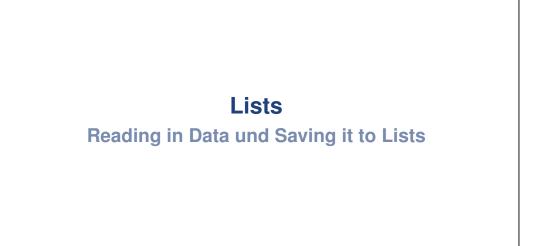


Departement Informatik

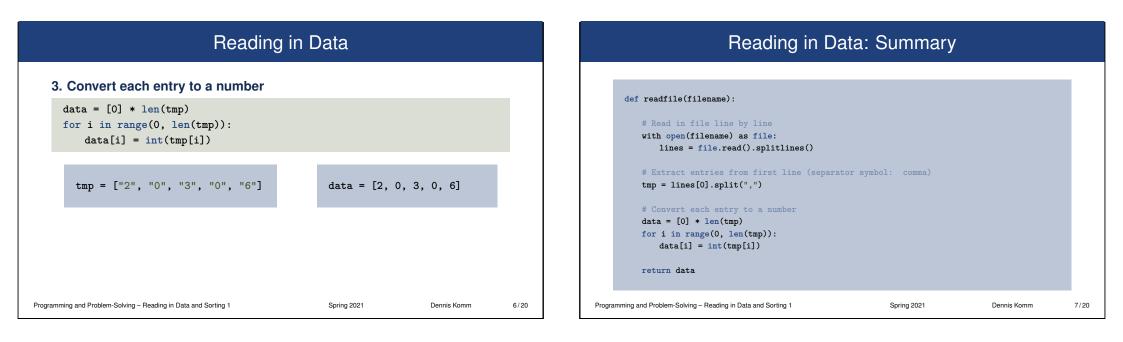
Spring 2021 – April 1, 2021

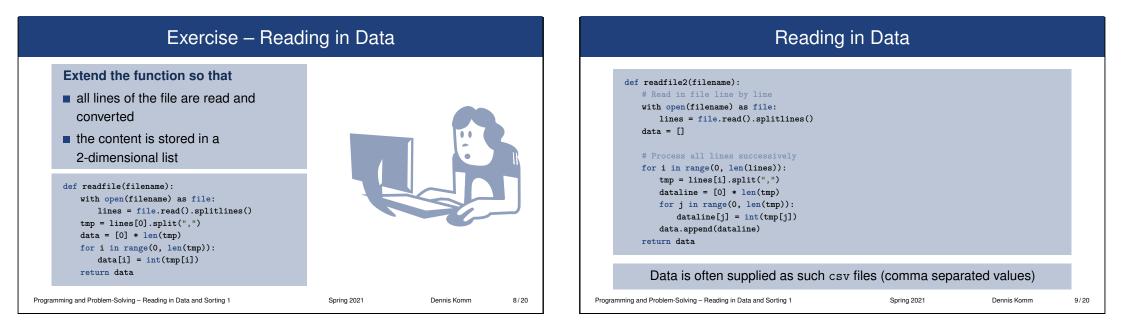
1/20


Lists Advanced Concepts

2-Dimensional Lists

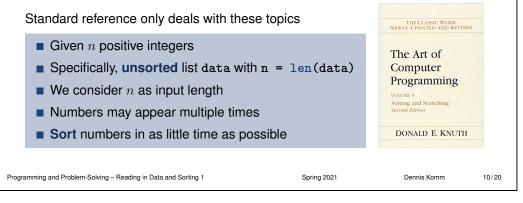
So far lists contain numbers or characters

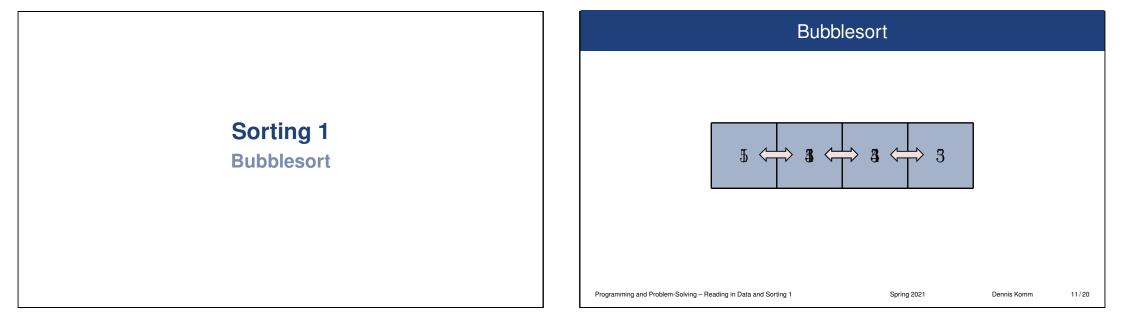

- Lists can contain lists
- Such 2-dimensional lists store, e.g., tables and matrices


