
Departement Informatik

Programming
and Problem-Solving
Control Structures

Dennis Komm

Spring 2021 – March 11, 2021

Caesar Encryption

Exercise – Caesar Encryption

Write a program that

runs through a given string

decrypts each letter with a key k

tries out each key k

uses the following formula

e = (v− 65− k) % 26 + 65

Decrypt the ciphertext TYQZCXLETVTDEVCPLETGPLCMPTE

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 1 / 37

Exercise – Caesar Encryption

for k in range(0, 26):
for item in ciphertext:

print(chr((ord(item) - 65 - k) % 26 + 65), end="")
print()

for k in range(0, 26):
for i in range(0, len(ciphertext)):

print(chr((ord(ciphertext[i]) - 65 - k) % 26 + 65), end="")
print()

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 2 / 37

Changing the Step Size

Loops over Lists – Larger Steps

Traverse a list with steps of length 2

data = [5, 1, 4, 3]
for i in range(0, len(data), 2):

print(data[i])

Output

All elements at even positions from 0 up to at most len(data) are output
ï 5,4

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 3 / 37

The Syntax of range

for i in range(start, end, step)

Iteration over all positions from start up to end-1 with step length of step

Shorthand notation

for i in range(start,end) ⇐⇒ for i in range(start,end,1)

Another shorthand notation

for i in range(end) ⇐⇒ for i in range(0, end)

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 4 / 37

Improvement of Caesar Encryption

Use two keys alternatingly for even and odd positions

k = int(input("First key: "))
l = int(input("Second key: "))
x = input("Text (only uppercase, even length): ")
for i in range(0, len(x), 2):

print(chr((ord(text[i]) - 65 + k) % 26 + 65), end="")
print(chr((ord(text[i+1]) - 65 + l) % 26 + 65), end="")

print()

Still Caesar encryption remains insecure ï Project 1

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 5 / 37

Logical Values
Boolean Values and Relational Operators

Boolean Values and Variables

Boolean expressions can take on one of two values F or T

F corresponds to “false”

T corresponds to “true”

George Boole [Wikimedia]

Boolean variables in Python

represent “logical values”

Domain {False, True}

Example

b = True # Variable with value True

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 6 / 37

Relational Operators

x < y (smaller than)
x >= y (greater than)

x == y (equals)
x != y (unequal to)

number type × number type→ {False, True}

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 7 / 37

Logical Values
Boolean Functions and Logical Operators

Boolean Functions in Mathematics

Boolean function

f : {F, T}2 → {F, T}

F corresponds to “false”

T corresponds to “true”

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 8 / 37

a ∧ b

“logical and”

f : {F, T}2 → {F, T}

F corresponds to “false”

T corresponds to “true”

a b a ∧ b

F F F

F T F

T F F

T T T

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 9 / 37

Logical Operator and

a and b (logical and)

{False, True} × {False, True}→ {False, True}

n = -1
p = 3
c = (n < 0) and (0 < p) # c = True

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 10 / 37

a ∨ b

“logical or”
f : {F, T}2 → {F, T}

F corresponds to “false”

T corresponds to “true”

a b a ∨ b

F F F

F T T

T F T

T T T

The logical or is always inclusive: a or b or both

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 11 / 37

Logical Operator or

a or b (logical or)

{False, True} × {False, True}→ {False, True}

n = 1
p = 0
c = (n < 0) or (0 < p) # c = False

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 12 / 37

¬b

“logical not”
f : {F, T} → {F, T}

F corresponds to “false”

T corresponds to “true”

b ¬b

F T

T F

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 13 / 37

Logical Operator not

not b (logical not)

{False, True}→ {False, True}

n = 1
a = not (n < 0) # a = True

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 14 / 37

Logical Values
Precedences

Precedences

not b and a
m

(not b) and a

a and b or c and d
m

(a and b) or (c and d)

a or b and c or d
m

a or (b and c) or d

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 15 / 37

Precedences

b = ((((7 + x) < y) and (y != (3 * z))) or (not b))

Binary arithmetic operators bind the strongest (multiplication and division
first, then addition and subtraction)

These bind stronger than relational operators (and first, then or)

These bind stronger than the unary logical operator not

These bind stronger than binary logical operators (and first, then or)

These bind stronger than the assignment operator

It is often useful to use parentheses even if redundant

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 16 / 37

DeMorgan Rules

not (a and b) == (not a or not b)

not (a or b) == (not a and not b)

Examples

(not black and not white) == not (black or white)

not (rich and beautiful) == (poor or ugly)

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 17 / 37

Application – either . . . or (XOR)

(a or b) and not (a and b) a or b, and not both

(a or b) and (not a or not b) a or b, and one of them not

not (not a and not b) and not (a and b) not none and not both

not ((not a and not b) or (a and b)) not: both or none

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 18 / 37

Control Structures

Control Flow

So far. . .

