13. Arrays Il

Strings, Lindenmayer Systems, Multidimensional Arrays, Vectors of
Vectors, Shortest Paths, Arrays and Vectors as Function Arguments

Texts

m can be represented with the type std: : string from the standard
library.

B std::string text = "bool";

defines a string with length 4

m A string is conceptually an array with base type char, plus
additional functionality

m Requires #include <string>

Strings as Arrays

m can be represented with underlying type char

char text[] a = ...

m can be initialized via string literals

char text[] = "bool"

m this is equivalent to the following initialisation

char text[] = {’b’,’0’,%0%,°1’,°\0°}

m can only be defined with constant size

Strings: pimped char-Arrays
Astd::string...
m knows its length

text.length()

returns its length as int (call of a member function; will be explained later

m can be initialized with variable length

std::string text (n, ’a’)

text is filled with n *a’s

m “understands” comparisons

if (textl == text2)

true if text1 and text2 match

Lindenmayer-Systems (L-Systems)

Fractals made from Strings and Turtles

L-Systems have been invented by the Hungarian biologist Aristid
Lindenmayer (1925 — 1989) to model the growth of plants.

The Described Language

Words wy, wy, wy, ... € $*: P(F)=F+F+
wo So wy = F
F+F+
wy P(wo) wy, =
AN
I S | o
P(F)P(+)P(F)P(+)
Definition

P(cicy...¢,) = P(e1)P(ea) ...

Definition and Example

m Alphabet 2

m Y*: all finite words over &
m Production P : ¥ — ¥*

m Initial word sy € ¥*

Definition
The triple £ = (X, P, s¢) is an L-System.

Turtle-Graphics

Turtle with position and direction.

L3

Turtle understands 3 commands:

ward v/ grees v

= b

F: one step for- || +: turn by 90 de-

—:turn by —90 de-
grees v’

¥

Draw Words!

wy=F+F+v

lindenmayer.cpp: next_word

// POST: replaces all symbols in word according to their
// production and returns the result
std::string next_word (std::string word) {
std::string next;
for (unsigned int k = 0; k < word.length(); ++k)
next += production (word[k]);
return next;

}

// POST: returns the production of ¢
std::string production (char c) {
switch (c) {
case ’F’: return "F+F+";
default: return std::string (1, c); // trivial production ¢ —> ¢

lindenmayer . cpp: Main Program

Words wy, wy, ws, . .. w, € 3*: std::string

#include "turtle.h"

std::cout << "Number of iterations =7 ";
unsigned int n;
std::cin >> n;
std::string w = "F"; w=wy = F
for (unsigned int i = 0; i < n; ++i)
w = next_word (w); W= w; —> W = Witq

draw_word (w); draw w = w,,!

lindenmayer.cpp: draw_word

// POST: draws the turtle graphic interpretation of word
void draw_word (std::string word)
{

for (unsigned int k = 0; k < word.length(); ++k)

switch (word[k]) { jump to the case that corresponds to word[k] .

case ’F’:
turtle::forward(); forward! (function from our turtle library)
break; skip the remaining cases
case ’+7:
turtle::1left(90);
break; turn by 90 degrees! (function from our turtle library)
case ’
turtle::right(90);
} turn by -90 degrees (function from our turtle library)

L-Systems: Extensions L-System-Challenge: amazing.cpp!

= Additional symbols without graphical interpretation (dragon. cpp)
m Arbitrary angles (snowflake.cpp)
m Saving and restoring the turtle state — plants (bush. cpp)

Fie

W

Multidimensional Arrays Multidimensional Arrays

m are arrays of arrays In memory: flat

m can be used to store tables, matrices, ... [coo T wom [awe [awo [wwom [ame |
int a[2][3]

a contains two elements and each of a[o] a[1]
them is an array of length 3 with base
type int in our head: matrix columns

0 1 2

o

afo][0] | al01[1] | a[0][2]
al1]1[0] | al11[1] | al1][2]

I’OWSJ(

Multidimensional Arrays

m are arrays of arrays of arrays

T a[expry] ... [expr]

constant expressions

a has expr; elements and each of them is an array with
expr, elements each of which is an array of expr; ele-
ments and ...

Vectors of Vectors

m How do we get multidimensional arrays with variable dimensions?
m Solution: vectors of vectors

Example: vector of length n of vectors with length m:

std::vector<std::vector<int> > a (nm,
std: :vector<int>(m));

Starting position of the robot

Multidimensional Arrays
Initialization

int a[l[3] =
{
{2,4,6},{1,3,5}
¥

First dimension can be omitted

Application: Shortest Paths

Factory hall (n x m square cells)

obstacle

free cell L

/

8

target position of the robot

Goal: find the shortest path
of the robot from S to T via
free cells.

=

Application: shortest paths This problem appears to be different

Solution Find the lengths of the shortest paths to all possible targets.

