
Departement Informatik

Programming
and Problem-Solving
Binary Search an Recursion

Dennis Komm

Spring 2021 – April 29, 2021

Searching
Linear Search

Linear Search

Run once through list from left to right and compare each element to he
sought one

Most straightforward strategy to search

Works for unsorted data

Needs up to n comparisons on list of length n if sought element is at last
position (or does not appear)

Time complexity in O(n)

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 1 / 30

Linear Search

def linsearch(data, searched):
index = 0
while index < len(data):

if data[index] == searched:
return index

index += 1
return -1

def linsearch(data, searched):
if searched in data:

return True
else:

return False

def linsearch(data, searched):
return searched in data

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 2 / 30



Searching
Binary Search

Binary Search

Example

Given a list with the first 8 prime numbers, find the position of 17

0 1 2 3 4 5 6 74 5 6 76 77
2 3 5 7 11 13 17 1911 13 17 1917 1919

17

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 3 / 30

Binary Search

Use that data is sorted

Two variables left and right

These specify search space

Look at value in the middle (index current)

If this value is what we searched for, we are done

If this value is too small, then also everything left of it is too small

ï left = current + 1

If this value is too small, then also everything right of it is too large

ï right = current - 1

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 4 / 30

Binary Search

Sorting and searching data are two of the fundamental tasks of computer
scientists

The first binary search was published in 1946 (and the
principle was known long before), but the first version
that works correctly for all n only appeared 14 years
later

“Although the basic idea of binary search is comparatively
straightforward, the details can be surprisingly tricky. . . ”

–Donald Knuth

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 5 / 30



Exercise – Binary Search

Implement binary search

as Python function

using three “pointers” left, right, and
current

Initially, set left = 0 and
right = len(data) - 1

In every step, shrink search space as
described

If element is found, its position is
returned

Otherwise, -1 is returned
Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 6 / 30

Binary Search

def binsearch(data, searched):
left = 0
right = len(data) - 1
while left <= right:

current = (left + right) // 2
if data[current] == searched:

return current
elif data[current] > searched:

right = current - 1
else:

left = current + 1
return -1

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 7 / 30

Searching
Complexity of Binary Search

Complexity of Binary Search

At first, there are n elements

With every iteration, the search space is halved

After the first iteration, there remain n/2 elements

After the second iteration, there remain n/4 elements

. . .

After how many iterations x does there remain only one element?

n/2x = 1 ⇐⇒ n = 2x ⇐⇒ x = log2 n

Time complexity in O(log2 n)

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 8 / 30



Complexity of Binary Search

10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

Linear search

Binary searchBinary search

Input length n

C
om

pa
ris

on
s

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 9 / 30

Complexity of Binary Search

We again use a variable counter to count the comparisons

Algorithm is executed on sorted lists with values 1 to n

The value of n grows by 1 with every iteration

Initially, n is 1, at the end 1 000 000
The first element 1 is always sought

Results are stored in a list and plotted using matplotlib

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 10 / 30

Complexity of Binary Search

Worst Case

values = []
data = [1]

for i in range(1, 1000001):
data.append(data[-1] + 1)
values.append(binsearch(data, 1))

plt.plot(values, color="red")
plt.show()

Add element that
is larger by 1 than

the currently last

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 11 / 30

Complexity of Binary Search

What happens if data is unsorted?

Linear search always works for unsorted lists and is in O(n)
Sorting can pay off for multiple searches

Sorting is in O(n log2 n) and is therefore slower than linear search

Binary search is in O(log2 n) and is consequently much faster than linear
search

When does sorting pay off?
If more than log2 n searches are made

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 12 / 30



Recursive Functions

Recursive Functions

def f(): ⇐⇒ Python “learns” new word f

From Merriam-Webster dictionary

re·frig·er·a·tor
A room or appliance for keeping food or other items cool

This analogy is not entirely correct
Such functions are called recursive functions

Not from Merriam-Webster dictionary

re·frig·er·a·tor
A refrigerator

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 13 / 30

Recursive Functions

This results in an endless loop

def f():
print("Hello world!")
f()

f()
print(”Hello world!”)
f()

print(”Hello world!”)
f()

print(”Hello world!”)
f()

print(”Hello world!”)
f() ∞

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 14 / 30

Recursive Functions

We use parameters to end after a finite number of calls

def f(k):
print(k)
if k == 1:

return
else:

f(k-1)

Parameter (or any local variable) is
newly created for every function call

f(4)

print(4)
if 4 == 1:

return
else:

f(3)

print(3)
if 3 == 1:

return
else:

f(2)

print(2)
if 2 == 1:

return
else:

f(1)

print(1)
if 1 == 1:

return
else:

f(0)

×
(Termination)

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 15 / 30



Factorial and Sum

Computing the Factorial Recursively

Factorial of a natural number n is defined by

fact(n) = n! = n · (n− 1) · (n− 2) · · · · · 2 · 1

For instance, 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040
We observe

n! = n · (n− 1)! = n · (n− 1) · (n− 2)! = . . .

