
Departement Informatik

Programming
and Problem-Solving
Dynamic Programming

Dennis Komm

Spring 2021 – Mai 6, 2021

Recursive Sorting and Searching
O(n log2 n) Sorting Algorithms

Iterative Mergesort

[8, 3, 1, 5, 6, 2, 4, 7][[8], [3], [1], [5], [6], [2], [4], [7]][[3, 8], [1, 5], [2, 6], [4, 7]][[1, 3, 5, 8], [2, 4, 6, 7]][[1, 2, 3, 4, 5, 6, 7, 8]]

8 3 1 5 6 2 4 78 3 1 5 6 2 4 7

3 8 1 5 2 6 4 7

1 3 5 8 2 4 6 7

1 2 3 4 5 6 7 8

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 1 / 43

Iterative Mergesort

Centerpiece is the function merge() which merges two sorted lists

def merge(leftdata, rightdata):
result = []
while len(leftdata) > 0 and len(rightdata) > 0:

if leftdata[0] > rightdata[0]:
result.append(rightdata.pop(0))

else:
result.append(leftdata.pop(0))

return result + leftdata + rightdata

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 2 / 43



Recursive Mergesort

8 3 1 5 6 2 4 7

8 3 1 5 6 2 4 7

8 3 1 5 6 2 4 7

8 3 1 5 6 2 4 7

3 8 1 5 2 6 4 7

1 3 5 8 2 4 6 7

1 2 3 4 5 6 7 8
recursive

call

recursive
call

recursive
call

return
and merge

return
and merge

return
and merge

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 3 / 43

Recursive Mergesort

Mergesort as a recursive Python function

that takes a list as parameter

splits it in the middle into two lists

calls the algorithm recursively on these lists

merges the lists that are sorted this way, and returns them

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 4 / 43

Recursive Mergesort

def mergesort(data):
if len(data) <= 1:

return data
mid = len(data) // 2
leftdata = mergesort(data[:mid])
rightdata = mergesort(data[mid:])
result = []
while len(leftdata) > 0 and len(rightdata) > 0:

if leftdata[0] > rightdata[0]:
result.append(rightdata.pop(0))

else:
result.append(leftdata.pop(0))

return result + leftdata + rightdata

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 5 / 43

Recursive Sorting and Searching
O(n log2 n) Sorting Algorithms – Quicksort



Recursive Quicksort

One of the best-known sorting algorithms

Worst-case time complexity in O(n2)
But can be randomized at a specific place

Expected time complexity in O(n log2 n)
Very good time complexity in practice

Pick arbitrary pivot element (we always take the first one)

Create a list with smaller and one with larger elements

Call algorithm recursively on these lists

Concatenate lists that are sorted this way

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 6 / 43

Recursive Quicksort

551 32 73 14 85 66 47 28

331 12 43 24 5
Pivot 1

776 87 68

111 22 3
Pivot 2.1

44 66 7
Pivot 2.2

88

1
Pivot 3

22 4 6 8

2

recursive
call

recursive
call

recursive
call

recursive
call

return

return and
concatenate

return and
concatenate

return and
concatenate

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 7 / 43

Recursive Quicksort

Quicksort as a recursive Python function

that takes a list data

chooses the first element of data as pivot element

creates a list with smaller and a list with larger elements

calls the algorithm recursively on these lists

concatenates and returns the lists that are sorted this way and the pivot
element

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 8 / 43

Recursive Quicksort

def quicksort(data):
if len(data) <= 1:

return data
else:

pivot = data[0]
leftdata = [i for i in data[1:] if i < pivot]
rightdata = [i for i in data[1:] if i >= pivot]
return quicksort(leftdata) + [pivot] + quicksort(rightdata)

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 9 / 43



Dictionaries

Python Lists

Access position i with [i]
Add element x at the end using append(x)
Remove element at beginning or end with pop(0) respectively pop()
Add or remove element at position i with insert(i,x) or pop(i)
List Comprehensions
Test whether element is in list with in
Iterate over all elements with for loop
Generate sublist from position i to j with [i:j+1]
. . .

