ETHziirich

Programming
and Problem-Solving

Complexity and Primality Testing

Dennis Komm

Departement Informatik

Spring 2021 — March 25, 2021

Time Complexity of Algorithms
Primality Testing

Exercise — Primality Testing Primality Test

Write a function that

m takes an integer = as parameter
m calculates whether z is prime

m uses the 7, operator

m depending on that either returns True
or False

Programming and Problem-Solving — Complexity and Primality Testing

Spring 2021

Dennis Komm

1/39

def primetest(x):

if x < 2:
return False

d =2

while d < x:
if x % d == 0:

return False

d += 1

return True

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm

2/39

Primality Test Time Complexity — Function of input size

How long does it take the algorithm to produce the output?

m What is its time complexity?

m This depends on the number of loop iterations

m An absolute value does not make sense here

m The loop is iterated (roughly) x times (if x is prime)
= Time complexity grows with x ... but how fast?

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 3/39

m We measure the time complexity as a function of the input size
m The input of our algorithm is a single number x
m In our computer, numbers are represented in binary

m Ignoring leading zeros, for n bits we obtain

2" lis10...00, 2" '+1is10...01,..., and2®—1lis1l...11
—— —— ——

n n n

A number that is encoded with n bits has size around 2™

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm

4/39

Time Complexity — Technology Model Time Complexity — Note

Random Access Machine

m Execution model: Instructions are executed one after the other (on one
processor core)

m Memory model: Constant access time

m Fundamental operations: Computations (+, —, -, ...) comparisons,
assignment / copy, flow control (jumps)

m Unit cost model: Fundamental operations provide a cost of 1

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 5/39

We are not completely accurate here

m Numbers can have arbitrarily large values

m We assume that arithmetic operations can be done in constant time

m The time needed to add two n-bit numbers depends on n

m Encoding of a floating point number does not directly correspond to its size
m Surely an addition is faster than a multiplication

m Logarithmic cost model takes this into account, but we also won’t use it here

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm

6/39

Time Complexity of Our Primality Test

m Suppose x is a prime number, encoded using n bits

m Number of loop iterations grows with size of x ~ 2"

m Loop is iterated around 2" times

m We would like to count the fundamental operations

m Algorithm executes five operations per iteration

m In total roughly 5 - 2" operations

m We would like to know how time complexity behaves when n grows
m Ignore constant 5

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 7/39

Time Complexity of Algorithms
Asymptotic Upper Bounds

Asymptotic Upper Bounds Asymptotic Upper Bounds

The exact time complexity can usually not be predicted even for small inputs
m We are interested in upper bounds
m We consider the asymptotic behavior of the algorithm
m And ignore all constant factors

m Linear growth with gradient 5 is as good as linear growth with gradient 1

m Quadratic growth with coefficient 10 is as good as quadratic growth with
coefficient 1

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 8/39

Big-O Notation

The set O(2™) contains all functions that do not grow faster than ¢ - 2™ for
some constant ¢

The set O(g(n)) contains all functions f(n) that do not grow faster than
¢ - g(n) for some constant ¢, where f and g are positive

m Use asymptotic notation to specify the time complexity of algorithms

m We write O(n?) and mean that the algorithm behaves for large n like n*: when
the input length is doubled, the time taken multiplies by four (at most)

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm

9/39

Asymptotic Upper Bounds — Formal Definition Asymptotic Upper Bounds — lllustration

2
O Notation

The set O(g(n)) contains all functions f(n) that do not grow faster than
¢ - g(n) for some constant ¢, where f and g are positive

g(n)=n

f(n) € O(g(n))

f(n) € O(g(n))

<— 1 h(n) € O(g(n))

Jde > 0,n9 € N such that Vn > ng: f(n) < c-g(n)

no n

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 10/39 Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 11/39

Asymptotic Upper Bounds — Examples

O(g(n)) ={f: N = R*|Ie>0,n90 € N: Vn >ng: f(n) <c-g(n)}

Time Complexity of Algorithms
Time Complexity Analysis

f(n) f € O(?) Example
3n+4 O(n) c=4,n9=4
2n O(n) c=2,n=0
n?+100n O(n?) c=2,n9 =100
n++n O(n) c=2,ny=1

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 12/39

Small n Larger n

\ 800000 F .
60 .
600000 - f
40 n?
400000 |- anx
20 + f
/ 200 000 | 7
n
- logn L n?
O é==i T I I I 1 L S 0 L L L I L L L L n
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 2 4 6 8 10 12 14 16 18 20 22 24 Jogn
Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 13/39 Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 14/39

1-10%

8101 |- .

