
13. Arrays II

Strings, Lindenmayer Systems, Multidimensional Arrays, Vectors of
Vectors, Shortest Paths, Arrays and Vectors as Function Arguments

435

Strings as Arrays

can be represented with underlying type char

char text[] a = ...
can be initialized via string literals

char text[] = "bool"

this is equivalent to the following initialisation

char text[] = {’b’,’o’,’o’,’l’,’\0’}

can only be defined with constant size

436

Texts

can be represented with the type std::string from the standard
library.

std::string text = "bool";

defines a string with length 4

A string is conceptually an array with base type char, plus
additional functionality
Requires #include <string>

437

Strings: pimped char-Arrays
A std::string. . .

knows its length

text.length()

returns its length as int (call of a member function; will be explained later

can be initialized with variable length

std::string text (n, ’a’)

text is filled with n ’a’s

“understands” comparisons

if (text1 == text2) ...
true if text1 and text2 match 438

Lindenmayer-Systems (L-Systems)
Fractals made from Strings and Turtles

L-Systems have been invented by the Hungarian biologist Aristid
Lindenmayer (1925 – 1989) to model the growth of plants.

439

Definition and Example

Alphabet Σ

Σ∗: all finite words over Σ

Production P : Σ→ Σ∗

Initial word s0 ∈ Σ∗

{F , + , −}
c P (c)
F F + F +
+ +
− −

F

Definition
The triple L = (Σ, P, s0) is an L-System.

440

The Described Language
Words w0, w1, w2, . . . ∈ Σ∗: P (F) = F + F +

w0 := s0

w1 := P (w0)

w2 := P (w1)

...

w0 := F

w1 := F + F +

w2 := F + F + + F + F + +

...
Definition
P (c1c2 . . . cn) := P (c1)P (c2) . . . P (cn)

F F

P (F) P (F)

+ +

P (+) P (+)

441

Turtle-Graphics
Turtle with position and direction.

Turtle understands 3 commands:
F : one step for-
ward X

+ : turn by 90 de-
grees X

− : turn by−90 de-
grees X

trace

442

Draw Words!

w1 = F + F +X

443

lindenmayer.cpp: Main Program
Words w0, w1, w2, . . . wn ∈ Σ∗: std::string

...
#include "turtle.h"
...
std::cout << "Number of iterations =? ";
unsigned int n;
std::cin >> n;

std::string w = "F";

for (unsigned int i = 0; i < n; ++i)
w = next_word (w);

draw_word (w);

w = w0 = F

w = wi → w = wi+1

draw w = wn!
444

lindenmayer.cpp: next word
// POST: replaces all symbols in word according to their
// production and returns the result
std::string next_word (std::string word) {

std::string next;
for (unsigned int k = 0; k < word.length(); ++k)

next += production (word[k]);
return next;

}

// POST: returns the production of c
std::string production (char c) {

switch (c) {
case ’F’: return "F+F+";
default: return std::string (1, c); // trivial production c −> c
}

} 445

lindenmayer.cpp: draw word
// POST: draws the turtle graphic interpretation of word
void draw_word (std::string word)
{

for (unsigned int k = 0; k < word.length(); ++k)
switch (word[k]) {
case ’F’:

turtle::forward();
break;

case ’+’:
turtle::left(90);
break;

case ’−’:
turtle::right(90);

}
}

jump to the case that corresponds to word[k] .

forward! (function from our turtle library)
skip the remaining cases

turn by 90 degrees! (function from our turtle library)

turn by -90 degrees (function from our turtle library)

446

L-Systems: Extensions

Additional symbols without graphical interpretation (dragon.cpp)
Arbitrary angles (snowflake.cpp)
Saving and restoring the turtle state→ plants (bush.cpp)

447

L-System-Challenge: amazing.cpp!

448

Multidimensional Arrays

are arrays of arrays
can be used to store tables, matrices,

int a[2][3]

a contains two elements and each of
them is an array of length 3 with base
type int

449

Multidimensional Arrays

In memory: flat

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2]

a[0] a[1]

in our head: matrix columns

rows

0 1 2

0 a[0][0] a[0][1] a[0][2]

1 a[1][0] a[1][1] a[1][2]

450

Multidimensional Arrays

are arrays of arrays of arrays

T a[expr1] ... [exprk]

a has expr1 elements and each of them is an array with
expr2 elements each of which is an array of expr3 ele-
ments and ...

constant expressions

451

Multidimensional Arrays

Initialization

int a[][3] =

{

{2,4,6},{1,3,5}

}

2 4 6 1 3 5

First dimension can be omitted

452

Vectors of Vectors

How do we get multidimensional arrays with variable dimensions?
Solution: vectors of vectors

Example: vector of length n of vectors with length m:

std::vector<std::vector<int> > a (n,
std::vector<int>(m));

453

Application: Shortest Paths
Factory hall (n×m square cells)

S

T

Starting position of the robot
target position of the robot

obstacle

free cell

Goal: find the shortest path
of the robot from S to T via
free cells.