WIIIII]
SEHIS |

3 - N 17 | 18

stﬁrting poiitio‘n‘ * " "

5 4 3 1 19 20

V\D This solves the original problen‘1 glso: startin T; ft\:I‘-L 22 2|2
low a path with ?ecrelasinlg Ier:ghtsI L e]=]a]=

4

This problem appears to be different Preparation: Input Format
Find the lengths of the shortest paths to all possible targets. e (SR
15 [16 | 17 | 18 | 19 3 12“)
e sl |) S
. | —XXX--X-- 4
JETS) GR A,
3 (2|1 12 | 13 18 X XXX :>
4 3|2 1| 12 19 ' R’ GE
— Xo-X T
5 a3 [x] 9 f10f1]2 19 | 20 I
D S & -
6 5 4 8 9 10 2020 | Ko
7 6 5 6 7 8 9 22 [21 | 22 start p‘osilion target position

Preparation: Sentinels

7T row 0, column m+1 7
I I N |

T sE T
}Surro'unt'liné éentinels vto'av‘oid‘ spl)eciaI;
{casesl.]

T T [:\
row n, column 0 _|

row 0, column 0
|

H

row n+

.
LI—— -
olumnm+1 |- - |

|
|
T
1, ¢

The Shortest Path Program

m Read in dimensions and provide a two dimensional array for the
path lengths

#include<iostream>
#include<vector>

int main()

// read floor dimensions

int n; std::cin >> n; // mumber of rows

int m; std::cin >> m; // number of columns .
/" Sentinel

// define a two-dimensional

// array of dimensions

// (n+2) x (m+2) to hold the floor plus extra walls around

std: :vector<std: :vector<int> > floor (n+2, std::vector<int>(m+2));

Preparation: Initial Marking

The Shortest Path Program

m Input the assignment of the hall and intialize the lengths

int tr = 0;

int tc

for (int r=1; r<n+l; ++r)

for (int c=1; c<m+1; ++c) {

char entry = ’-’;
std::cin >> entry;
if (entry ’S?) floor[r][c] = 0;

else if (entry ’T?) floor[tr = r]lltc = c] = -1;

else if (entry ’X?) floorl[r]l[c] = -2;

else if (emtry == ’-’) floor[rl[c] = -1;

Das Kiirzeste-Wege-Programm

m Add the surrounding walls

for (int r=0; r<n+2; ++r)
floor[r] [0] = floor[r] [m+1]

for (int c=0; c<m+2; ++c)
floor[0] [c] = floor[n+1] [c]

Main Loop

-2;

Find and mark all cells with path lengths i = 1,2, 3...

for (int i=1;; ++i) {
bool progress = false;
for (int r=1; r<n+l; ++r)
for (int c=1; c<m+1l; ++c) {

if (floor[r]l([c] != —1) continue;
if (floor[r—1]1[c] == i—1 || floor[r+1][c] == i—-1 ||
floor[r][c—1] == i—1 || floor[r][c+1] == i—1) {

floor[r][c] = i; // label cell with i

progress = true;

¥
if (!progress) break;

}

Mark all Cells with their Path Lengths
Step 2: all cells with path length 2

—

2
\

— DD

T
unmarked neighbours of
cells with length 1

The Shortest Paths Program

Mark the shortest path by walking backwards from target to start.
int r = tr; int c = tc;
while (floor[r][c] > 0) {

const int d = floor[r][c] — 1;

floor[r]l[c] = —3;
if (floor[r—1]1[c] == d) ——r;
else if (floor[r+1][c] == d) ++r;

else if (floor[r][c—1] == d) ——c;
else ++c; // (floor[r][c+1] == d)

Finish

The Shortest Paths Program

m Algorithm: Breadth First Search

m The program can become pretty slow because for each i all cells
are traversed

= Improvement: for marking with ¢, traverse only the neighbours of
the cells marked with ¢ — 1.

m Improvement: stop once the goal has been reached

The Shortest Path Program: output
Output

for (int r=1; r<n+l; ++r) {

for (int c=1; c<m+l; ++c)
if (floor([r][c] == 0)
std::cout << ’S’;

g a—
else if (r == tr && c == tc) oSNt

oXXX-oX-----

std::cout << ’T’; 00SX-000000—

else if (floor[r][c] == -3)

= | ~-X---XXXo-

std::cout << ’0’; ———X---X-o00-

else if (floor([r][c] == -2) e—X-—-X-0——

std::cout << ’X’; —eX-—=X-T—-

else 0 D -

std::cout << ’-’;
std::cout << "\n";

}
Arrays as Function Arguments

Arrays can also be passed as reference arguments to a function.
(here: const because v is read-only)

void print_vector(const int (&v)[3]) {
for (int i = 0; i<3 ; ++i) {
std::cout << v[i] << " "3
}
}

Arrays as Function Argumenbts Vectors as Function Arguments

This also works for multidimensional arrays. Vectors can be passed by value or by reference

void print_vector(const std: :vector<int>& v) {
for (int i = 0; i<v.size() ; ++i) {
std::cout << v[i] << " ";

void print_matrix(const int (&m) [3][3]) {
for (int i = 0; i<3 ; ++i) {

print_vector (m[il); 3}
std::cout << "\n'";
} }
} Here: call by reference is more efficient because the vector could be
very long