 $M = \begin{pmatrix} 2 & 0 & 3 & 0 & 6 \\ 3 & 9 & 5 & 1 & 1 \\ 0 & 0 & 7 & 2 & 7 \\ 3 & 9 & 5 & 8 & 0 \\ 8 & 2 & 0 & 3 & 2 \\ 1 & 6 & 5 & 9 & 6 \end{pmatrix}$ M = [[2, 0, 3, 0, 6], [3, 9, 5, 1, 1], [0, 0, 7, 2, 7], [3, 9, 5, 8, 0], [8, 2, 0, 3, 2], [1, 6, 5, 9, 6]] M = **Accessing line i and column j with M[i][j]** Programming and Problem-Solving - Reading in Data and Sorting 1 Spring 2021 Dennis Komm

Reading in Data				Reading in Data			
 Example: Matrix given in file Content of the file is a text Matrix stored line by line 				<pre>1. Read in file line by line with open("data.txt") as file: lines = file.read().splitlines()</pre>			
Entries in each line separated by coEntries are to be interpreted as nur				 File data.txt is opened for the followi Accessible under the name file 	ng block of instruc	tions	
 Three Steps 1. Read in file line by line 2. Extract entries from the lines (separator symbol: comma) 3. Convert each entry to a number 				 lines = file.read() stores the whole content of data.txt in the variable lines lines = file.read().splitlines() stores the individual lines of daten.txt in the list lines 			
Programming and Problem-Solving – Reading in Data and Sorting 1	Spring 2021	Dennis Komm	2/20	Programming and Problem-Solving – Reading in Data and Sorting 1	Spring 2021	Dennis Komm	3/2

Reading in Data: Example			Reading in Data					
<pre>1. Read in file line by line with open("data.txt") as file: lines = file.read().splitlines(</pre>)		<pre>2. Extract entries from first line (se tmp = lines[0].split(",")</pre>	parator symbol: com	ma)			
<pre>data.txt 2, 0, 3, 0, 6 3, 9, 5, 1, 1 0, 0, 7, 2, 7 3, 9, 5, 8, 0 8, 2, 0, 3, 2 1, 6, 5, 9, 6</pre>	<pre>lines = ["2, 0, 3, 0, 6", "3, 9, 5, 1, 1", "0, 0, 7, 2, 7", "3, 9, 5, 8, 0", "8, 2, 0, 3, 2", "1, 6, 5, 9, 6"]</pre>		<pre>lines = ["2, 0, 3, 0, 6", "3, 9, 5, 1, 1", "0, 0, 7, 2, 7", "3, 9, 5, 8, 0", "8, 2, 0, 3, 2", "1, 6, 5, 9, 6"]</pre>	tmp = ["2", "0",	"3", "0", "6"]			
Programming and Problem-Solving – Reading in Data and Sorting 1	Spring 2021 Dennis Komm	4/20	Programming and Problem-Solving – Reading in Data and Sorting 1	Spring 2021	Dennis Komm	5/20		





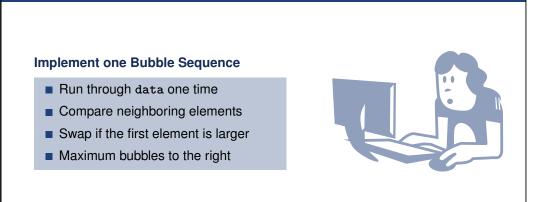
Sorting 1 Sorting and Searching

Sorting and Searching

Sorting and searching data are two of the fundamental tasks of computer scientists