Restriction through access via index, e.g., if all data are associated with
indices, but there is not data for all possible indices

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 10 / 43

Python Dictionaries

Key-Value pairs
Access not through index, but self-defined “key”

Partially similar functionality as lists

. . . but data is not sorted by indices

Initialization with curly brackets
data = {}

Keys and values are separated by colon
data = {10 : "Wert 1", 16 : "Wert 2", 39 : "Wert 3" }
data = {"eins" : "Wert 1", "zwei" : "Wert 2", "pi" : 3.14 }

Access value with key key with [key]
print(data[16])

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 11 / 43

Fibonacci Numbers



Fibonacci Numbers

The sequence of Fibonacci numbers is defined as

1, 1, 2, 3, 5, 8, 13, 21, 34, . . . ,

A number of the sequence is given by the sum of its two predecessors; the
first two numbers are both 1
Can be found in many natural phenomena. . . or at Zurich main station

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 12 / 43

Fibonacci Numbers

Computation can be carried out iteratively or
recursively

Recursively defined as

fib(1) = 1, fib(2) = 1

and

fib(n) = fib(n− 1) + fib(n− 2)

Can be implemented directly in Python

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 13 / 43

Exercise – Computing Fibonacci Numbers Recursively

Implement a recursive
function that

takes a parameter n

and returns the nth Fibonacci
number

Then output the first 20 Fibonacci
numbers

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 14 / 43

Computing Fibonacci Numbers Recursively

def fib(n):
if n == 1 or n == 2:

return 1
else:

return fib(n-1) + fib(n-2)

for i in range(1, 21):
print(fib(i), end=" ")

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 15 / 43



Computing Fibonacci Numbers Recursively

fib(5)

fib(4) fib(3)

fib(3) fib(2)fib(2) fib(2)fib(2) fib(1)

fib(2)fib(2) fib(1)

Tree structure

fib(2) is computed
three times, for instance

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 16 / 43

Memoization

Memoization

Function fib is called repeatedly with identical parameter values

Recursion is a lot slower than iteration

This problem did not appear with binary search or computing the factorial, as
the calls were linear

With Mergesort and Quicksort we also had a tree structure, but disjoint calls

fib(n) calls fib(n-1) and fib(n-2)

fib(n-1) again calls fib(n-2)

fib(n-2) calls the whole subtree both times

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 17 / 43

Memoization

Instead of computing values multiple times, store and reuse them

Every function call first checks whether value has already been calculated
If it is, the value is not computed again
If it is not, the value is newly computed and stored

Apart from that, principle of the algorithm stays the same

Store values in dictionary

This can be a global variable or passed as parameter

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 18 / 43



Exercise – Fibonacci Numbers with Memoization

Implement a recursive
function that

takes a parameter n

and returns the nth Fibonacci number

while using a dictionary to implement
memoization, looking up the given
value using in

Then output the first 200 Fibonacci
numbers

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 19 / 43

Fibonacci Numbers with Memoization

memo = {1: 1, 2: 1}

def fib(n):
if n in memo:

return memo[n]
else:

memo[n] = fib(n-1) + fib(n-2)
return memo[n]

for i in range(1, 201):
print(fib(i))

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 20 / 43

Similarity of DNA

Similarity of DNA

Find method to compare different DNA molecules

Search in gene (or protein) database

Creation of phylogenetic trees

Problem appearing in DNA sequencing

Find data structure for molecules

Define a reasonable similarity measure

Design an algorithm to compute the similarity with respect to the measure
efficiently

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 21 / 43



Modelling the Data – Molecules as Strings

Representation as strings
DNA are chainlike molecules that consist of repeated building blocks

