
13. Arrays II

Strings, Lindenmayer Systems, Multidimensional Arrays, Vectors of
Vectors, Shortest Paths, Arrays and Vectors as Function Arguments
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Strings as Arrays

can be represented with underlying type char

char text[] a = ...
can be initialized via string literals

char text[] = "bool"

this is equivalent to the following initialisation

char text[] = {’b’,’o’,’o’,’l’,’\0’}

can only be defined with constant size
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Texts

can be represented with the type std::string from the standard
library.

std::string text = "bool";

defines a string with length 4

A string is conceptually an array with base type char, plus
additional functionality
Requires #include <string>
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Strings: pimped char-Arrays
A std::string. . .

knows its length

text.length()

returns its length as int (call of a member function; will be explained later

can be initialized with variable length

std::string text (n, ’a’)

text is filled with n ’a’s

“understands” comparisons

if (text1 == text2) ...
true if text1 and text2 match 438



Lindenmayer-Systems (L-Systems)
Fractals made from Strings and Turtles

L-Systems have been invented by the Hungarian biologist Aristid
Lindenmayer (1925 – 1989) to model the growth of plants.
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Definition and Example

Alphabet Σ

Σ∗: all finite words over Σ

Production P : Σ→ Σ∗

Initial word s0 ∈ Σ∗

{F , + , −}
c P (c)
F F + F +
+ +
− −

F

Definition
The triple L = (Σ, P, s0) is an L-System.
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The Described Language
Words w0, w1, w2, . . . ∈ Σ∗: P ( F ) = F + F +

w0 := s0

w1 := P (w0)

w2 := P (w1)

...

w0 := F

w1 := F + F +

w2 := F + F + + F + F + +

...
Definition
P (c1c2 . . . cn) := P (c1)P (c2) . . . P (cn)

F F

P ( F ) P ( F )

+ +

P ( + ) P ( + )
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Turtle-Graphics
Turtle with position and direction.

Turtle understands 3 commands:
F : one step for-
ward X

+ : turn by 90 de-
grees X

− : turn by−90 de-
grees X

trace
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Draw Words!

w1 = F + F +X
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lindenmayer.cpp: Main Program
Words w0, w1, w2, . . . wn ∈ Σ∗: std::string

...
#include "turtle.h"
...
std::cout << "Number of iterations =? ";
unsigned int n;
std::cin >> n;

std::string w = "F";

for (unsigned int i = 0; i < n; ++i)
w = next_word (w);

draw_word (w);

w = w0 = F

w = wi → w = wi+1

draw w = wn!
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lindenmayer.cpp: next word
// POST: replaces all symbols in word according to their
// production and returns the result
std::string next_word (std::string word) {

std::string next;
for (unsigned int k = 0; k < word.length(); ++k)

next += production (word[k]);
return next;

}

// POST: returns the production of c
std::string production (char c) {

switch (c) {
case ’F’: return "F+F+";
default: return std::string (1, c); // trivial production c −> c
}
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lindenmayer.cpp: draw word
// POST: draws the turtle graphic interpretation of word
void draw_word (std::string word)
{

for (unsigned int k = 0; k < word.length(); ++k)
switch (word[k]) {
case ’F’:

turtle::forward();
break;

case ’+’:
turtle::left(90);
break;

case ’−’:
turtle::right(90);

}
}

jump to the case that corresponds to word[k] .

forward! (function from our turtle library)
skip the remaining cases

turn by 90 degrees! (function from our turtle library)

turn by -90 degrees (function from our turtle library)
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L-Systems: Extensions

Additional symbols without graphical interpretation (dragon.cpp)
Arbitrary angles (snowflake.cpp)
Saving and restoring the turtle state→ plants (bush.cpp)
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L-System-Challenge: amazing.cpp!
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Multidimensional Arrays

are arrays of arrays
can be used to store tables, matrices, ....

int a[2][3]

a contains two elements and each of
them is an array of length 3 with base
type int
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Multidimensional Arrays

In memory: flat

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2]

a[0] a[1]

in our head: matrix columns

rows

0 1 2

0 a[0][0] a[0][1] a[0][2]

1 a[1][0] a[1][1] a[1][2]
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Multidimensional Arrays

are arrays of arrays of arrays ....

