8. Floating-point Numbers II

Floating-point Number Systems; IEEE Standard; Limits of Floating-point Arithmetics; Floating-point Guidelines; Harmonic Numbers

Floating-point Number Systems

A Floating-point number system is defined by the four natural numbers:

- $\beta \geq 2$, the base,
- $p \ge 1$, the precision (number of places),
- e_{\min} , the smallest possible exponent,
- \blacksquare e_{\max} , the largest possible exponent.

Notation:

 $F(\beta, p, e_{\min}, e_{\max})$

Floating-point number Systems

 $F(\beta, p, e_{\min}, e_{\max})$ contains the numbers

$$\pm\sum_{i=0}^{p-1}d_ieta^{-i}\cdoteta^e,$$

$$d_i \in \{0, \dots, \beta - 1\}, \quad e \in \{e_{\min}, \dots, e_{\max}\}.$$

represented in base β :

$$\pm d_{0\bullet}d_1\ldots d_{p-1}\times\beta^e,$$

Floating-point Number Systems

Example

 $\ \ \beta = 10$

Representations of the decimal number 0.1

 $1.0 \cdot 10^{-1}, \quad 0.1 \cdot 10^0, \quad 0.01 \cdot 10^1, \quad \dots$

Normalized representation

Set of Normalized Numbers

Normalized number:

 $\pm d_{0\bullet}d_1\dots d_{p-1}\times\beta^e, \qquad d_0\neq 0$

Remark 1

The normalized representation is unique and therefore prefered.

Remark 2

The number 0 (and all numbers smaller than $\beta^{e_{\min}}$) have no normalized representation (we will deal with this later)!

Normalized Representation

$F^*(\beta, p, e_{\min}, e_{\max})$

Binary and Decimal Systems

- Internally the computer computes with $\beta = 2$ (binary system)
- Literals and inputs have $\beta = 10$ (decimal system)
- Inputs have to be converted!

Conversion Decimal \rightarrow Binary

Assume, 0 < x < 2.

Binary representation:

$$\begin{aligned} x &= \sum_{i=-\infty}^{0} b_i 2^i = b_{0\bullet} b_{-1} b_{-2} b_{-3} \dots \\ &= b_0 + \sum_{i=-\infty}^{-1} b_i 2^i = b_0 + \sum_{i=-\infty}^{0} b_{i-1} 2^{i-1} \\ &= b_0 + \underbrace{\left(\sum_{i=-\infty}^{0} b_{i-1} 2^i\right)}_{x'=b_{-1} b_{-3} b_{-3} b_{-4}} / 2 \end{aligned}$$

Binary representation of 1.1

	x	b_i	$x - b_i$	$2(x-b_i)$
	1.1	$b_0 = 1$	0.1	0.2
	0.2	$b_{-1} = 0$	0.2	0.4
~	→ 0.4	$b_{-2} = 0$	0.4	0.8
(0.8	$b_{-3} = 0$	0.8	1.6
	1.6	$b_{-4} = 1$	0.6	1.2
	1.2	$b_{-5} = 1$	0.2	0.4

Conversion Decimal \rightarrow Binary

Assume 0 < x < 2.

- Hence: $x' = b_{-1} \cdot b_{-2} \cdot b_{-3} \cdot b_{-4} \dots = 2 \cdot (x b_0)$
- Step 1 (for x): Compute b_0 :

$$b_0 = \begin{cases} 1, & \text{if } x \ge 1 \\ 0, & \text{otherwise} \end{cases}$$

Step 2 (for *x*): Compute *b*_{−1}, *b*_{−2}, ...:
 Go to step 1 (for *x'* = 2 ⋅ (*x* − *b*₀))

283

Binary Number Representations of 1.1 and 0.1

- are not finite, hence there are errors when converting into a (finite) binary floating-point system.
- 1.1f and 0.1f do not equal 1.1 and 0.1, but are slightly inaccurate approximation of these numbers.
- In diff.cpp: $1.1 1.0 \neq 0.1$

\Rightarrow 1.00011, periodic, *not* finite

on my computer:

- 1.1f = 1.1000000238418...

Computing with Floating-point Numbers

Example ($\beta = 2, p = 4$):

$$\begin{array}{r} 1.111 \cdot 2^{-2} \\ + 1.011 \cdot 2^{-1} \end{array}$$

$$= 1.001 \cdot 2^{0}$$

1. adjust exponents by denormalizing one number 2. binary addition of the significands 3. renormalize 4. round to p significant places, if necessary

The Excel-2007-Bug

std::cout << 850 * 77.1; // 65535

- 77.1 does not have a finite binary representation, we obtain 65534.9999999999927...
- For this and exactly 11 other "rare" numbers the output (and only the output) was wrong.