(cytosine, guanine, adenine, and thymine)
replacements

→

→

TCTGA

AA

AC

CG

G

T

TT

PPP

P PPPP

PP

Z

ZZ Z Z Z

ZZZZ

3′

3′

5′

5′

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 22 / 43

Alignments – Similarity Measure

Similarity measure should reflect common changes in DNA sequences

Exchange of single bases of amino acids
Insertion of removal of short subsequences

Alignments: Write both strings below each other,
insert gaps at arbitrary positions

Input: Strings s = GACGATTATG and t = GATCGAATAG

Possible alignments

s′ = GA–CGATTATG

t′ = GATCGAATA–G

s′′ = GAC–GATTATG

t′′ = GATCGAATAG–

s′′′ = GACGAT––––TA–TG

t′′′ = –––GATCGAATAG––

Two consecutive gaps do not make sense and are therefore assumed not appear

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 23 / 43

Alignments – Similarity Measure

Idea for penalties

Evaluate alignment column by column, then sum over all columns

Column with gap induces penalty g

Column with letters a and b induces penalty p(a, b)
p(a, b) is zero for a = b and large for a 6= b

Goal: Minimize penalty

Example for penalties: edit distance

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 24 / 43

Edit Distance

Levenshtein, 1966

Count mismatches and gaps, i.e.,
g = 1
p(a, a) = 0, and
p(a, b) = 1 for a 6= b

Input: Strings s = GACGATTATG and t = GATCGAATAG

Possible alignments

s′ = GA–CGATTATG

t′ = GATCGAATA–G

s′′ = GAC–GATTATG

t′′ = GATCGAATAG–

s′′′ = GACGAT––––TA–TG

t′′′ = –––GATCGAATAG––

Edit distance: dedit(s′, t′) = 3 dedit(s′′, t′′) = 5 dedit(s′′′, t′′′) = 10
Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 25 / 43



Exhaustive Search

Question: How to find an optimal alignment?
Idea: Try out all possible alignments
Problem: These are too many

Let s and t be two strings of length n.
Then there are more than 3n possible alignments for s and t.

Alignment is uniquely defined by the positions of inserted gaps
Example for n = 3

s1 – – s2 s3
– t1 t2 – t3

or
s1 s2 – – s3
t1 – t2 t3 –

This already leads to 3n alignments
Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 26 / 43

Exponential Time Complexity

n 10 50 100 300 10 000

10n 100 500 1 000 3 000 100 000
3n2 300 7 500 30 000 270 000 300 000 000
n3 1 000 125 000 1 000 000 27 000 000 13 digits
3n 59 049 24 digits 48 digits 143 digits 4 772 digits

Exhaustive search too slow

Dynamic programming

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 27 / 43

Dynamic Programming
The Algorithm of Needleman and Wunsch

Dynamic Programming

Solution for input can be computed from subsolutions to subproblems,
starting with the smallest subproblem

Subsolutions are stored and reused (repeatedly)

Use table

Memoization is closely related to dynamic programming

Similar approach to divide-and-conquer, but tries to avoid recursion

Bottom-Up instead of Top-Down

Bellman equation: Optimal solution can be computed from optimal
solutions to subproblems

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 28 / 43



Dynamic Programming

Whether DP can be applied depends on whether subproblems can be
defined for which the Bellman equation works

The crucial point is thus to cleverly define subproblems

Needleman and Wunsch, 1970

All pairs of prefixes of the given strings are subproblems

Compute alignments of longer prefixes from optimal alignments of shorter
prefixes

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 29 / 43

Example for the Alignment of Prefixes

Compute optimal alignment of s = ATG and t = TAG

Distinguish three cases with respect to the last column

AT

TA

G

G

︸ ︷︷ ︸
dedit(AT,TA)

︸ ︷︷ ︸
+0

AT

TAG

G

–

︸ ︷︷ ︸
dedit(AT,TAG)