454

Application: shortest paths
Solution

S

T

455

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; fol-
low a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

21

20

19 18

456

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

457

Preparation: Input Format

8 12
------X-----

-XXX--X-----

--SX--------

---X---XXX--

---X---X----

---X---X----

---X---X-T--

-------X----

⇒ S

T

rows columns

start position target position

obstacle

free cell

458

Preparation: Sentinels

S

T

row 0, column 0 row 0, column m+1

row n, column 0 row n+1, column m+1

Surrounding sentinels to avoid special
cases.

459

Preparation: Initial Marking

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-2

start

460

The Shortest Path Program

Read in dimensions and provide a two dimensional array for the
path lengths
#include<iostream>
#include<vector>

int main()
{

// read floor dimensions
int n; std::cin >> n; // number of rows
int m; std::cin >> m; // number of columns

// define a two-dimensional
// array of dimensions
// (n+2) x (m+2) to hold the floor plus extra walls around
std::vector<std::vector<int> > floor (n+2, std::vector<int>(m+2));

Sentinel

461

The Shortest Path Program

Input the assignment of the hall and intialize the lengths
int tr = 0;
int tc = 0;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
char entry = ’-’;
std::cin >> entry;
if (entry == ’S’) floor[r][c] = 0;
else if (entry == ’T’) floor[tr = r][tc = c] = -1;
else if (entry == ’X’) floor[r][c] = -2;
else if (entry == ’-’) floor[r][c] = -1;

}

463

Das Kürzeste-Wege-Programm

Add the surrounding walls
for (int r=0; r<n+2; ++r)

floor[r][0] = floor[r][m+1] = -2;

for (int c=0; c<m+2; ++c)
floor[0][c] = floor[n+1][c] = -2;

464

Mark all Cells with their Path Lengths

Step 2: all cells with path length 2

2 1 0

2 1

2

Tunmarked neighbours of
cells with length 1

unmarked neighbours of
cells with length 2

465

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

466

The Shortest Paths Program

Mark the shortest path by walking backwards from target to start.
int r = tr; int c = tc;
while (floor[r][c] > 0) {

const int d = floor[r][c] − 1;
floor[r][c] = −3;
if (floor[r−1][c] == d) −−r;
else if (floor[r+1][c] == d) ++r;
else if (floor[r][c−1] == d) −−c;
else ++c; // (floor[r][c+1] == d)

}

467

Finish

-3 -3 -3 -3 -3 -3 15 16 17 18 19

-3 9 -3 14 15 16 17 18

-3 -3 0 10 -3 -3 -3 -3 -3 -3 17

3 2 1 11 12 13 -3 18

4 3 2 10 11 12 20 -3 -3 19

5 4 3 9 10 11 21 -3 19 20

6 5 4 8 9 10 22 -3 20 21

7 6 5 6 7 8 9 23 22 21 22

468

The Shortest Path Program: output

Output
for (int r=1; r<n+1; ++r) {

for (int c=1; c<m+1; ++c)
if (floor[r][c] == 0)

std::cout << ’S’;
else if (r == tr && c == tc)

std::cout << ’T’;
else if (floor[r][c] == -3)

std::cout << ’o’;
else if (floor[r][c] == -2)

std::cout << ’X’;
else

std::cout << ’-’;
std::cout << "\n";

}

⇒

ooooooX-----
oXXX-oX-----
ooSX-oooooo-
---X---XXXo-
---X---X-oo-
---X---X-o--
---X---X-T--
-------X----

469

The Shortest Paths Program

Algorithm: Breadth First Search
The program can become pretty slow because for each i all cells
are traversed
Improvement: for marking with i, traverse only the neighbours of
the cells marked with i− 1.
Improvement: stop once the goal has been reached

470

Arrays as Function Arguments

Arrays can also be passed as reference arguments to a function.
(here: const because v is read-only)

void print_vector(const int (&v)[3]) {
for (int i = 0; i<3 ; ++i) {

std::cout << v[i] << " ";
}

}

471

Arrays as Function Argumenbts

This also works for multidimensional arrays.

void print_matrix(const int (&m)[3][3]) {
for (int i = 0; i<3 ; ++i) {

print_vector (m[i]);
std::cout << "\n";

}
}

472

Vectors as Function Arguments

Vectors can be passed by value or by reference

void print_vector(const std::vector<int>& v) {
for (int i = 0; i<v.size() ; ++i) {

std::cout << v[i] << " ";
}

}

Here: call by reference is more efficient because the vector could be
very long

473

Vectors as Function Arguments

This also works for multidimensional vectors.

