
15. Pointers, Algorithms, Iterators and
Containers II

Iterations with Pointers, Arrays: Indices vs. Pointers, Arrays and
Functions, Pointers and const, Algorithms, Container and Iteration,
Vector-Iteration, Typdef, Sets, the Concept of Iterators

496

Recall: Pointers running over the Array

Beispiel

int a[5] = {3, 4, 6, 1, 2};
for (int∗ p = a; p < a+5; ++p)

std::cout << ∗p << ’ ’; // 3 4 6 1 2

An array can be converted into a pointer to its first element.
Pointers “know” arithmetics and comparisons.
Pointers can be dereferenced.

⇒ Pointers can be used to operate on arrays.

497

Array Arguments: Call by (const) reference

void print_vector (const int (&v)[3]) {
for (int i = 0; i<3 ; ++i) {

std::cout << v[i] << " ";
}

}
void make_null_vector (int (&v)[3]) {

for (int i = 0; i<3 ; ++i) {
v[i] = 0;

}
}

498

Array Arguments: Call by value (not really ...)

void make_null_vector (int v[3]) {
for (int i = 0; i<3 ; ++i) {

v[i] = 0;
}

}
...
int a[10];
make_null_vector (a); // only sets a[0], a[1], a[2]

int∗ b;
make_null_vector (b); // no array at b, crash!

499

Array Arguments: Call by value does not exist

Formal argument types T[n] or T[] (array over T) are
equivalent to T* (pointer to T)
For passing an array the pointer to its first element is passed
length information is lost
Function cannot work on a part of an array (example: search for
an element in the second half of an array)

500

Arrays in Functions

Covention of the standard library: pass an array (or a part of it) using
two pointers

begin: pointer to the first element
end: pointer behind the last element
[begin, end) designates the elements of the part of the array
valid range means: there are array elements “available” here.
[begin, end) is empty if begin == end

501

Arrays in (mutating) Functions: fill

// PRE: [begin, end) is a valid range
// POST: every element within [begin, end) will be set to value
void fill (int* begin, int* end, int value) {

for (int* p = begin; p != end; ++p)
*p = value;

}
...

int a[5];
fill (a, a+5, 1);
for (int i=0; i<5; ++i)

std::cout << a[i] << " "; // 1 1 1 1 1

expects pointers to the first element of a
range

pass the address (of the first element)
of a

502

Pointers are not Integers!

Addresses can be interpreted as house numbers of the memory, that is,
integers

But integer and pointer arithmetics behave differently.

ptr + 1 is not the next house number but the s-next, where s is the memory
requirement of an object of the type behind the pointer ptr.

Integers and pointers are not compatible

int* ptr = 5; // error: invalid conversion from int to int*

int a = ptr; // error: invalid conversion from int* to int

503

Null-Pointer

special pointer value that signals that no object is pointed to
represented b the literal nullptr (convertible to T*)

int* iptr = nullptr;
cannot be dereferenced (checked during runtime)
to avoid undefined behavior

int* iptr; // iptr points into ‘‘nirvana’’
int j = *iptr; // illegal address in *

504

Pointer Subtraction

If p1 and p2 point to elements of the same array a with length n

and 0 ≤ k1, k2 ≤ n are the indices corresponding to p1 and p2,
then

p1 - p2 has value k1 - k2

Only valid if p1 and p2 point into the same array.

The pointer difference describes “how far away the elements are
from each other”

505

Pointer Operators

Description Op Arity Precedence Associativity Assignment

Subscript [] 2 17 left R-value→ L-
value

Dereference * 1 16 right R-Wert →
L-Wert

Address & 1 16 rechts L-value →
R-value

Precedences and associativities of +, -, ++ (etc.) like in chapter 2

506

Functions with/without Effects

Pointers can (like references) be used for functions with effect.
Example: fill
But many functions don’t have an effect, they only read the data
⇒ Use of const

So far, for example:

int i = 0;
const int& j = i;

const int zero = 0;
const int& nil = zero;

507

Positioning of Const

Where does the const-modifier belong to?
const T is equivalent to T const and can be written like this

const int zero = ... ⇐⇒ int const zero = ...
const int& nil = ... ⇐⇒ int const& nil = ...

508

Const and Pointers

Read the declaration from right to left

int const a; a is a constant integer

int const∗ a; a is a pointer to a constant integer

int∗ const a; a is a constant pointer to an integer

int const∗ const a; a is a constant pointer to a constant integer

509

Non-mutating Functions: min

There are also non-mutating functions that access elements of an array only in
a read-only fashion

// PRE: [begin, end) is a valid and nonempty range
// POST: the smallest value in [begin, end) is returned
int min (const int∗ begin, const int∗ end)
{

assert (begin != end);
int m = ∗begin; // current minimum candidate
for (const int∗ p = ++begin; p != end; ++p)

if (∗p < m) m = ∗p;
return m;

}

mark with const: value of objects cannot be modified through such
const-pointers.