The IEEE Standard 754

- defines floating-point number systems and their rounding behavior
- is used nearly everywhere
- Single precision (float) numbers:

 $F^*(2,24,-126,127) \qquad \text{ plus } 0,\infty,\dots$

Double precision (double) numbers:

 $F^*(2, 53, -1022, 1023)$ plus $0, \infty, ...$

 All arithmetic operations round the *exact* result to the next representable number Why

 $F^*(2, 24, -126, 127)?$

- 1 sign bit
- 23 bit for the significand (leading bit is 1 and is not stored)
- 8 bit for the exponent (256 possible values)(254 possible exponents, 2 special values: 0, ∞,...)

 \Rightarrow 32 bit in total.

$F^*(2, 53, -1022, 1023)?$

1 sign bit

Why

- 52 bit for the significand (leading bit is 1 and is not stored)
- 11 bit for the exponent (2046 possible exponents, 2 special values: 0, ∞,...)

```
\Rightarrow 64 bit in total.
```

	290		
Floating-point Rules	Rule 1	Floating-point Rules	Rule 2
		Rule 2 Do not add two numbers of very different orders of magnitu	de!
Rule 1 Do not test rounded floating-point numbers for equality.		$1.000 \cdot 2^5$	
<pre>for (float i = 0.1; i != 1.0; i += 0.1) std::cout << i << "\n"; endless loop because i never becomes exactly 1</pre>		$+1.000 \cdot 2^{0}$ = 1.00001 \cdot 2 ⁵ "=" 1.000 \cdot 2 ⁵ (Rounding on 4 places)	
		Addition of 1 does not have any effect!	

// Forward sum float fs = 0; for (unsigned int i = 1; i <= n; ++i) fs += 1.0f / i;

// Backward sum float bs = 0; for (unsigned int i = n; i >= 1; --i) bs += 1.0f / i;

// Output
std::cout << "Forward sum = " << fs << "\n"
<< "Backward sum = " << bs << "\n";
return 0;</pre>

```
The n-the harmonic number is
```

Backward sum = 18.8079

```
H_n = \sum_{i=1}^n \frac{1}{i} \approx \ln n.
```

This sum can be computed in forward or backward direction, which is mathematically clearly equivalent

Harmonic Numbers	Rule 2	Harmonic Numbers	Rule 2
Results: Compute H_n for n =? 10000000 Forward sum = 15.4037 Backward sum = 16.686		 Observation: The forward sum stops growing at some point and wrong. The backward sum approximates H_n well. Explanation: 	d is "really"
Compute H_n for n =? 100000000 Forward sum = 15.4037		For $1 + 1/2 + 1/3 + \cdots$, later terms are too small contribute	to actually

Problem similar to $2^5 + 1$ "=" 2^5

Rule 3 Literature

David Goldberg: What Every Computer Scientist Should Know About Floating-Point Arithmetic (1991)

Rule 4

Do not subtract two numbers with a very similar value.

Cancellation problems, cf. lecture notes.

Functions

9. Functions I

Defining and Calling Functions, Evaluation of Function Calls, the Type void, Pre- and Post-Conditions

- encapsulate functionality that is frequently used (e.g. computing powers) and make it easily accessible
- structure a program: partitioning into small sub-tasks, each of which is implemented as a function

⇒ Procedural programming; procedure: a different word for function.

Example: Computing Powers

Function to Compute Powers

Function to Compute Powers

```
// Prog: callpow.cpp
// Define and call a function for computing powers.
#include <iostream>
```

```
double pow(double b, int e){...}
```

```
int main()
{
    std::cout << pow( 2.0, -2) << "\n"; // outputs 0.25
    std::cout << pow( 1.5, 2) << "\n"; // outputs 2.25
    std::cout << pow(-2.0, 9) << "\n"; // outputs -512</pre>
```

```
return 0;
```

// PRE: e >= 0 || b != 0.0 // POST: return value is b^e double pow(double b, int e) { double result = 1.0; if (e < 0) { // b^e = (1/b)^(-e) b = 1.0/b; e = -e; } for (int i = 0; i < e; ++i) result *= b; return result;

303

Function Definitions

Defining Functions

Example: Xor

- may not occur *locally*, i.e. not in blocks, not in other functions and not within control statements
- can be written consecutively without separator in a program

```
double pow (double b, int e)
{
    ...
}
int main ()
{
    ...
}
```

Example: Harmonic

```
// PRE: n >= 0
// POST: returns nth harmonic number
// computed with backward sum
float Harmonic(int n)
{
   float res = 0;
   for (unsigned int i = n; i >= 1; --i)
        res += 1.0f / i;
   return res;
}
```

// post: returns 1 XOR r bool Xor(bool 1, bool r) { return 1 && !r || !1 && r; }

Example: min

```
// POST: returns the minimum of a and b
int min(int a, int b)
{
    if (a<b)
        return a;
    else
        return b;
}</pre>
```

Function Calls

Function Calls

fname ($expression_1$, $expression_2$, ..., $expression_N$)

- All call arguments must be convertible to the respective formal argument types.
- The function call is an expression of the return type of the function. Value and effect as given in the postcondition of the function *fname*.