Vectors as Function Arguments

This also works for multidimensional vectors.

void print_matrix(const std::vector<std::vector<int> >& m) { 14. POinterS, A|gO|‘itth, |terat0rs and
for (int i = 0; i<m.size() ; ++i) { .
print_vector (m[il); Contalners I
std::cout << "\n";
}
} Pointers, Address operator, Dereference operator, Array-to-Pointer

Conversion

Random Access is Useful Random Access is Useful

int all = ...; // large array int all = ...; // large array

al13] = ...; af13] = ...; compute a + 13 - s

al77] = ...; al77] = ...; compute a + 77 - s

a[50] = ...; af[50] = ...; compute a + 50 - s
Adressevona[0] = a+0-s address of aln-1] = a+ (n— 1) ;s

One addition and one multiplication per element access

[T T T T I T T T T T T T T T T T T TTITI T T1T1]
e

s

Random Access is Often Unnecessary Reading a book ... with random access ... with

sequential access
int all = ...; // large array
for (int i = 0; i < n; ++i) Random Access Sequential Access
alil = ...; m open book on page 1 = open book on page 1
’ compute a + 0 - s
TR 0 110 m close book m turn the page
compute @ + 2 - s = open book on pages 2-3 m turn the page
m close book m turn the page
m open book on pages 4-5 m turn the page
m Access pattern is called sequential access m close book m turn the page
m Should only “cost” one addition per element access ...]

Wanted: Pointers into Arrays References: Where is Anakin?

for (pointer p = begin of a;
p < end of a;
increment p memory width of int)
alil = ...; int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker;
(T T T TTTTTITTTIITTTITITITT 01111 darth_vader = 22;

“Search for Vader, and
Anakin find you will”

int
// anakin_skywalker = 22
We need to be able to use memory addresses directly!

m Queries: Begin/end of a
m Comparisons: p< ...
m Arithmetic: increment p

Pointers: Where is Anakin? Pointer Types

Value of a pointer to T is the address of an object of type T.
“Anakins address is

0x7fff6bdd1b54.” Beispiele

int anakin_skywalker = 9;

int* here = &anakin_skywalker;
std::cout << here; // Address
*here = 22;

int* p; Variable p is pointer to an int.
float* q; Variable q is pointer to a float.

int* p = ...;

// anakin_skywalker = 22

[LT T T T[] [mtocvalue] [[[[p=lead] [|

adr

Address Operator Address Operator

The expression L-value of type T

&i; // ip initialized
// with address of i.

& Ival st 1p

provides, as R-value, a pointer of type T* to an object at the address /—\

of Ival [| [[Ee=er [| [ENESE [[[[[[]
The operator & is called Address-Operator.

Dereference Operator Dereference Operator

Beispiel

The expression 5 2 o By
P R-value of type T* int* ip = &i; // ip initialized
l // with address of i.
*rVa/ int j = *ip; // j ==5
returns as L-value the value of the object at the address represented m
e , L [Ties] [0 [[esi=s] [[]
The operator * is called Derecerence Operator. A,

Address and Dereference Operators

pointer (R-value)

object (L-value)

Mnenmonic Trick

The declaration
T* p; p is of the type “pointer to T”

Pointer Types

Do not point with a double* to an int!

int* i = ...; //ataddressi ‘lives”an int...
doublex j = i; //..and at j lives a double: error!

Pointer Arithemtics: Pointer plus int

m ptr: Pointer to element a[k] of the array a with length n
m Value of expr: integer i , suchthat0 <k +i<n

J ptr + expr

can be read as
T *p;e _ *PIS of type T

is a pointer to a[k + i].

Although this is legal, we do
not write it like this!

For k + i = n we get a past-the-end-pointer that must not be dereferenced.

Pointer Arithemtics: Pointer minus int

m If ptr is a pointer to the element with index k in an array a with
length n
m and the value of expr is aninteger i, 0 < k — i < n,

then the expression
ptr - expr
provides a pointer to an element of a with index & — i.
a ptr-expr (ptr)

| | |

[1 1 1 1 1 1 1
Kk

e
The Truth about Random Access

The expression
alil
is equivalent to

*(a + 1)

a+i-s

Conversion Array = Pointer

How do we get a pointer to the first element of an array?
m Static array of type T'[n] is convertible to 7'*

int a[5];
int* begin = a; // begin points to a[0]

m Length information is lost (“arrays are primitive”)

Finally: Iteration over an Array of Pointers

int a[6] = {3, 4, 6, 1, 2};
for (int* p = a; p < atb5; ++p)
std::cout << *p << ’ ’; // 34612

m a+5 is a pointer behind the end of the array (past-the-end) that
must not be dereferenced.

m The pointer comparison (p < a+5) refers to the order of the two
addresses in memory.

