
17. Recursion 2

Building a Calculator, Formal Grammars, Extended Backus Naur
Form (EBNF), Parsing Expressions

492

Motivation: Calculator
Goal: we build a command line calculator

Example

Input: 3 + 5
Output: 8
Input: 3 / 5
Output: 0.6
Input: 3 + 5 * 20
Output: 103
Input: (3 + 5) * 20
Output: 160
Input: -(3 + 5) + 20
Output: 12

binary Operators +, -, *, / and numbers

floating point arithmetic

precedences and associativities like in C++

parentheses

unary operator -

493

Naive Attempt (without Parentheses)
double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’∗’)
lval ∗= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";

Input 2 + 3 * 3 =
Result 15

494

Analyzing the Problem
Example

Input:

13 + 4 ∗ (15− 7∗ 3) =

Needs to be stored such that
evaluation can be performed

Example

This lecture is pretty much recursive.

495

Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming
symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).

496

Formal Grammars

Alphabet: finite set of symbols
Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)

497

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (Expression)
-Number, -(Expression)
Factor * Factor, Factor
Factor / Factor , ...
Term + Term, Term
Term - Term, ...

Factor

Term

Expression

499

The EBNF for Expressions

A factor is

a number,
an expression in parentheses or
a negated factor.

factor = unsigned_number
| "(" expression ")"
| "−" factor.

alternative

terminal symbol

non-terminal symbol

500

The EBNF for Expressions

A term is

factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "∗" factor | "/" factor }.

optional repetition

501

The EBNF for Expressions

factor = unsigned_number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.

502

Parsing

Parsing: Check if a string is valid according to the EBNF.
Parser: A program for parsing.
Useful: From the EBNF we can (nearly) automatically generate a
parser:

Rules become functions
Alternatives and options become if–statements.
Nonterminial symbols on the right hand side become function calls
Optional repetitions become while–statements

503

Rules

factor = unsigned_number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.

504

Functions (Parser)
Expression is read from an input stream.

// POST: returns true if and only if in_stream = factor ...
// and in this case extracts factor from in_stream
bool factor (std::istream& in_stream);

// POST: returns true if and only if in_stream = term ...,
// and in this case extracts all factors from in_stream
bool term (std::istream& in_stream);

// POST: returns true if and only if in_stream = expression ...,
// and in this case extracts all terms from in_stream
bool expression (std::istream& in_stream);

505

Functions (Parser with Evaluation)
Expression is read from an input stream.

// POST: extracts a factor from in_stream
// and returns its value
double factor (std::istream& in_stream);

// POST: extracts a term from in_stream
// and returns its value
double term (std::istream& in_stream);

// POST: extracts an expression from in_stream
// and returns its value
double expression (std::istream& in_stream);

506

One Character Lookahead. . .

. . . to find the right alternative.
// POST: leading whitespace characters are extracted
// from in_stream, and the first non−whitespace character
// is returned (0 if there is no such character)
char lookahead (std:: istream& in_stream)
{

if (in_stream.eof()) // eof : end of file (checks if stream is finished)
return 0;

in_stream >> std::ws; // skip all whitespaces
if (in_stream.eof())

return 0; // end of stream
return in_stream.peek(); // next character in in_stream

}

507

Cherry-Picking

. . . to extract the desired character.
// POST: if expected matches the next lookahead then consume it
// and return true; return false otherwise
bool consume (std::istream& in_stream, char expected)
{

if (lookahead(in_stream) == expected){
in_stream >> expected; // consume one character
return true;

}
return false ;

}

508

Evaluating Factors
double factor (std :: istream& in_stream)
{

double value;
if (consume(in_stream, ’(’)) {

value = expression (in_stream);
consume(in_stream, ’)’);

} else if (consume(in_stream, ’−’)) {
value = −factor (in_stream);

} else {
in_stream >> value;

}
return value;

}
factor = "(" expression ")"

| "−" factor
| unsigned_number.

509

Evaluating Terms

double term (std:: istream& in_stream)
{

double value = factor (in_stream);
while(true){

if (consume(in_stream, ’∗’))
value ∗= factor(in_stream);

else if (consume(in_stream, ’/’))
value /= factor(in_stream)

else
return value;

}
}

term = factor { "∗" factor | "/" factor }.
510

Evaluating Expressions

double expression (std :: istream& in_stream)
{
double value = term(in_stream);
while(true){

if (consume(in_stream, ’+’))
value += term (in_stream);

else if (consume(in_stream, ’−’))
value −= term(in_stream)

else
return value;

}
}

expression = term { "+" term |"−" term }.
511

Recursion!