︸ ︷︷ ︸
+1

ATG

TA

–

G

︸ ︷︷ ︸
dedit(ATG,TA)

︸ ︷︷ ︸
+1

replacements

AT–

–TA

G

G

︸ ︷︷ ︸
2

︸ ︷︷ ︸
+0

replacements

AT– –

–T A G

G

–

︸ ︷︷ ︸
3

︸ ︷︷ ︸
+1

replacements

ATG

–TA

–

G

︸ ︷︷ ︸
2

︸ ︷︷ ︸
+1

Computation of dedit(ATG, TAG) reduced to
computation of edit distance of three pairs of prefixes

Optimal alignment with edit distance dedit(s′, t′) = 2:
s′ = AT–G
t′ = –TAG

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 30 / 43

Initialization the Penalty Table

The empty string is a string of length 0
It is prefix of ever string

Initialization
Alignment of a non-empty prefix with λ is unique

s1

–
s2

–
. . .

. . .

si
–

or
–
t1

–
t2

. . .

. . .

–
ti

Penalty: dedit(s1 . . . si, λ) = dedit(λ, t1 . . . ti) = i

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 31 / 43

Filling out the Penalty Table

0

0

1

1

2

2

3

3

4

4

5

s
t

A

CC

C

G

GT

T

T

0

0

1

1

2

2

3

3

4

4

5

s
t

0 1

1

2

2

3

3

4

4

5

A

CC

C

G

GT

T

T

0

0

1

1

2

2

3

3

4

4

5

s
t

0 1

1

2

2

3

3

4

4

5

A

CC

C

G

GT

T

T

+1

0

0

1

1

2

2

3

3

4

4

5

s
t

0 1

1

2

2

3

3

4

4

5

A

CC

C

G

GT

T

T

+1

+1

0

0

1

1

2

2

3

3

4

4

5

s
t

0 1

1

2

2

3

3

4

4

5

A

CC

C

G

GT

T

T

+1
+1

+1

0

0

1

1

2

2

3

3

4

4

5

s
t

0 1

1

2

2

3

3

4

4

5

A

CC

C

G

GT

T

T

1
+1

+1

+1

0

0

1

1

2

2

3

3

4

4

5

s
t

0

1

1

1

2

2

3

3

4

4

5

A

CC

C

G

GT

T

T

0

0

1

1

2

2

3

3

4

4

5

s
t

0

1

1

1

2

2

3

3

4

4

5

A

CC

C

G

GT

T

T

1

+1

+1

+0

0

0

1

1

2

2

3

3

4

4

5

s
t

0

1

1

1

1

2

2

3

3

4

4

5

A

CC

C

G

GT

T

T

0

0

1

1

2

2

3

3

4

4

5

s
t

0

1

1

11

2

2

2

3

3

3

4

4

4

5

A

CC

C

G

GT

T

T

0

0

1

1

2

2

3

3

4

4

5

s
t

0

1

11

1

11

2

2

2

2

2

2

22

2

2

3

3

3

3

3 3

34

4

4

4

45

A

CC

C

G

GT

T

T

0

0

1

1

2

2

3

3

4

4

5

s
t

0

1

11

1

11

2

2

2

2

2

2

22

2

2

3

3

3

3

3 3

34

4

4

4

45

A

CC

C

G

GT

T

T

Compute dedit(s1, t1):

InitializationInsert gap in t

λ A
C︸︷︷︸

dedit(λ,t1)

–︸︷︷︸
+1

Insert gap in s

A –
λ︸︷︷︸

dedit(s1,λ)

C︸︷︷︸
+1

Insert mismatch

λ A
λ︸︷︷︸

dedit(λ,λ)

C︸︷︷︸
+1

Compute minimumInsert gap in t

λ A
C︸︷︷︸

dedit(λ,t1)

–︸︷︷︸
+1

Insert gap in s

A –
λ︸︷︷︸

dedit(s1,λ)

