
Departement Informatik

Programming
and Problem-Solving
Sorting 2

Dennis Komm

Spring 2021 – April 15, 2021

Stacks and Queues

Stacks and Queues

So far access to arbitrary elements in lists by brackets

Stack

Last-In First-Out
Elements can be inserted at the end
Elements can be extracted from the same end

Queue

First-In First-Out
Elements can be inserted at the end
Elements can be extracted from the front

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 1 / 23

Queues

Queue – Two Operations

append(x) inserts element x at last position

pop(0) removes first element and returns it

In Python, lists can be used like queues

data = [1, 4, 5]
data.append(8)
data.pop(0)
data.pop(0)

data = [1, 4, 5, 8]

data = [5, 8]

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 2 / 23



Stacks

Stack – Two Operations

append(x) inserts element x at last position

pop() removes last element and returns it

In Python, lists can also be used like stacks

data = [1, 4, 5]
data.append(8)
data.pop()
data.pop()

data = [1, 4, 5, 8]

data = [1, 4]

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 3 / 23

Sorting 2
Mergesort

Time Complexity of Bubblesort

10 20 30 40 50 60 70 80 90 100

0

1 000

2 000

3 000

4 000

5 000

Bubblesort / Minsort

Goal

Input length n

C
om

pa
ris

on
s

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 4 / 23

How Fast Can We Sort?

Idea

Merging two sorted list is simple

First sort small lists

Merge them

Repeat

ï Divide and Conquer

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 5 / 23



Merging of Sorted Lists

1 3 4 2 4 7

1 2 3 4 4 7

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 6 / 23

Exercise – Merging of Sorted Lists

Design a function that

gets two sorted lists

returns sorted list

Use the functions pop(0) and append()

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 7 / 23

Merging of Sorted Lists

def merge(left, right):
result = []
while len(left) > 0 and len(right) > 0:

if left[0] > right[0]:
result.append(right.pop(0))

else:
result.append(left.pop(0))

return result + left + right

While not both
lists are empty

Append the smaller
of both elements

One of the two given
sorted lists may still
contain elements

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 8 / 23

Mergesort

Divide and Conquer

Iteratively merge sorted lists

First merge “lists” of length 1 to lists of length 2
Merge lists of length 2 to lists of length 4
Merge lists of length 4 to lists of length 8
Merge lists of length 8 to lists of length 16
. . .

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 9 / 23



Mergesort

[8, 3, 1, 5, 6, 2, 4, 7][[8], [3], [1], [5], [6], [2], [4], [7]][[3, 8], [1, 5], [2, 6], [4, 7]][[1, 3, 5, 8], [2, 4, 6, 7]][[1, 2, 3, 4, 5, 6, 7, 8]]

8 3 1 5 6 2 4 78 3 1 5 6 2 4 7

3 8 1 5 2 6 4 7

1 3 5 8 2 4 6 7

1 2 3 4 5 6 7 8

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 10 / 23

Merge Step

Single Merge Step

Get a 2-dimensional list, i.e., list that contains lists

Each two successive lists are merged using the function merge()

The last list is simply appended if there is an odd number of lists

The result is again a 2-dimensional list that contains the merged lists

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 11 / 23

Merge Step

def mergestep(data):
result = []
while len(data) > 1:

left = data.pop(0)
right = data.pop(0)
result.append(merge(left, right))

return result + data

While there are still
at least two lists

Merge the first
two lists

If there is a list left
at the end, append it

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 12 / 23

Mergesort – Complete Algorithm

Complete Algorithm

Input is given as list data

Convert every element into a list with one element

This way get 2-dimensional list

Apply mergestep() repeatedly to this list

At the end, there will only be one element in the list

This element corresponds to a sorted list

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 13 / 23



Mergesort – Complete Algorithm

def mergesort(data):
result = []
for item in data:

result.append([item])
while len(result) > 1:

result = mergestep(result)
return result[0]

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 14 / 23

Sorting 2
Time Complexity of Mergesort

Time Complexity of Mergesort

Time complexity of Mergesort is proportional to
Number of merge steps × Comparisons per merge step

Length of sorted lists doubles with each merge step

ï Roughly log2 n merge steps for n elements

In a merge step, one element is written into result with every comparison

ï At most n comparisons per merge step

Time complexity of Mergesort is in O(n log2 n)

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 15 / 23

Time Complexity of Mergesort

10 20 30 40 50 60 70 80 90 100

0

1 000

2 000

3 000

4 000

5 000

Bubblesort / Minsort

Mergesort

Input length n

C
om

pa
ris

on
s

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 16 / 23



Sorting 2
Complexity of Sorting

Complexity of Sorting

How does the running time change for specific inputs?

Already sorted

Sorted in reverse

Randomly chosen

For Mergesort (and also Bubble- and Minsort),
the number of comparisons is always the same for a fixed n

This is not always the case

Different best, average, and worst cases

Timsort, for instance, makes use of already sorted sub lists

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 17 / 23

Sorting 2
Bucketsort

Sorting of Few Elements

Sorting of data sets with respect to one attribute

Stable sorting: Elements with same attribute maintain order

Example

Name First name Grade

Adleman Leonard 6
Caesar Gaius Julius 3
de Vigenère Blaise 5
Rivest Ronald 6
Shamir Adi 6

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 18 / 23



Bucketsort

1a 2b 1c 1d 2e 3f 1g 3h1a 2b1c 1d 2e 3f1g 3h

1a 2b

1c

1d

2e

3f

1g

3h

...
...

...

1 2 3
Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 19 / 23

Exercise – Bucketsort

Implement Bucketsort

as Python function

using three stacks one, two, and
three for the possible values 1, 2,
and 3

filling the stacks according to
numbers in the list

concatenating the stacks at the end
(this is quite simple in Python using
the + operator)

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 20 / 23

Bucketsort

def bucketsort(data):
one = []
two = []
three = []
for item in data:

if item == 1:
one.append(item)

else:
if item == 2:

two.append(item)
else:

if item == 3:
three.append(item)

return one + two + three

if item == 1:
one.append(item)

elif item == 2:
two.append(item)

elif item == 3:
three.append(item)

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 21 / 23

Sorting 2
Time Complexity of Bucketsort



Time Complexity of Bucketsort

Let n denote the input length

Let k denote the number of distinct values

When filling the buckets, at most k − 1 comparisons per element

ï Total number of comparisons: roughly k · n

The time complexity of Bucketsort is in O(n) if there is a constant number of
different values

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 22 / 23

Time Complexity of Bucketsort

10 20 30 40 50 60 70 80 90 100

0

1 000

2 000

3 000

4 000

5 000

Bubblesort / Minsort

Mergesort

Bucketsort (k = 3)

Input length n

C
om

pa
ris

on
s

Programming and Problem-Solving – Sorting 2 Spring 2021 Dennis Komm 23 / 23


	Stacks and Queues
	Sorting 2
	Mergesort
	Time Complexity of Mergesort

	Sorting 2
	Complexity of Sorting
	Bucketsort
	Time Complexity of Bucketsort