T a[expr1] ... [exprk]

a has expr1 elements and each of them is an array with
expr2 elements each of which is an array of expr3 ele-
ments and ...

constant expressions
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Multidimensional Arrays

Initialization

int a[][3] =

{

{2,4,6},{1,3,5}

}

2 4 6 1 3 5

First dimension can be omitted
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Vectors of Vectors

How do we get multidimensional arrays with variable dimensions?
Solution: vectors of vectors

Example: vector of length n of vectors with length m:

std::vector<std::vector<int> > a (n,
std::vector<int>(m));
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Application: Shortest Paths
Factory hall (n×m square cells)

S

T

Starting position of the robot
target position of the robot

obstacle

free cell

Goal: find the shortest path
of the robot from S to T via
free cells.
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Application: shortest paths
Solution

S

T
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This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; fol-
low a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

21

20

19 18
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This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22
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Preparation: Input Format

8 12
------X-----

-XXX--X-----

--SX--------

---X---XXX--

---X---X----

---X---X----

---X---X-T--

-------X----

⇒ S

T

rows columns

start position target position

obstacle

free cell
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Preparation: Sentinels

S

T

row 0, column 0 row 0, column m+1

row n, column 0 row n+1, column m+1

Surrounding sentinels to avoid special
cases.
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Preparation: Initial Marking

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-2

start
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The Shortest Path Program

Read in dimensions and provide a two dimensional array for the
path lengths
#include<iostream>
#include<vector>

int main()
{

// read floor dimensions
int n; std::cin >> n; // number of rows
int m; std::cin >> m; // number of columns

// define a two-dimensional
// array of dimensions
// (n+2) x (m+2) to hold the floor plus extra walls around
std::vector<std::vector<int> > floor (n+2, std::vector<int>(m+2));

Sentinel
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The Shortest Path Program

Input the assignment of the hall and intialize the lengths
int tr = 0;
int tc = 0;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
char entry = ’-’;
std::cin >> entry;
if (entry == ’S’) floor[r][c] = 0;
else if (entry == ’T’) floor[tr = r][tc = c] = -1;
else if (entry == ’X’) floor[r][c] = -2;
else if (entry == ’-’) floor[r][c] = -1;

}
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Das Kürzeste-Wege-Programm

Add the surrounding walls
for (int r=0; r<n+2; ++r)

floor[r][0] = floor[r][m+1] = -2;

for (int c=0; c<m+2; ++c)
floor[0][c] = floor[n+1][c] = -2;
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Mark all Cells with their Path Lengths

Step 2: all cells with path length 2

2 1 0

2 1

2

Tunmarked neighbours of
cells with length 1

unmarked neighbours of
cells with length 2

465

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1 ) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}
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The Shortest Paths Program

Mark the shortest path by walking backwards from target to start.
int r = tr; int c = tc;
while (floor[r][c] > 0) {

const int d = floor[r][c] − 1;
floor[r][c] = −3;
if (floor[r−1][c] == d) −−r;
else if (floor[r+1][c] == d) ++r;
else if (floor[r][c−1] == d) −−c;
else ++c; // (floor[r][c+1] == d)

}
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Finish

-3 -3 -3 -3 -3 -3 15 16 17 18 19

-3 9 -3 14 15 16 17 18

-3 -3 0 10 -3 -3 -3 -3 -3 -3 17

3 2 1 11 12 13 -3 18

4 3 2 10 11 12 20 -3 -3 19

5 4 3 9 10 11 21 -3 19 20

6 5 4 8 9 10 22 -3 20 21

7 6 5 6 7 8 9 23 22 21 22
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The Shortest Path Program: output

Output
for (int r=1; r<n+1; ++r) {

for (int c=1; c<m+1; ++c)
if (floor[r][c] == 0)

std::cout << ’S’;
else if (r == tr && c == tc)

std::cout << ’T’;
else if (floor[r][c] == -3)

std::cout << ’o’;
else if (floor[r][c] == -2)

std::cout << ’X’;
else

std::cout << ’-’;
std::cout << "\n";

}

⇒

ooooooX-----
oXXX-oX-----
ooSX-oooooo-
---X---XXXo-
---X---X-oo-
---X---X-o--
---X---X-T--
-------X----
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The Shortest Paths Program

Algorithm: Breadth First Search
The program can become pretty slow because for each i all cells
are traversed
Improvement: for marking with i, traverse only the neighbours of
the cells marked with i− 1.
Improvement: stop once the goal has been reached
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Arrays as Function Arguments

Arrays can also be passed as reference arguments to a function.
(here: const because v is read-only)

void print_vector(const int (&v)[3]) {
for (int i = 0; i<3 ; ++i) {

std::cout << v[i] << " ";
}

}
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Arrays as Function Argumenbts

This also works for multidimensional arrays.

void print_matrix(const int (&m)[3][3]) {
for (int i = 0; i<3 ; ++i) {

print_vector (m[i]);
std::cout << "\n";

}
}
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Vectors as Function Arguments

Vectors can be passed by value or by reference

void print_vector(const std::vector<int>& v) {
for (int i = 0; i<v.size() ; ++i) {

std::cout << v[i] << " ";
}

}

Here: call by reference is more efficient because the vector could be
very long
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Vectors as Function Arguments