Example: pow(a,n): Expression of type double

For the types we know up to this point it holds that:

- Call arguments are R-values
- The function call is an R-value.

fname: R-value \times R-value \longrightarrow R-value \longrightarrow R-value

Evaluation of a Function Call

- Evaluation of the call arguments
- Initialization of the formal arguments with the resulting values
- Execution of the function body: formal arguments behave laike local variables
- Execution ends with return *expression*;

Return value yiels the value of the function call.

Example: Evaluation Function Call

```
double pow(double b, int e){
    assert (e >= 0 || b != 0);
    double result = 1.0;
    if (e<0) {
        // b^c = (1/b)^c(-e)
        b = 1.0/b;
        e = -e;
    }
    for (int i = 0; i < e; ++i)
        result *= b;
    return result;
    }
    ...
    pow (2.0, -2);
    // result = 0; // result
    // / result
    // result
```

Call of p

Formal arguments

- are invisible outside the function definition
- are allocated for each call of the function (automatic storage) duration)
- modifications of their value do not have an effect to the values of the call arguments (call arguments are R-values)

defined here locally in the body of main

The type void

- Fundamental type with empty value range
- Usage as a return type for functions that do only provide an effect

```
// POST: "(i, i)" has been written to
       standard output
void print pair (int i, int i)
   std::cout << "(" << i << ", " << j << ")\n";
int main()
   print_pair(3,4); // outputs (3, 4)
   return 0:
```

void-Functions

- do not require return.
- execution ends when the end of the function body is reached or if
- return: is reached
 - or

3

return expression: is reached.

Expression with type void (e.g. a call of a function with return type void

Pre- and Postconditions

Preconditions

- characterize (as complete as possible) what a function does
- document the function for users and programmers (we or other people)
- make programs more readable: we do not have to understand how the function works
- are ignored by the compiler
- Pre and postconditions render statements about the correctness of a program possible - provided they are correct.

precondition:

- what is required to hold when the function is called?
- defines the *domain* of the function

 0^e is undefined for e < 0

 $// PRE: e \ge 0 || b != 0.0$

Postconditions Pre- and Postconditions

postcondition:

- What is guaranteed to hold after the function call?
- Specifies value and effect of the function call.

Here only value, no effect.

// POST: return value is b^e

should be correct:

if the precondition holds when the function is called then also the postcondition holds after the call.

Funktion pow: works for all numbers $b \neq 0$

- We do not make a statement about what happens if the precondition does not hold.
- C++-standard-slang: "Undefined behavior".

Function pow: division by 0

- pre-condition should be as *weak* as possible (largest possible domain)
- post-condition should be as *strong* as possible (most detailed information)

White Lies...

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e

is formally incorrect:

- Overflow if e or b are too large
- b^e potentially not representable as a double (holes in the value range!)

White Lies are Allowed

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e

The exact pre- and postconditions are platform-dependent and often complicated. We abstract away and provide the mathematical conditions. \Rightarrow compromise between formal correctness and lax practice.

... with assertions

#include <cassert>

```
Preconditions are only comments.
```

How can we ensure that they hold when the function is called?

```
// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e) {
   assert (e >= 0 || b != 0);
   double result = 1.0;
}
```

Postconditions with Asserts

- The result of "complex" computations is often easy to check.
- Then the use of asserts for the postcondition is worthwhile.

```
// PRE: the discriminant p*p/4 - q is nonnegative
// POST: returns larger root of the polynomial x<sup>2</sup> + p x + q
double root(double p, double q)
{
    assert(p*p/4 >= q); // precondition
    double x1 = - p/2 + sqrt(p*p/4 - q);
    assert(equals(x1*x1+p*x1+q,0)); // postcondition
    return x1;
}
```

Exceptions

- Assertions are a rough tool; if an assertions fails, the program is halted in a unrecoverable way.
- C++provides more elegant means (exceptions) in order to deal with such failures depending on the situation and potentially without halting the program
- Failsafe programs should only halt in emergency situations and therefore should work with exceptions. For this course, however, this goes too far.