510

const is not absolute

The value at an address can change even if a const-pointer
stores this address.

beispiel
int a[5];
const int* begin1 = a;
int* begin2 = a;
*begin1 = 1; // error *begin1 is constt
*begin2 = 1; // ok, although *begin will be modified

const is a promise from the point of view of the const-pointer, not
an absolute guarantee

511

Wow – Palindromes!
// PRE: [begin end) is a valid range of characters
// POST: returns true if the range forms a palindrome
bool is_palindrome (const char∗ begin, const char∗ end) {

while (begin < end)
if (*(begin++) != *(--end)) return false;

return true;
}

R O T O R

begin end

512

Algorithms

For many problems there are prebuilt solutions in the standard
library

Example: filling an array

#include <algorithm> // needed for std::fill
...

int a[5];
std::fill (a, a+5, 1);

for (int i=0; i<5; ++i)
std::cout << a[i] << " "; // 1 1 1 1 1

513

Algorithms

Advantages of using the standard library

simple programs
less sources of errors
good, efficient code
code independent from the data type
there are also algorithms for more complicated problems such as
the efficient sorting of an array

514

Algorithms

The same prebuilt algorithms work for many different data types.

Example: filling an array

#include <algorithm> // needed for std::fill
...

char c[3];
std::fill (c, c+3, ’!’);

for (int i=0; i<3; ++i)
std::cout << c[i]; // !!!

515

Excursion: Templates
Templates permit the provision of a type as argument

The compiler finds the matching type from the call arguments

Example fill with templates

template <typename T>
void fill (T∗ begin, T∗ end, T value) {

for (T∗ p = begin; p != end; ++p)
∗p = value;

}
int a[5];
fill (a, a+5, 1); // 1 1 1 1 1

char c[3];
fill (c, c+3, ’!’); // !!!

The triangular brackets we already
know from vectors. Vectors are also im-
plemented as templates.

std::fill is also implemented as template!
516

Containers and Traversal

Container: Container (Array, Vector, . . .) for elements
Traversal: Going over all elements of a container

Initialization of all elements (fill)
Find the smallest element (min)
Check properties (is_palindrome)
· · ·

There are a lot of different containers (sets, lists, . . .)

517

Iteration Tools

Arrays: indices (random access) or pointers (sequential)
Array algorithms (std::) use pointers

int a[5];
std::fill (a, a+5, 1); // 1 1 1 1 1

How do you traverse vectors and other containers?
std::vector<int> v (5, 0); // 0 0 0 0 0
std::fill (?, ?, 1); // 1 1 1 1 1

518

Vectors: too sexy for pointers

Our fill with templates does not work for vectors. . .
. . . and std::fill also does not work in the following way:

std::vector<int> v (5, 0);
std::fill (v, v+5, 1); // Compiler error message !

Vectors are snobby. . .

they refuse to be converted to pointers,. . .
. . . and cannot be traversed using pointers either.
They consider this far too primitive.

519

Also in memory: Vector 6= Array
bool a[8] = {true, true, true, true, true, true, true, true};

true

8 Byte (Speicherzelle = 1 Byte = 8 Bit)

true

8 Byte (Speicherzelle = 1 Byte = 8 Bit)

true

8 Byte (Speicherzelle = 1 Byte = 8 Bit)

true

8 Byte (Speicherzelle = 1 Byte = 8 Bit)

true

8 Byte (Speicherzelle = 1 Byte = 8 Bit)

true

8 Byte (Speicherzelle = 1 Byte = 8 Bit)

true

8 Byte (Speicherzelle = 1 Byte = 8 Bit)

true

8 Byte (Speicherzelle = 1 Byte = 8 Bit)

std::vector<bool> v (8, true);

0b11111111 1 Byte bool*-pointer does not fit here because
it runs byte-wise and not bit-wise

520

Vector-Iterators
Iterator: a “pointer” that fits to the container.

Example: fill a vector using std::fill – this works

#include <vector>
#include <algorithm> // needed for std::fill

...
std::vector<int> v(5, 0);
std::fill (v.begin(), v.end(), 1);
for (int i=0; i<5; ++i)

std::cout << v[i] << " "; // 1 1 1 1 1

521

Vector Iterators
For each vector there are two iterator types defined

std::vector<int>::const_iterator
for non-mutating access
in analogy with const int* for arrays

std::vector<int>::iterator
for mutating access
in analogy with int* for arrays

A vector-iterator it is no pointer, but it behaves like a pointer:
it points to a vector element and can be dereferenced (*it)
it knows arithmetics and comparisons (++it, it+2, it < end,. . .)