C︸︷︷︸
+1

Insert mismatch

λ A
λ︸︷︷︸

dedit(λ,λ)

C︸︷︷︸
+1

Compute minimumInsert gap in t

λ A
C︸︷︷︸

dedit(λ,t1)

–︸︷︷︸
+1

Insert gap in s

A –
λ︸︷︷︸

dedit(s1,λ)

C︸︷︷︸
+1

Insert mismatch

λ A
λ︸︷︷︸

dedit(λ,λ)

C︸︷︷︸
+1

Compute minimumInsert gap in t

λ A
C︸︷︷︸

dedit(λ,t1)

–︸︷︷︸
+1

Insert gap in s

A –
λ︸︷︷︸

dedit(s1,λ)

C︸︷︷︸
+1

Insert mismatch

λ A
λ︸︷︷︸

dedit(λ,λ)

C︸︷︷︸
+1

Compute mini-

mumCompute dedit(s2, t1) Compute remainder of column 1 Compute remainder of table dedit(s, t) = 2

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 32 / 43



Filling out the Penalty Table

0

0

1

1

2

j−1 j n

i

i − 1

m

· · · · · ·

...

...

s
t

Letzte Spalte des Alignments ist

Lücke in t Fall 1

Lücke in s Fall 2

Match/Mismatch Fall 3

Gap in t

Gap in s

Match resp. mismatch

Case 1

Case 2

Case 3

dedit(s1 . . . si, t1 . . . tj) = min{dedit(s1 . . . si−1, t1 . . . tj) + 1,

dedit(s1 . . . si, t1 . . . tj−1) + 1,

dedit(s1 . . . si−1, t1 . . . tj−1) + p(si, tj)}

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 33 / 43

Dynamic Programming
Implementation in numpy

Alignment Algorithm – Initialization

Use the module numpy that allows fast computations using matrices (tables)
import numpy as np

Input is given as two strings seq1 and seq2
seq1 = "ACTAC"
seq2 = "AACTGATGA"
m = len(seq1)
n = len(seq2)

Initialize penalty table
penal = np.zeros((m+1, n+1))
for j in range(0, n+1):

penal[0][j] = j First row (alignment with λ)
for i in range(0, m+1):

penal[i][0] = i First column (alignment with λ)

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 34 / 43

Alignment Algorithm – Filling out the Penalty Table

for i in range(1, m+1): For every row
for j in range(1, n+1): For every column
if seq1[i-1] == seq2[j-1]: Same letter in current cell?
pij = 0 Then no penalty

else: Otherwise
pij = 1 There is a penalty

x = [penal[i-1][j] + 1, penal[i][j-1] + 1, penal[i-1][j-1] + pij]
penal_min = np.amin(x) Consider three possibilities Compute minimum of these

possibilities
penal[i][j] = penal_min Insert gap in second string Insert gap in first string Insert

match respectively mismatch Store minimum value in penalty table

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 35 / 43



Computing the Optimal Alignment

0

0

1

1

2

2

3

3

4

4

5

s
t

0 1

11

2

2

3

3

4

4

5

A

CC

C

G

GT

T

T

0

0

1

1

2

2

3

3

4

4

5

s
t

0

1

1

11

2

2

3

3

4

4

5

A

CC

C

G

GT

T

T

0

0

1

1

2

2

3

3

4

4

5

s
t

0

1

11

1

11

2

2

2

2

2

2

22

2

2

3

3

3

3

3 3

34

4

4

4

45

A

CC

C

G

GT

T

T

0

0

1

1

2

2

3

3

4

4

5

s
t

0

1

11

1

11

2

2

2

2

2

2

22

2

2

3

3

3

3

3 3

34

4

4

4

45

A

CC

C

G

GT

T

T

0

0

1

1

2

2

3

3

4

4

5

s
t

0

1

11

1

11

2

2

2

2

2

2

22

2

2

3

3

3

3

3 3

34

4

4

4

45

A

CC

C

G

GT

T

T

s′ = A C T T G

t′ = C C T – G

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 36 / 43

Alignment Algorithm – Initialization of the Tracing Table

Tracing (Arrows in the penalty table)

