
Departement Informatik

Programming
and Problem-Solving
Reading in data and Sorting 1

Dennis Komm

Spring 2021 – April 1, 2021

Lists
Advanced Concepts

2-Dimensional Lists

So far lists contain numbers or characters

Lists can contain lists
Such 2-dimensional lists store, e.g., tables and matrices

M =



2 0 3 0 6
3 9 5 1 1
0 0 7 2 7
3 9 5 8 0
8 2 0 3 2
1 6 5 9 6



M = [[2, 0, 3, 0, 6],
[3, 9, 5, 1, 1],
[0, 0, 7, 2, 7],
[3, 9, 5, 8, 0],
[8, 2, 0, 3, 2],
[1, 6, 5, 9, 6]]

Accessing line i and column j with M[i][j]
Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 1 / 20

Lists
Reading in Data und Saving it to Lists

Reading in Data

Example: Matrix given in file

Content of the file is a text

Matrix stored line by line

Entries in each line separated by commas

Entries are to be interpreted as numbers

Three Steps

1. Read in file line by line

2. Extract entries from the lines (separator symbol: comma)

3. Convert each entry to a number

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 2 / 20

Reading in Data

1. Read in file line by line

with open("data.txt") as file:
lines = file.read().splitlines()

File data.txt is opened for the following block of instructions

Accessible under the name file

lines = file.read() stores the whole content of data.txt in the variable
lines

lines = file.read().splitlines() stores the individual lines of
daten.txt in the list lines

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 3 / 20

Reading in Data: Example

1. Read in file line by line

with open("data.txt") as file:
lines = file.read().splitlines()

data.txt

2, 0, 3, 0, 6
3, 9, 5, 1, 1
0, 0, 7, 2, 7
3, 9, 5, 8, 0
8, 2, 0, 3, 2
1, 6, 5, 9, 6

lines = ["2, 0, 3, 0, 6",
"3, 9, 5, 1, 1",
"0, 0, 7, 2, 7",
"3, 9, 5, 8, 0",
"8, 2, 0, 3, 2",
"1, 6, 5, 9, 6"]

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 4 / 20

Reading in Data

2. Extract entries from first line (separator symbol: comma)

tmp = lines[0].split(",")

lines = ["2, 0, 3, 0, 6",
"3, 9, 5, 1, 1",
"0, 0, 7, 2, 7",
"3, 9, 5, 8, 0",
"8, 2, 0, 3, 2",
"1, 6, 5, 9, 6"]

tmp = ["2", "0", "3", "0", "6"]

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 5 / 20

Reading in Data

3. Convert each entry to a number

data = [0] * len(tmp)
for i in range(0, len(tmp)):

data[i] = int(tmp[i])

tmp = ["2", "0", "3", "0", "6"] data = [2, 0, 3, 0, 6]

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 6 / 20

Reading in Data: Summary

def readfile(filename):

Read in file line by line
with open(filename) as file:

lines = file.read().splitlines()

Extract entries from first line (separator symbol: comma)
tmp = lines[0].split(",")

Convert each entry to a number
data = [0] * len(tmp)
for i in range(0, len(tmp)):

data[i] = int(tmp[i])

return data

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 7 / 20

Exercise – Reading in Data

Extend the function so that

all lines of the file are read and
converted

the content is stored in a
2-dimensional list

def readfile(filename):
with open(filename) as file:

lines = file.read().splitlines()
tmp = lines[0].split(",")
data = [0] * len(tmp)
for i in range(0, len(tmp)):

data[i] = int(tmp[i])
return data

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 8 / 20

Reading in Data

def readfile2(filename):
Read in file line by line
with open(filename) as file:

lines = file.read().splitlines()
data = []

Process all lines successively
for i in range(0, len(lines)):

tmp = lines[i].split(",")
dataline = [0] * len(tmp)
for j in range(0, len(tmp)):

dataline[j] = int(tmp[j])
data.append(dataline)

return data

Data is often supplied as such csv files (comma separated values)

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 9 / 20

Sorting 1
Sorting and Searching

Sorting and Searching

Sorting and searching data are two of the fundamental tasks of computer
scientists

Standard reference only deals with these topics

Given n positive integers

Specifically, unsorted list data with n = len(data)

We consider n as input length

Numbers may appear multiple times

Sort numbers in as little time as possible

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 10 / 20

Sorting 1
Bubblesort

Bubblesort

51 1543 4534 35

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 11 / 20

Bubblesort

Idea

Sorting by repeatedly finding the maximum

Goal

Sort list data with n elements, i.e., range 0, . . . , n− 1

Find maximum and slide it to the last position

To this end, iteratively compare neighboring elements

Maximum travels through list to the last position – like a bubble

Repeat with range 0, . . . , n− 2
Continue until data is sorted

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 12 / 20

Exercise – One Bubble Sequence

Implement one Bubble Sequence

Run through data one time

Compare neighboring elements

Swap if the first element is larger

Maximum bubbles to the right

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 13 / 20

One Bubble Sequence

One Bubble Sequence in Python

data = [6, 22, 61, 1, 89, 31, 9, 10, 76]
n = len(data)

for i in range(0, n-1):
if data[i] > data[i+1]:

tmp = data[i]
data[i] = data[i+1]
data[i+1] = tmp

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 14 / 20

Exercise – Bubblesort

Implement the complete algorithm

Iterate bubble sequences

After ith sequence, the last k

elements of data are sorted

Bubble sequences become shorter
with each iteration

To this end, use outer loop

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 15 / 20

Bubblesort

def bubblesort(data):
n = len(data)
for d in range(n, 1, -1):

for i in range(0, d-1):
if data[i] > data[i+1]:

tmp = data[i]
data[i] = data[i+1]
data[i+1] = tmp

return data

print(bubblesort([6, 22, 61, 1, 89, 31, 9, 10, 76]))

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 16 / 20

Sorting 1
Minsort

Minsort

Idea

Sorting by repeatedly finding the minimum

Unlike Bubblesort, we do not compare neighboring elements

Current minimum is stored

Each element is compared to it

If it is smaller, both are swapped

After one iteration, the minimum is copied to (current) first position

Continue until data is sorted

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 17 / 20

Minsort

def minsort(data):
n = len(data)
for current in range(0, n-1):

minimum = data[current]
for i in range(current+1, n):

if data[i] < minimum:
tmp = data[i]
data[i] = minimum
minimum = tmp

data[current] = minimum
return data

print(minsort([6, 22, 61, 1, 89, 31, 9, 10, 76]))

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 18 / 20

Sorting 1
Time Complexity of Bubblesort

Time Complexity of Bubblesort

Count comparisons of two numbers

n− 1 comparisons to find maximum

n− 2 comparisons to find second largest element

. . .

1 comparison to find smallest element

ï
∑n−1

i=1 i = (n− 1) · n/2 = (n2 − n)/2 comparisons in total

ï Quadratic number of comparisons

The time complexity of Bubblesort is in O(n2)

With similar arguments, the time complexity of Minsort is in O(n2)
Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 19 / 20

Time Complexity of Bubblesort

10 20 30 40 50 60 70 80 90 100

0

1 000

2 000

3 000

4 000

5 000

Bubblesort / Minsort

Goal

Input length n

C
om

pa
ris

on
s

Programming and Problem-Solving – Reading in Data and Sorting 1 Spring 2021 Dennis Komm 20 / 20

	Lists
	2-Dimensional Lists
	Reading in Data und Saving it to Lists

	Sorting 1
	Bubblesort
	Minsort
	Time Complexity of Bubblesort