Bubblesort

Idea

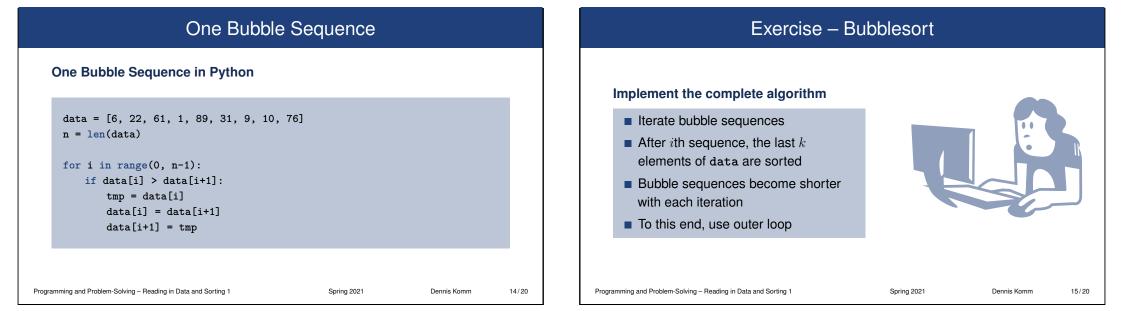

Sorting by repeatedly finding the maximum

Goal

Sort list data with n elements, i.e., range $0, \ldots, n-1$

- Find maximum and slide it to the last position
- To this end, iteratively compare neighboring elements
- Maximum travels through list to the last position like a bubble
- **Repeat with range** $0, \ldots, n-2$
- Continue until data is sorted
- Programming and Problem-Solving Reading in Data and Sorting 1

Spring 2021 Dennis Komm


Exercise – One Bubble Sequence

Programming and Problem-Solving – Reading in Data and Sorting 1

Dennis Komm

13/20

Spring 2021

12/20

Bubblesort						
<pre>def bubblesort(data):</pre>						
<pre>n = len(data) for d in range(n, 1, -1): for i in range(0, d-1):</pre>						
<pre>if data[i] > data[i+1]: tmp = data[i] data[i] = data[i+1]</pre>						
data[i+1] = tmp return data						
<pre>print(bubblesort([6, 22, 61, 1, 89, 31, 9</pre>	9, 10, 76]))					
Programming and Problem-Solving – Reading in Data and Sorting 1	Spring 2021	Dennis Komm	16/20			

Minsort

Idea

Sorting by repeatedly finding the minimum

- Unlike Bubblesort, we do not compare neighboring elements
- Current minimum is stored
- Each element is compared to it
- If it is smaller, both are swapped
- After one iteration, the minimum is copied to (current) first position
- Continue until data is sorted

Programming and Problem-Solving - Reading in Data and Sorting 1

Dennis Komm

Spring 2021

nnis Komm 17/20

Minsort

def minsort(data):	
n = len(data)	
for current in range(0, n-1):	
minimum = data[current]	
<pre>for i in range(current+1, n):</pre>	
if data[i] < minimum:	
<pre>tmp = data[i]</pre>	
data[i] = minimum	
minimum = tmp	
data[current] = minimum	
return data	
<pre>print(minsort([6, 22, 61, 1, 89, 31, 9, 10, 76]))</pre>	

Programming and Problem-Solving – Reading in Data and Sorting 1

Spring 2021 Dennis Komm

Sorting 1 Time Complexity of Bubblesort

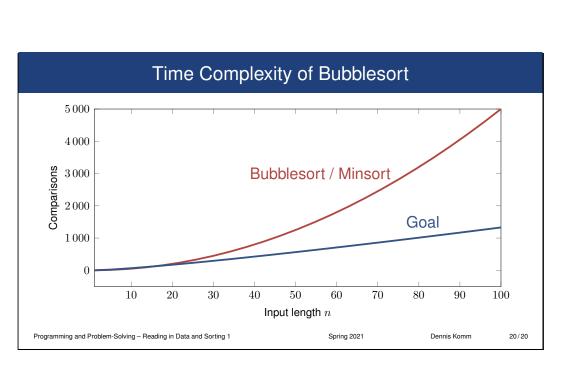
Time Complexity of Bubblesort

Count comparisons of two numbers

- n-1 comparisons to find maximum
- n-2 comparisons to find second largest element

• • • •

- 1 comparison to find smallest element
- $\Rightarrow \ \sum_{i=1}^{n-1} i = (n-1) \cdot n/2 = (n^2-n)/2$ comparisons in total
- \Rightarrow Quadratic number of comparisons


The time complexity of Bubblesort is in $\mathcal{O}(n^2)$

With similar arguments, the time complexity of Minsort is in $\mathcal{O}(n^2)$

Programming and Problem-Solving – Reading in Data and Sorting 1

Spring 2021 Dennis Komm

19/20

