

Depth-First Search
Iteratively with a Stack

Stack: Up [ Vs va|vs[vs|vs|vs] |
Output: Yo V2 U1 U3 Us Vs Us
Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 17/29

DFS with Stack and Adjacency Matrix

G=17[~[[,o0,1,0,1, 1, 0],
o, o, 1, 1, 0, 1, 0],
[1, 1, 0, 1, 1, 1, 0],
o, 1, 1, o, 0, 0, 0],
[1, o, 1, 0, 0, 0, 1],
(1, 1, 1, 0, 0, 0, 0],
o, o, 0, 0, 1, 0, 01 1

stack = []

visited = [ 0 for i in range(len(G)) ]

m Consider first vertex in stack and print it

m Add unvisited neighbors to stack

m visited stores which vertices have been visited
m Repeat as long as stack is not empty

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 18/29




Exercise — DFS with Stack and Adjacency Matrix DFS with Stack and Adjacency Matrix

def DFS(G):
stack = []
visited = [ 0 for i in range(len(G)) 1]

Implement DFS

m as a Python function
stack.append (0)

m with a 2-dimensional list as while len(stack) > O:
parameter current = stack.pop()
if visited[current] ==

m using a stack
visited[current] = 1

m and an adjacency matrix print(current, end=" ")
for j in reversed(range(len(G))):
G¢=_[ [0,0,1,0,1,1,0], [0,0,1,1,0,1,0], if G[current][j] == 1 and visited[j] ==
[,1,0,1,1,1,0, [0,1,1,0,0,0,0], sl el ()

[1,0,1,0,0,0,1]1, [1,1,1,0,0,0,0],

[0’0,0,0,1,0’0]] DFS( [ [0,0’1’0’1a1’0], [0’0’1’1’0’1’0], [1’1’0’1a1’1’0], [0’1’1’0’0’0,0]a

[1,0,1,0,0,0,11, [1,1,1,0,0,0,0], [0,0,0,0,1,0,0]1 1)

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 19/29 Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 20/29

Exercise — DFS with Stack and Adjacency List DFS with Stack and Adjacency List

def DFS(G):

Implement DFS stack = []
. visited = [ 0 for i in range(len(G)) 1]
m as a Python function o)
m with a 2-dimensional list as while len(stack) > 0:
parameter current = stack.pop()
. if visited[current] ==
B using a stack visited[current] = 1
E and an adjacency matrix print(current, end=" ")

for j in reversed(G[current]):
if visited[j] ==
stack.append(j)

DFS([ [2,4,5], [2,3,5], [0,1,3,4,5], [1,2], [0,2,6], [0,1,2], [4] 1)

G = [ [2,4,5], [2,3,5], [0,1,3,4,5], [1,2], [0,2,6], [0,1,2], [4] ]

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 21/29 Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 22/29




Recursive DFS

m Global list visited
m Function DFS, which is called recursively
m Two parameters

Depth-First Search i graph G

. 2. Start vertex current
Recursively

visited = [ 0 for i in range(len(G)) ]
def DFS(G, current):
visited[current] = 1

print(current, end=" ")
for i in range(len(G)):
if G[current] [i] == 1 and visited[i] ==
DFS(G, i)
Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 23/29

Recursive DFS

Recursive DFS
Applications

DFS(G,0) DFS(G,2) DFS(G,4) DFS(G,6)

Output: Yo V2 Ui U3 Us Us Us

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 24/29




Applications

Is graph connected?

= DFS from arbitrary vertex; are all vertices visited when done?

Is vertex w reachable from vertex v?

= DFS from v; is w visited when done?

Is a graph 2-colorable?

= DFS from arbitrary vertex and color levels differently

Does a graph contain a cycle?

= DFS from arbitrary vertex; is there a back edge?

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm

25/29

Recursive DFS
Graph Coloring

Graph Coloring

Consider arbitrary graph
m Can it be colored with two colors?
m Connected vertices (“neighbors”) have different color
m Compute recursively

m List color instead of visited
m 0: not yet visited

m 1: colored green

m 2: colored red

b

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm

26/29

Graph Coloring

We use recursive DFS
m All neighbors of current get a color different from that of current
m If neighbor already has same color as current, coloring is invalid

def coloring(G, current):
for i in range(len(G)):

if G[current] [i] == 1 and color[i] ==
color[i] = 3 - color[current]
coloring(G, i)

elif G[current] [i] == 1 and color[i] == color[current]:
print("Coloring impossible.")
return

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm

27129




Recursive DFS
Finding Cycles

Finding Cycles

Compute whether graph contains a cycle
Extend DFS such that parent is considered

def find_cycle(G, current, parent):
visited[current] = 1
print(current, end=" ")
for i in range(len(G)):
if G[lcurrent] [i] == 1 and visited[i] ==
find_cycle(G, i, current)

elif G[current] [i] == 1 and visited[i] == 1 and i != parent:
print ("Found cycle.")
return

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 29/29

Finding Cycles

m DFS computes this

m Traverse graph as before

m s there an edge to a vertex we already visited?
m Back-Edge

m Attention: Single edge is not a cycle

Programming and Problem-Solving — Graphs and Graph Algorithms Spring 2021 M. Fischer and D. Komm 28/29




	Graphs
	Searching in Networks
	On the Computer

	Graph Algorithms
	Breadth-First and Depth-First Search
	Breadth-First Search
	Depth-First Search
	Recursive DFS
	Applications
	Graph Coloring
	Finding Cycles