void print_matrix(const std::vector<std::vector<int> >& m) {
for (int i = 0; i<m.size() ; ++i) {

print_vector (m[i]);
std::cout << "\n";

}
}

474

14. Pointers, Algorithms, Iterators and
Containers I

Pointers, Address operator, Dereference operator, Array-to-Pointer
Conversion

475

Random Access is Useful

int a[] = ...; // large array

a[13] = ...;
a[77] = ...;
a[50] = ...;

s

Adresse von a[0] = a+ 0 · s address of a[n-1] = a+ (n− 1) · s

476

Random Access is Useful

int a[] = ...; // large array

a[13] = ...;
a[77] = ...;
a[50] = ...;

compute a + 13 · s
compute a + 77 · s
compute a + 50 · s

One addition and one multiplication per element access

477

Random Access is Often Unnecessary

int a[] = ...; // large array

for (int i = 0; i < n; ++i)
a[i] = ...;

compute a + 0 · s
compute a + 1 · s
compute a + 2 · s
...

Access pattern is called sequential access
Should only “cost” one addition per element access

478

Reading a book . . . with random access . . . with
sequential access

Random Access
open book on page 1
close book
open book on pages 2-3
close book
open book on pages 4-5
close book
....

Sequential Access
open book on page 1
turn the page
turn the page
turn the page
turn the page
turn the page
...

479

Wanted: Pointers into Arrays

for (pointer p = begin of a;
p < end of a;
increment p memory width of int)

a[i] = ...;

int

We need to be able to use memory addresses directly!

Queries: Begin/end of a
Comparisons: p < ...
Arithmetic: increment p

480

References: Where is Anakin?

int anakin_skywalker = 9;

int& darth_vader = anakin_skywalker;

darth_vader = 22;

// anakin_skywalker = 22

“Search for Vader, and
Anakin find you will”

481

Pointers: Where is Anakin?

int anakin_skywalker = 9;

int* here = &anakin_skywalker;

std::cout << here; // Address

*here = 22;

// anakin_skywalker = 22

“Anakins address is
0x7fff6bdd1b54.”

482

Pointer Types
Value of a pointer to T is the address of an object of type T.

Beispiele
int* p; Variable p is pointer to an int.
float* q; Variable q is pointer to a float.

integer value p = adr

adr

int* p = ...;

483

Address Operator

The expression

& lval

L-value of type T

provides, as R-value, a pointer of type T* to an object at the address
of lval

The operator & is called Address-Operator.

484

Address Operator

Example
int i = 5;
int* ip = &i; // ip initialized

// with address of i.

i = 5ip = &i

485

Dereference Operator

The expression

*rval

R-value of type T*

returns as L-value the value of the object at the address represented
by rval.

The operator * is called Derecerence Operator.

486

Dereference Operator
Beispiel
int i = 5;
int* ip = &i; // ip initialized

// with address of i.
int j = *ip; // j == 5

*ip = i = 5 ipj = 5

Value
487

Address and Dereference Operators

pointer (R-value)

object (L-value)

& *

488

Pointer Types

Do not point with a double* to an int!

Examples

int* i = ...; // at address i “lives” an int...
double* j = i; //...and at j lives a double: error!

489

Mnenmonic Trick

The declaration

T* p; p is of the type “pointer to T”

can be read as

T *p; *p is of type T

Although this is legal, we do
not write it like this!

490

Pointer Arithemtics: Pointer plus int

ptr : Pointer to element a[k] of the array a with length n

Value of expr : integer i , such that 0 ≤ k + i ≤ n

ptr + expr

is a pointer to a[k + i].

For k + i = n we get a past-the-end-pointer that must not be dereferenced.

491

Pointer Arithemtics: Pointer minus int

If ptr is a pointer to the element with index k in an array a with
length n
and the value of expr is an integer i, 0 ≤ k − i ≤ n,

then the expression

ptr - expr

provides a pointer to an element of a with index k − i.

a (a[n])ptr

k

i

ptr-expr

492

Conversion Array⇒ Pointer

How do we get a pointer to the first element of an array?

Static array of type T [n] is convertible to T*

Example
int a[5];
int* begin = a; // begin points to a[0]

Length information is lost (“arrays are primitive”)

493

The Truth about Random Access

The expression

a[i]

is equivalent to

*(a + i)

a + i · s

494

Finally: Iteration over an Array of Pointers

Example
int a[5] = {3, 4, 6, 1, 2};
for (int* p = a; p < a+5; ++p)

std::cout << *p << ’ ’; // 3 4 6 1 2

a+5 is a pointer behind the end of the array (past-the-end) that
must not be dereferenced.
The pointer comparison (p < a+5) refers to the order of the two
addresses in memory.

495