This also works for multidimensional vectors.

void print_matrix(const std::vector<std::vector<int> >& m) {
for (int i = 0; i<m.size() ; ++i) {

print_vector (m[i]);
std::cout << "\n";

}
}
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14. Pointers, Algorithms, Iterators and
Containers I

Pointers, Address operator, Dereference operator, Array-to-Pointer
Conversion
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Random Access is Useful

int a[] = ...; // large array

a[13] = ...;
a[77] = ...;
a[50] = ...;

s

Adresse von a[0] = a+ 0 · s address of a[n-1] = a+ (n− 1) · s
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Random Access is Useful

int a[] = ...; // large array

a[13] = ...;
a[77] = ...;
a[50] = ...;

compute a + 13 · s
compute a + 77 · s
compute a + 50 · s

One addition and one multiplication per element access
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Random Access is Often Unnecessary

int a[] = ...; // large array

for (int i = 0; i < n; ++i)
a[i] = ...;

compute a + 0 · s
compute a + 1 · s
compute a + 2 · s
...

Access pattern is called sequential access
Should only “cost” one addition per element access
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Reading a book . . . with random access . . . with
sequential access

Random Access
open book on page 1
close book
open book on pages 2-3
close book
open book on pages 4-5
close book
....

Sequential Access
open book on page 1
turn the page
turn the page
turn the page
turn the page
turn the page
...
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Wanted: Pointers into Arrays

for (pointer p = begin of a;
p < end of a;
increment p memory width of int)

a[i] = ...;

int

We need to be able to use memory addresses directly!

Queries: Begin/end of a
Comparisons: p < ...
Arithmetic: increment p
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References: Where is Anakin?

int anakin_skywalker = 9;

int& darth_vader = anakin_skywalker;

darth_vader = 22;

// anakin_skywalker = 22

“Search for Vader, and
Anakin find you will”
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Pointers: Where is Anakin?

int anakin_skywalker = 9;

int* here = &anakin_skywalker;

std::cout << here; // Address

*here = 22;

// anakin_skywalker = 22

“Anakins address is
0x7fff6bdd1b54.”
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Pointer Types
Value of a pointer to T is the address of an object of type T.

Beispiele
int* p; Variable p is pointer to an int.
float* q; Variable q is pointer to a float.

integer value p = adr

adr

int* p = ...;
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Address Operator

The expression

& lval

L-value of type T

provides, as R-value, a pointer of type T* to an object at the address
of lval

The operator & is called Address-Operator.
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Address Operator

Example
int i = 5;
int* ip = &i; // ip initialized

// with address of i.

i = 5ip = &i
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Dereference Operator

The expression

*rval

R-value of type T*

returns as L-value the value of the object at the address represented
by rval.

The operator * is called Derecerence Operator.
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Dereference Operator
Beispiel
int i = 5;
int* ip = &i; // ip initialized

// with address of i.
int j = *ip; // j == 5

*ip = i = 5 ipj = 5

Value
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Address and Dereference Operators

pointer (R-value)

object (L-value)

& *
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Pointer Types

Do not point with a double* to an int!

Examples

int* i = ...; // at address i “lives” an int...
double* j = i; //...and at j lives a double: error!
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Mnenmonic Trick

The declaration

T* p; p is of the type “pointer to T”

can be read as

T *p; *p is of type T

Although this is legal, we do
not write it like this!
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Pointer Arithemtics: Pointer plus int

ptr : Pointer to element a[k] of the array a with length n

Value of expr : integer i , such that 0 ≤ k + i ≤ n

ptr + expr

is a pointer to a[k + i].

For k + i = n we get a past-the-end-pointer that must not be dereferenced.

491



Pointer Arithemtics: Pointer minus int

If ptr is a pointer to the element with index k in an array a with
length n
and the value of expr is an integer i, 0 ≤ k − i ≤ n,

then the expression

ptr - expr

provides a pointer to an element of a with index k − i.

a (a[n])ptr

k

i

ptr-expr
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Conversion Array⇒ Pointer

How do we get a pointer to the first element of an array?

Static array of type T [n] is convertible to T*

Example
int a[5];
int* begin = a; // begin points to a[0]

Length information is lost (“arrays are primitive”)
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The Truth about Random Access

The expression

a[i]

is equivalent to

*(a + i)

a + i · s
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Finally: Iteration over an Array of Pointers

Example
int a[5] = {3, 4, 6, 1, 2};
for (int* p = a; p < a+5; ++p)

std::cout << *p << ’ ’; // 3 4 6 1 2

a+5 is a pointer behind the end of the array (past-the-end) that
must not be dereferenced.
The pointer comparison (p < a+5) refers to the order of the two
addresses in memory.
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