Additionally store the index of the minimum element

Create table to store the way through the penalty table. . .

penal = np.zeros((m+1, n+1))
trace = np.zeros((m+1, n+1)) Same size as penalty table

for j in range(1, n+1):
trace[0][j] = 1 Only steps from left in first row

for i in range(1, m+1):
trace[i][0] = 0 Only steps from above in first column

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 37 / 43

Alignment Algorithm – Filling out the Tracing Table

Store index of minimum with numpy function argmin. . .
penal_min = np.amin(x) Compute minimum penalty
index_min = np.argmin(x) Compute index of the minimum
penal[i][j] = penal_min Store value
trace[i][j] = index_min Store index

Run backwards through table trace
Value gives index of the minimum
Insert gap or match respectively mismatch accordingly
Continue with previous column and row of trace
For match respectively mismatch, this is the cell above-left
i = i-1 and j = j-1
Otherwise, only decrease i or j

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 38 / 43

Alignment Algorithm – Print the Result

Result of algorithm is 2-dimensional list result with
one list for the first string
another list for the second string

Start in the lower-right corner of the table

Fill result with reversed alignment

Result will be formatted more readable afterwards

result = [[], []]
i = m
j = n

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 39 / 43



Alignment Algorithm – Print the Result

while i > 0 or j > 0: As long as we are not yet at the upper-left corner
if trace[i][j] == 0: If step from above

result[0].append(seq1[i-1]) Insert gap in second string
result[1].append(”-”)
i -= 1 And continue in row above

elif trace[i][j] == 1: If step from left
result[0].append(”-”) Insert gap in first string
result[1].append(seq2[j-1])
j -= 1 And continue in column to the left

else: If step from above-left
result[0].append(seq1[i-1]) Insert match respectively mismatch
result[1].append(seq2[j-1]) (Print both letters)
i -= 1 And continue in cell above-left
j -= 1

for k in range(len(result[0])-1, -1, -1):
print(result[0][k], " <-> ", result[1][k])

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 40 / 43

Alignment Algorithm – Time Complexity

There are two parts
1. Filling out the tables
2. Output of the result

Filling out the matrices takes more time since every cell is considered

for i in range(1, m+1): For every row
for j in range(1, n+1): For every column

if seq1[i-1] == seq2[j-1] One comparison
...
x = [penal[i-1][j] + 1, penal[i][j-1] + 1, penal[i-1][j-1] + pij]
penalty_min = amin(x) Two comparisons
...

3 ·m · n comparisons

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 41 / 43

Alignment Algorithm – Time Complexity

Time complexity: Roughly 3n2 for two strings of equal length n

n 10 50 100 300 10 000

10n 100 500 1 000 3 000 100 000
3n2 300 7 500 30 000 270 000 300 000 000
n3 1 000 125 000 1 000 000 27 000 000 13 digits
3n 59 049 24 digits 48 digits 143 digits 4 772 digits

Comparison of two genes (size of n ≈ 10 000) takes

100 MB of space and

less than 1 minute of time
Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 42 / 43

Alignment Algorithm – Time Complexity

2 4 6 8 10 12 14 16 18 20

0

50 000

100 000

Exhaustive search

Alignment algorithm

Length of sequences

C
om

pa
ris

on
s

Programming and Problem-Solving – Recursion and Dynamic Programming Spring 2021 Dennis Komm 43 / 43


	Recursive Sorting and Searching
	Mergesort
	Quicksort

	Dictionaries
	Fibonacci Numbers
	Memoization
	Similarity of DNA
	Dynamic Programming
	The Algorithm of Needleman and Wunsch
	Implementation in numpy