522

Vector-Iterators: begin() and end()
v.begin() points to the first element of v

v.end() points past the last element of v

We can traverse a vector using the iterator. . .

for (std::vector<int>::const_iterator it = v.begin();
it != v.end(); ++it)

std::cout << ∗it << " ";

. . . or fill a vector.

std::fill (v.begin(), v.end(), 1);

523

Type names in C++ can become looooooong

std::vector<int>::const_iterator
The declaration of a type alias helps with

using Name = Typ;

Name that can now be used to ac-
cess the type

existing type

Examples
using int_vec = std::vector<int>;
using Cvit = int_vec::const_iterator;

Syntax prior to C++ 11: typedef Typ Name; 524

Vector Iterators work like Pointers

using Cvit = std::vector<int>::const_iterator;

std::vector<int> v(5, 0); // 0 0 0 0 0

// output all elements of a, using iteration
for (Cvit it = v.begin(); it != v.end(); ++it)

std::cout << *it << " ";

Vector element
pointed to by it

525

Vector Iterators work like Pointers

using Vit = std::vector<int>::iterator;

// manually set all elements to 1
for (Vit it = v.begin(); it != v.end(); ++it)
∗it = 1;

// output all elements again, using random access
for (int i=0; i<5; ++i)

std::cout << v[i] << " ";

increment the iterator

short term for
*(v.begin()+i)

526

Other Containers: Sets

A set is an unordered collection of elements, where each element
is contained only once.

{1, 2, 1} = {1, 2} = {2, 1}
C++: std::set<T> for a set with elements of type T

527

Sets: Example Application

Determine if a given text contains a question mark and output all
pairwise different characters!

528

Letter Salad (1)
Consider a text as a set of characters.

#include<set>
...
using Csit = std::set<char>::const_iterator;
...
std::string text =
"What are the distinct characters in this string?";

std::set<char> s (text.begin(),text.end());

Set is initialized with String iterator range
[text.begin(), text.end())

529

Letter Salad (2)
Determine if the text contains a question mark and output all characters

// check whether text contains a question mark
if (std::find (s.begin(), s.end(), ’?’) != s.end())

std::cout << "Good question!\n";

// output all distinct characters
for (Csit it = s.begin(); it != s.end(); ++it)

std::cout << ∗it;

Search algorithm, can be called with arbitrary
iterator range

Ausgabe:
Good question!
?Wacdeghinrst

530

Sets and Indices?

Can you traverse a set using random access? No.

for (int i=0; i<s.size(); ++i)
std::cout << s[i];

error message: no subscript operator

Sets are unordered.

There is no “ith element”.
Iterator comparison it != s.end() works, but not it < s.end()!

531

The Concept of Iterators

C++knows different iterator types

Each container provides an associated iterator type.
All iterators can dereference (*it) and traverse (++it)
Some can do more, e.g. random access (it[k], or, equivalently
*(it + k)), traverse backwards (--it),. . .

532

The Concept of Iterators

Every container algorithm is generic, that means:

The container is passed as an iterator-range
The algorithm works for all containers that fulfil the requirements
of the algorihm

std::find only requires * and ++ , for instance

The implementation details of a container are irrelevant.

533

Why Pointers and Iterators?

Would you not prefer the code

for (int i=0; i<n; ++i)
a[i] = 0;

over the following code?

for (int* ptr=a; ptr<a+n; ++ptr)
*ptr = 0;

Maybe, but in order to use the generic std::fill(a, a+n, 0);,
we have to work with pointers.

534

Why Pointers and Iterators?

In order to use the standard library, we have to know that:

a static array a is a the same time a pointer to the first element of a
a+i is a pointer to the element with index i

Using the standard library with different containers: Pointers⇒
Iterators

535

Why Pointers and Iterators?

Example: To search the smallest element of a container in the range
[begin, end) use the function call

std::min_element(begin, end)

returns an iterator to the smallest element
To read the smallest element, we need to dereference:

*std::min_element(begin, end)

536

That is Why: Pointers and Iterators

Even for non-programmers and “dumb” users of the standard
library: expressions of the form
*std::min_element(begin, end)
cannot be understood without knowing pointers and iterators.
Behind the scenes of the standard library: working with dynamic
memory based on pointers is indispensible. More about this later
in this course.