Faster Primality Testing
First Attempt

6-10" | 8
4-10% | .

2101 8

/z;
n

O | | | | | . L L L n
10 20 30 40 50 60 70 80 90 100 logn

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 15/39

Faster Primality Testing Faster Primality Testing

Time complexity better than £2(2™)

m If x is not divisible by 2, then it also is not divisible by 4, 6, 8, etc.
m We then only have to check odd numbers

m Algorithm only has to test half the numbers

m Loop is only iterated around x/2 times

Spring 2021

Programming and Problem-Solving — Complexity and Primality Testing Dennis Komm

16/39

Faster Primality Testing

What is the gain?
m Loop is iterated roughly x/2 times instead of x times
m Time complexity improves by a factor of 2
m Again assume x is encoded using n bits
m Around 5 - 2"/2 = 2.5 - 2" fundamental operations in total
m Time complexity is still in O(2")

= No asymptotic improvement

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm

18/39

def primetest2(x):
if x < 2o0r (x> 2and x % 2 == 0):
return False

d =23d=3
while d < x:
if x % d == 0:
return False
d += 2d += 2

return True

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021

Dennis Komm

17/39

Faster Primality Testing
Second Attempt

Faster Primality Testing

m If x with x > 2 is not a prime number, then x is divisible by a number a with

l<a<xz Faster Primality Testing

® Then x is also divisible by a number b with Including Modules
a-b=x and 1<b<x

m It cannot be the case that
a>+/x and b> /x,

since then
a-b>x

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 19/39

Including Modules Including Modules

File functions.py

def square_root(n):
i=1

while i * i < n: # Computer root of next larger square number
Modules i+=1

m Distribute functions over multiple files return i

So far all functions have been defined in a single file

m Files cannot “see” each other
File applications.py

m Functions can be imported

m Structured code from functions import *

print (square_root(81))

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 21/39

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 20/39

Including Modules

m A large number of modules already exists

m For instance, there is a module math which includes a function sqrt () to
compute square roots

from math import sqrt

print (sqrt(9))

Output: 3

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm

22/39

Faster Primality Testing

from math import sqrt

def primetest3(x):
if x < 2o0r (x>2and x % 2 == 0):
return False

d =3
while d < x<= sqrt(x):
if x % d == 0:
return False
d += 2

return True

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm

23/39

Faster Primality Testing

Faster Primality Testing

What is the gain this time?
m What is the time complexity of this algorithm?
m Loop is iterated /x/2 times
m Time complexity “grows” with \/x
m Time complexity is in O(v/2") = O(2/2) = O(1.415")

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm

24/39

10000 000

8000000

6000000

4000000 |-

2000000

5 10 15 20 25 30 35 40 45

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm

25/39

Faster Primality Testing Faster Primality Testing

Suppose our computer can do 1000 iterations of the loop per second; for
x = 100 000 000 000 031 this means:

Or the other way around. . .
.d<x... ... d <= sqrt(x) ...
100 000 000 000 031 iterations

]()()() terations
second

1000 a S

Suppose we want to spend 10 minutes

.d <x d <= sqrt(x) ...
10000 000 iterations iterati JE
orat x iterations x iterations
> 3100 years 1000 'féiézzs 100/ iterations = 600 seconds 100/ fterations = 600 seconds
< 3 hours second second
<= x = 600000 <= x = 600000
Even if the computer that runs the slower program is 100 time faster, it still
P prog <= x = 360000 000 000
needs 31 years
Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 26/39 Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 27/39

Best and Worst Case Analysis

Which algorithm is faster?

Faster Primality Testing
Best and Worst Case Analysis

def primetest4(x):
def primetest3(x): P

if x < 2o0r (x>2and x % 2 == 0):

if x < 2 0or (x> 2 and x % 2 == 0):
return False

return False
d =3

d =3

while d <= sqrt(x):

isprime = True
if x % d == 0:

return False
d += 2

return True

Programming and Problem-Solving — Complexity and Primality Testing

while d <= sqrt(x):
if x % d == 0:
isprime = False
d += 2
return isprime
Spring 2021

Dennis Komm 28/39

Best and Worst Case Analysis

Suppose x is a multiple of 3
m Then the left algorithm is faster
= Loop is left after first iteration
m "Early Exit"
m Right algorithm makes roughly 1.415™ /2 comparisons

Suppose x is prime
m Then both algorithms make 1.415" /2 comparisons

m (Of course, still the left one should be implemented)

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 29/39

Primality test

Randomltfétcf"ﬁ/lb?ﬁ‘l’éber

between 1 and x
Carlo algorithm

Test every second number

Polynomial AKS
algorithm

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 30/39

What else can we do?