Function can be computed recursively by

fact(1) = 1 and fact(n) = n · fact(n− 1)

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 16 / 30

Computing the Factorial Recursively – in Python

def fact(n):
if n == 1:

return 1
else:

return n * fact(n-1)

As before, parameter is newly
created for every function call
Last call returns
fixed value 1
Other calls return
n times “factorial of n-1”

Call Stack

fact(7)

fact(6)

fact(5)

fact(4)

fact(3)

fact(2)

fact(1) return 1

return 2 * 1

return 3 * 2

return 4 * 6

return 5 * 24

return 6 * 120

return 7 * 720

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 17 / 30

Exercise – Computing a Sum Recursively

Implement a recursive
function that

takes a parameter n

and returns the sum of the first n
natural numbers

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 18 / 30



Exercise – Computing a Sum Recursively

Both recursive functions can be implemented with the same idea

def fact(n):
if n == 1:

return 1
else:

return n * fact(n-1)

def thesum(n):
if n == 1:

return 1
else:

return n + thesum(n-1)

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 19 / 30

Recursion vs. Iteration

There are alternatives using loops

def fact(n):
i = 1
result = 1
while i < n:

i += 1
result *= i

return result

def thesum(n):
i = 1
result = 1
while i < n:

i += 1
result += i

return result

For the sum, there is also a closed form (from the Bubblesort analysis)

def thesum(n):
return n * (n+1) / 2

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 20 / 30

Recursion vs. Iteration

If repeated statements are implemented using loops, we speak of
iterative programming

For all problems, there exist both iterative and recursive solutions

The recursive solution can often be viewed as more “elegant”

The implementation using recursion is often shorter (more concise) to write

. . . but almost never faster to execute

What should be used, depends on multiple factors

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 21 / 30

Euclid’s Algorithm Recursively



Euclid’s Algorithm Recursively

Euclid’s Algorithm
known from the first lecture

Input: integers a > 0, b > 0
Output: gcd of a and b

def euclid(a, b):
while b != 0:

if a > b:
a = a - b

else:
b = b - a

return a

a b a b a b a b

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 22 / 30

Exercise – Computing the GCD Recursively

Implement Euclid’s Algorithm

as a recursive Python function

that takes two parameters a and b

def euclid(a, b):
while b != 0:

if a > b:
a = a - b

else:
b = b - a

return a

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 23 / 30

Computing the GCD Recursively

def euclid(a, b):
if b == 0:

return a
else:

if a > b:
return euclid(a - b, b)

else:
return euclid(a, b - a)

def euclid(a, b):
while b != 0:

if a > b:
a = a - b

else:
b = b - a

return a

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 24 / 30

Computing the GCD Recursively

def euclid(a, b):
if b == 0:

return a
else:

if a > b:
return euclid(a - b, b)

else:
return euclid(a, b - a)

Call Stack
return value is passed through

euclid(119, 68)

euclid(51, 68)

euclid(51, 17)

euclid(34, 17)

euclid(17, 17)

euclid(17, 0) return 17

return 17

return 17

return 17

return 17

return 17

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 25 / 30



Recursive Sorting and Searching
Binary Search

Iterative Binary Search

def binsearch(data, searched):
left = 0
right = len(data) - 1
while left <= right:

current = (left + right) // 2
if data[current] == searched:

return current
elif data[current] > searched:

right = current - 1
else:

left = current + 1
return -1

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 26 / 30

Recursive Binary Search

Recursive Implementation

Function again takes parameters data and for the given list and the
searched element

Two parameters left and right define the current search space

In a single call, left and right are not changed

ï No loop

current is again computed as (left + right) // 2

Again consider position data[current]

If searched is not found, call the function recursively and either adjust left
or right accordingly

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 27 / 30

Exercise – Recursive Binary Search

Implement binary search
as a recursive Python function
with four parameters
data, left, right, and searched
Follow the ideas of the iterative variant

def binsearch(data, searched):
left = 0
right = len(data) - 1
while left <= right:

current = (left + right) // 2
if data[current] == searched:

return current
elif data[current] > searched:

right = current - 1
else:

left = current + 1
return -1

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 28 / 30



Recursive Binary Search

def binsearch(data, left, right, searched):

if left <= right:
current = (left + right) // 2
if data[current] == searched:

return current
elif data[current] > searched:

return binsearch(data, left, current-1, searched)
else:

return binsearch(data, current+1, right, searched)
else:

return -1

def binsearch(data, searched):
left = 0
right = len(data) - 1
while left <= right:

current = (left + right) // 2
if data[current] == searched:

return current
elif data[current] > searched:

right = current - 1
else:

left = current + 1

return -1

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 29 / 30

Recursive Binary Search

Call Stack

binsearch([2, 3, 5, 8, 10, 19, 21, 25, 28, 32, 36, 37, 42], 0, 12, 45)

binsearch([2, 3, 5, 8, 10, 19, 21, 25, 28, 32, 36, 37, 42], 7, 12, 45)

binsearch([2, 3, 5, 8, 10, 19, 21, 25, 28, 32, 36, 37, 42], 10, 12, 45)

binsearch([2, 3, 5, 8, 10, 19, 21, 25, 28, 32, 36, 37, 42], 12, 12, 45)

binsearch([2, 3, 5, 8, 10, 19, 21, 25, 28, 32, 36, 37, 42], 13, 12, 45)

current = 6,
recursive call

current = 9,
recursive call

current = 11,
recursive call

current = 12,
recursive call

return -1

return -1

return -1

return -1

return -1

Programming and Problem-Solving – Binary Search and Recursion Spring 2021 Dennis Komm 30 / 30


	Searching
	Linear Search
	Binary Search
	Complexity of Binary Search

	Recursive Functions
	Factorial and Sum
	Euclid's Algorithm Recursively
	Recursive Sorting and Searching
	Binary Search