537

16. Recursion 1

Mathematical Recursion, Termination, Call Stack, Examples,
Recursion vs. Iteration

538

Mathematical Recursion

Many mathematical functions can be naturally defined recursively.
This means, the function appears in its own definition

n! =

{
1, if n ≤ 1

n · (n− 1)!, otherwise

539

Recursion in C++: In the same Way!

n! =

{
1, if n ≤ 1

n · (n− 1)!, otherwise

// POST: return value is n!
unsigned int fac (unsigned int n)
{

if (n <= 1)
return 1;

else
return n * fac (n-1);

}
540

Infinite Recursion

is as bad as an infinite loop. . .
. . . but even worse: it burns time and memory

void f()
{

f(); // f() -> f() -> ... stack overflow
}

541

Recursive Functions: Termination

As with loops we need

progress towards termination

fac(n):
terminates immediately for n ≤ 1, otherwise the function is called
recusively with < n .

„n is getting smaller for each call.”

542

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Initialization of the formal argument: n = 4
recursive call with argument n− 1 == 3

543

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

fac(1) 1

2

6

24

544

Euclidean Algorithm

finds the greatest common divisor gcd(a, b) of two natural
numbers a and b

is based on the following mathematical recursion (proof in the
lecture notes):

gcd(a, b) =

{
a, if b = 0

gcd(b, a mod b), otherwise

545

Euclidean Algorithm in C++

gcd(a, b) =

{
a, if b = 0

gcd(b, a mod b), otherwise

unsigned int gcd
(unsigned int a, unsigned int b)

{
if (b == 0)

return a;
else

return gcd (b, a % b);
}

Termination: a mod b < b, thus b
gets smaller in each recursive call.

546

Fibonacci Numbers

Fn :=

0, if n = 0

1, if n = 1

Fn−1 + Fn−2, if n > 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 . . .

547

Fibonacci Numbers in C++

Laufzeit
fib(50) takes “forever” because it computes
F48 two times, F47 3 times, F46 5 times, F45 8 times, F44 13 times,
F43 21 times ... F1 ca. 109 times (!)

unsigned int fib (unsigned int n)
{

if (n == 0) return 0;
if (n == 1) return 1;
return fib (n-1) + fib (n-2); // n > 1

}

Correctness
and
termination
are clear.

549

Fast Fibonacci Numbers

Idea:

Compute each Fibonacci number only once, in the order
F0, F1, F2, . . . , Fn!
Memorize the most recent two numbers (variables a and b)!
Compute the next number as a sum of a and b!

550

Fast Fibonacci Numbers in C++

unsigned int fib (unsigned int n){
if (n == 0) return 0;
if (n <= 2) return 1;
unsigned int a = 1; // F_1
unsigned int b = 1; // F_2
for (unsigned int i = 3; i <= n; ++i){

unsigned int a_old = a; // F_i-2
a = b; // F_i-1
b += a_old; // F_i-1 += F_i-2 -> F_i

}
return b;

}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b

very fast, also for fib(50)

551

Recursion and Iteration

Recursion can always be simulated by

Iteration (loops)
explicit “call stack” (e.g. array)

Often recursive formulations are simpler, but sometimes also less
efficient.

552

The Power of Recursion

Some problems appear to be hard to solve without recursion. With
recursion they become significantly simpler.
Examples: The towers of Hanoi, The n-Queens-Problem,
Sudoku-Solver, Expression Parsers, Reversing In- or Output,
Searching in Trees, Divide-And-Conquer (e.g. sorting)→
Engineering Tool III-IV

553

Experiment: The Towers of Hanoi

left middle right

554

The Towers of Hanoi – Code

left middle right

Move 4 discs from left to right with auxiliary staple middle:

move(4,"left","middle","right")
559

The Towers of Hanoi – Code

move(n, src, aux, dst) ⇒

1 Move the top n− 1 discs from src to aux with auxiliary staple dst :
move(n− 1, src, dst, aux);

2 Move 1 disc from src to dst
move(1, src, aux, dst);

3 Move the top n− 1 discs from aux to dst with auxiliary staple src:
move(n− 1, aux, src, dst);

560

The Towers of Hanoi – Code
void move(int n, const string &src, const string &aux, const string &dst){

if (n == 1) {
// base case (’move’ the disc)
std :: cout << src << " −−> " << dst << std::endl;

} else {
// recursive case
move(n−1, src, dst, aux);
move(1, src, aux, dst);
move(n−1, aux, src, dst);

}
}
int main() {

move(4, " left " , "middle", "right");
return 0;

}
562

The Towers of Hanoi – Code Alternative
void move(int n, const string &src, const string &aux, const string &dst){

// base case
if (n == 0) return;

// recursive case
move(n−1, src, dst, aux);
std :: cout << src << " −−> " << dst << "\n";
move(n−1, aux, src, dst);

}

int main() {
move(4, " left " , "middle", "right");
return 0;

}
563