Factor

Term

Expression

512

EBNF — and it works!
EBNF (calculator.cpp, Evaluation from left to right):

factor = unsigned_number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.

std::stringstream input ("1−2−3");
std::cout << expression (input) << "\n"; // −4

513

18. Structs

Rational Numbers, Struct Definition

514

Calculating with Rational Numbers

Rational numbers (Q) are of the form
n

d
with n and d in Z

C++does not provide a built-in type for rational numbers

Goal

We build a C++-type for rational numbers ourselves!

515

Vision

How it could (will) look like// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;
std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";

516

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable (numerator)

member variable (denominator)

Invariant: specifies valid
value combinations (infor-
mal).

struct defines a new type
formal range of values: cartesian product of the value ranges of
existing types
real range of values: rational (int× int.

517

Accessing Member Variables
struct rational {

int n;
int d; // INV: d != 0

};

rational add (rational a, rational b){
rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}

rn
rd

:=
an
ad

+
bn
bd

=
an · bd + ad · bn

ad · bd
518

A First Struct: Functionality

// new type rational
struct rational {

int n;
int d; // INV: d != 0

};

// POST: return value is the sum of a and b
rational add (const rational a, const rational b)
{

rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}

Meaning: every object of the new type is rep-
resented by two objects of type int the ob-
jects are called n and d .

A struct defines a new type, not a variable!

member access to the int objects of a.
519

Input

// Input r
rational r;
std::cout << "Rational number r:\n";
std::cout << " numerator =? ";
std::cin >> r.n;
std::cout << " denominator =? ";
std::cin >> r.d;

// Input s the same way
rational s;
...

520

Vision comes within Reach ...

// computation
const rational t = add (r, s);

// output
std::cout << "Sum is " << t.n << "/" << t.d << ".\n";

521

Struct Definitions

struct T {
T1 name1 ;
T2 name2 ;
... ...
Tn namen ;
};

name of the new type (identifier)

names of the underlying
types

names of the member
variables

Range of Values of T: T1 × T2 × ...× Tn

522

Struct Defintions: Examples

struct rational_vector_3 {
rational x;
rational y;
rational z;

};

underlying types can be fundamental or user defined

523

Struct Definitions: Examples

struct extended_int {
// represents value if is_positive==true
// and −value otherwise
unsigned int value;
bool is_positive;

};

the underlying types can be different

524

Structs: Accessing Members

expr.namek

expression of struct-type T name of a member-variable of type T.

member access operator .

expression of type Tk; value is the value of
the object designated by namek

525

Structs: Initialization and Assignment

Default Initialization:

rational t;

Member variables of t are default-initialized
for member variables of fundamental types nothing happens
(values remain undefined)

526

Structs: Initialization and Assignment

Initialization:

rational t = {5, 1};

Member variables of t are initialized with the values of the list,
according to the declaration order.

527

Structs: Initialization and Assignment

Assignment:

rational s;
...
rational t = s;

The values of the member variables of s are assigned to the
member variables of t.

528

Structs: Initialization and Assignment

Initialization:

rational t = add (r, s);

t is initialized with the values of add(r, s)

t.n
t.d = add (r, s) .n

.d ;

529

Structs: Initialization and Assignment

Assignment:

rational t;
t = add (r, s);

t is default-initialized
The value of add (r, s) is assigned to t

530

Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member variables are uninitialized

member-wise initialization:
t.n = 1, t.d = 5

member-wise copy

member-wise copy

member-wise copy
531

Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and != , not so for structs! Why?

member-wise comparison does not make sense in general...

...otherwise we had, for example,
2

3
6= 4

6

532

Structs as Function Arguments

void increment(rational dest, const rational src)
{

dest = add (dest, src); // modifies local copy only
}

Call by Value !

rational a;
rational b;
a.d = 1; a.n = 2;
b = a;
increment (b, a); // no effect!
std :: cout << b.n << "/" << b.d; // 1 / 2

533

Structs as Function Arguments

void increment(rational & dest, const rational src)
{

dest = add (dest, src);
}

Call by Reference

rational a;
rational b;
a.d = 1; a.n = 2;
b = a;
increment (b, a);
std :: cout << b.n << "/" << b.d; // 2 / 2

534

User Defined Operators

Instead of

rational t = add(r, s);
we would rather like to write

rational t = r + s;

This can be done with Operator Overloading (→ next week).

535