Up to now linear (from top to bottom)

for loop to repeat blocks

x = int(input("Input: "))

for i in range(1, x+1):
print(i*i)

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 19 / 37

Control Structures
Selection Statements

Selection Statements

Implement branches

if statement

if-else statement

if-elif-else statement (later)

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 20 / 37

if Statement

if condition:
statement

x = int(input("Input: "))
if x % 2 == 0:

print("even")

If condition is true,
then statement is executed

statement:
arbitrary statement
body of the if-Statement

condition: Boolean expression

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 21 / 37

if-else Statement

if condition:
statement1

else:
statement2

x = int(input("Input: "))
if x % 2 == 0:

print("even")
else:

print("odd")

If condition is true,
then statement1 is executed,
otherwise statement2 is executed

condition: Boolean expression

statement1:
body of the if-branch

statement2:
body of the else-branch

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 22 / 37

Layout

x = int(input("Input: "))

if x % 2 == 0:
print("even")

else:
print("odd")

Indentation

Indentation

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 23 / 37

if-else Statement

Attention when using == or =

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 24 / 37

Control Structures
while Loops

while Loops

while condition:
statement Indentation

statement:
arbitrary statement
body of the while loop

condition: Boolean expression

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 25 / 37

while Loops

while condition:
statement

condition is evaluated
True: iteration starts

statement is executed
False: while loop ends

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 26 / 37

while Loops

s = 0
i = 1
while i <= 2:

s = s + i
i = i + 1

i condition s

i = 1 true s = 1
i = 2 true s = 3
i = 3 false s = 3

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 27 / 37

Incrementation of Variables

Use simplified syntax for changing values of variables

n = n + 1 is written as n += 1

n = n + i is written as n += i

n = n - 15 is written as n -= 15

n = n * j is written as n *= j

n = n ** 4 is written as n **= 4

. . .

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 28 / 37

The Jump Statements break

break

Immediately leave the enclosing loop

Useful in order to be able to break a loop “in the middle”

s = 0

while True:
x = int(input("Enter a positive number, abort with 0: "))
if x == 0:

break
s += x

print(s)

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 29 / 37

Control Structures
Termination

Termination

i = 1
while i <= n:

s += i
i += 1

Here and commonly

statement changes its value that appears in condition

After a finite number of iterations condition becomes false

ï Termination

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 30 / 37

Infinite Loops

Infinite loops are easy to generate

while True:
print("0")

while not False:
print("1")

while 2 > 1:
print("2")

. . . but can in general not be automatically detected

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 31 / 37

Halting Problem

Undecidability of the Halting Problem [Alan Turing, 1936]

There is no Python program that can determine, for
each Python program P and each input I, whether P

terminates with the input I

This means that the termination of programs can in
general not be automatically checked

Theoretical questions of this kind were the main motivation for Turing to design
his computing machine

Alan Turing [Wikimedia]

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 32 / 37

The Collatz Sequence

Sequence of natural numbers n0, n1, n2, n3, n4, n5, . . .

n0 = n

for every i ≥ 1, ni =

ni−1/2 if ni−1 even

3 · ni−1 + 1 if ni−1 odd

Example for n = 5

5, 16, 8, 4, 2, 1, 4, 2, 1, . . . (repetition at 1)

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 33 / 37

Exercise – The Collatz Sequence

Write a program that

takes an integer n as input

outputs the Collatz sequence using
n0 = n and

ni =

ni−1/2 if ni−1 even

3 · ni−1 + 1 if ni−1 odd

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 34 / 37

Exercise – The Collatz Sequence

n = int(input("Compute the Collatz sequence for n = "))

while n > 1: # stop when 1 is reached
if n % 2 == 0: # n is even

n //= 2
else: # n is odd

n = 3 * n + 1
print(n, end=" ")

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 35 / 37

The Collatz Sequence

Example for n = 27

27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121
364 182 91 274 137 412 206 103 310 155 466 233 700 350 175
526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502
251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438
719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734
1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433
1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160
80 40 20 10 5 16 8 4 2 1

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 36 / 37

The Collatz Sequence

The Collatz Concecture [Lothar Collatz, 1937]

For every n ≥ 1, 1 will occur in the sequence

Nobody could prove the conjecture so far

If it is wrong, then the while loop for computing the
Collatz sequence can be an endless loop for some n

as input

Lothar Collatz [Wikimedia]

Programming and Problem-Solving – Logical Values and Control Structures Spring 2021 Dennis Komm 37 / 37

	Caesar Encryption
	Changing the Step Size
	Logical Values
	Boolean Values and Relational Operators
	Boolean Functions and Logical Operators
	Precedences

	Control Structures
	Selection Statements
	while Loops
	Termination