Monte-Carlo Algorithm

Monte-Carlo Algorithm — Basic ldea

Randomized Algorithms make random decisions

m Input z does not “determine” output anymore
m The same z may result in different outputs
m Monte-Carlo Algorithm (MC Algorithm) has bounded error probability

m For True/False problems (primality test etc.) there are MC algorithms with
one-sided error (1MC algorithms)

m Las Vegas Algorithm has error probability 0

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 31/39

Simplified Solovay-Strassen Algorithm

Monte-Carlo Algorithm (1MC) — Example

Consider urn with 10'°° balls colored white (and possibly red)

m Claim: Not all balls in the urn are white

m How to test?

m Random sample

= If there is a red ball in the sample = Claim proven

= If there is no red ball in the sample = Claim possibly false
m One-sided error

Red balls are witnesses for claim

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm

32/39

Simplified Solovay-Strassen Algorithm (1MC)

m Test whether x is a prime

m Claim: x is not a prime

m Consider set {2,...,x — 1} asurn

m Divisor of x is witness for the claim

m Random sample

o If there is a divisor of x in sample © Claim proven

= If there are no divisors of x in sample = Claim possibly false
m One-sided error

For x = p - ¢ with p and ¢ being primes, probability to find a witness is

2
x—2

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm

33/39

Simplified Solovay-Strassen Algorithm (1MC)

m Find “better witnesses”
m (Not exactly trivial number theory)
m Fermat’s little theorem

If xis prime = a* ' =1 (mod x) vac{2,... x—1}

Pierre de Fermat (1607—1665)

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 34/39

Simplified Solovay-Strassen Algorithm (1MC)

Simplified Solovay-Strassen Algorithm (1MC)

mlixisprime = * ! modx=1 vae{2.. x-1}
x=3 22=1 (mod 3)
x=5: 2=3*=1 (mod 5)

m Ifforone a we have: a* ! mod x # 1

m x is definitely no prime
B ¢ is witness that x is no prime
m It can be proven that there are > (x — 2)/2 witnesses

m Otherwise x is possibly a prime

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 35/39

Simplified Solovay-Strassen Algorithm (1MC)

m Input: Number x

m Choose a randomly from € {2,...,x — 1}
m Compute z = a* ! mod x

m If z # 1: Output “x is no prime”

m Otherwise: Output “x is possibly prime”

m Can be computed in polynomial time
m Time complexity O(n?) instead of O(1.415")
m Efficient algorithm

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 36/39

30000000 - *

20000000

10000000 on 1.415"

0

l l l l l
20 40 60 80 100 120 140 160 180 200

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm 37/39

Simplified Solovay-Strassen Algorithm (1MC)

Simplified Solovay-Strassen Algorithm (1MC)

Algorithm has one-sided error

m Suppose x is a prime

m According to Fermat’s little therom there is no witness in {2,...,x — 1}
m Correct output with probability 1

m Suppose x is no prime

m Atleast half of {2,...,x — 1} are witnesses

m Correct output with probability 1/2

Programming and Problem-Solving — Complexity and Primality Testing Spring 2021 Dennis Komm

38/39

Probability amplification by repeated execution each with an independent

choice of a

Run algorithm £ times on the same x

if x is a prime, then error probability is 0

Else only one witness has to be found

Probability < 1/4 that no witness is found in 1. and 2. run

[
[
[
m Probability <1/2 that no witness it found in 1. run
[
[

Probability <1/k that no witness i found in all & runs

Programming and Problem-Solving — Complexity and Primality Testing

Spring 2021 Dennis Komm 39/39

	Time Complexity of Algorithms
	Primality Testing
	Asymptotic Upper Bounds
	Time Complexity Analysis

	Faster Primality Testing
	First Attempt
	Second Attempt
	Including Modules
	Best and Worst Case Analysis
	Monte-Carlo-Algorithm

