
8. Floating-point Numbers II

Floating-point Number Systems; IEEE Standard; Limits of
Floating-point Arithmetics; Floating-point Guidelines; Harmonic
Numbers

272

Floating-point Number Systems

A Floating-point number system is defined by the four natural
numbers:

β ≥ 2, the base,
p ≥ 1, the precision (number of places),
emin, the smallest possible exponent,
emax, the largest possible exponent.

Notation:

F (β, p, emin, emax)

273

Floating-point number Systems

F (β, p, emin, emax) contains the numbers

±
p−1∑
i=0

diβ
−i · βe,

di ∈ {0, . . . , β − 1}, e ∈ {emin, . . . , emax}.

represented in base β:

± d0•d1 . . . dp−1 × βe,

274

Floating-point Number Systems

Example

β = 10

Representations of the decimal number 0.1

1.0 · 10−1, 0.1 · 100, 0.01 · 101, . . .

275

Normalized representation

Normalized number:

± d0•d1 . . . dp−1 × βe, d0 6= 0

Remark 1
The normalized representation is unique and therefore prefered.

Remark 2
The number 0 (and all numbers smaller than βemin) have no
normalized representation (we will deal with this later)!

276

Set of Normalized Numbers

F ∗(β, p, emin, emax)

277

Normalized Representation
Example F ∗(2, 3, − 2, 2) (only positive numbers)

d0•d1d2 e = −2 e = −1 e = 0 e = 1 e = 2
1.002 0.25 0.5 1 2 4
1.012 0.3125 0.625 1.25 2.5 5
1.102 0.375 0.75 1.5 3 6
1.112 0.4375 0.875 1.75 3.5 7

0 8

1.00 · 2−2 = 1
4

1.11 · 22 = 7

278

Binary and Decimal Systems

Internally the computer computes with β = 2
(binary system)
Literals and inputs have β = 10
(decimal system)
Inputs have to be converted!

279

Conversion Decimal→ Binary

Assume, 0 < x < 2.

Binary representation:

x =
0∑

i=−∞
bi2

i = b0•b−1b−2b−3 . . .

= b0 +
−1∑

i=−∞
bi2

i = b0 +
0∑

i=−∞
bi−12

i−1

= b0 +

(
0∑

i=−∞
bi−12

i

)
︸ ︷︷ ︸
x′=b−1•b−2b−3b−4

/2

282

Conversion Decimal→ Binary

Assume 0 < x < 2.

Hence: x′ = b−1•b−2b−3b−4 . . . = 2 · (x− b0)
Step 1 (for x): Compute b0:

b0 =

{
1, if x ≥ 1
0, otherwise

Step 2 (for x): Compute b−1, b−2, . . .:

Go to step 1 (for x′ = 2 · (x− b0))

283

Binary representation of 1.1

x bi x− bi 2(x− bi)
1.1 b0 = 1 0.1 0.2

0.2 b−1 = 0 0.2 0.4

0.4 b−2 = 0 0.4 0.8

0.8 b−3 = 0 0.8 1.6

1.6 b−4 = 1 0.6 1.2

1.2 b−5 = 1 0.2 0.4

⇒ 1.00011, periodic, not finite
284

Binary Number Representations of 1.1 and 0.1

are not finite, hence there are errors when converting into a (finite)
binary floating-point system.
1.1f and 0.1f do not equal 1.1 and 0.1, but are slightly inaccurate
approximation of these numbers.
In diff.cpp: 1.1− 1.0 6= 0.1

285

Binary Number Representations of 1.1 and 0.1

on my computer:

1.1 = 1.1000000000000000888178 . . .

1.1f = 1.1000000238418 . . .

286

The Excel-2007-Bug
std::cout << 850 ∗ 77.1; // 65535

77.1 does not have a finite binary representation, we obtain
65534.9999999999927 . . .
For this and exactly 11 other “rare” numbers the output (and only
the output) was wrong.

ht
tp

://
w

w
w

.lo
m

on
t.o

rg
/M

at
h/

P
ap

er
s/

20
07

/E
xc

el
20

07
/E

xc
el

20
07

B
ug

.p
df

287

Computing with Floating-point Numbers

Example (β = 2, p = 4):

1.111 · 2−2

+ 1.011 · 2−1

= 1.001 · 20

1. adjust exponents by denormalizing one number 2. binary addition of the
significands 3. renormalize 4. round to p significant places, if necessary

288

The IEEE Standard 754

defines floating-point number systems and their rounding behavior
is used nearly everywhere
Single precision (float) numbers:

F ∗(2, 24,−126, 127) plus 0,∞, . . .

Double precision (double) numbers:

F ∗(2, 53,−1022, 1023) plus 0,∞, . . .

All arithmetic operations round the exact result to the next
representable number

289

The IEEE Standard 754

Why
F ∗(2, 24, − 126, 127)?

1 sign bit
23 bit for the significand (leading bit is 1 and is not stored)
8 bit for the exponent (256 possible values)(254 possible
exponents, 2 special values: 0,∞,. . .)

⇒ 32 bit in total.

290

The IEEE Standard 754

Why
F ∗(2, 53,−1022, 1023)?

1 sign bit
52 bit for the significand (leading bit is 1 and is not stored)
11 bit for the exponent (2046 possible exponents, 2 special
values: 0,∞,. . .)

⇒ 64 bit in total.

291

Floating-point Rules Rule 1

Rule 1
Do not test rounded floating-point numbers for equality.

for (float i = 0.1; i != 1.0; i += 0.1)
std::cout << i << "\n";

endless loop because i never becomes exactly 1

292

Floating-point Rules Rule 2
Rule 2
Do not add two numbers of very different orders of magnitude!

1.000 · 25

+1.000 · 20

= 1.00001 · 25

“=” 1.000 · 25 (Rounding on 4 places)

Addition of 1 does not have any effect!
293

Harmonic Numbers Rule 2

The n-the harmonic number is

Hn =
n∑

i=1

1

i
≈ lnn.

This sum can be computed in forward or backward direction,
which is mathematically clearly equivalent

294

Harmonic Numbers Rule 2
// Program: harmonic.cpp
// Compute the n-th harmonic number in two ways.

#include <iostream>

int main()
{
// Input
std::cout << "Compute H_n for n =? ";
unsigned int n;
std::cin >> n;

// Forward sum
float fs = 0;
for (unsigned int i = 1; i <= n; ++i)
fs += 1.0f / i;

// Backward sum
float bs = 0;
for (unsigned int i = n; i >= 1; --i)
bs += 1.0f / i;

// Output
std::cout << "Forward sum = " << fs << "\n"

<< "Backward sum = " << bs << "\n";
return 0;

}

295

Harmonic Numbers Rule 2

Results:

Compute H_n for n =? 10000000

Forward sum = 15.4037

Backward sum = 16.686

Compute H_n for n =? 100000000

Forward sum = 15.4037

Backward sum = 18.8079

296

Harmonic Numbers Rule 2

Observation:

The forward sum stops growing at some point and is “really”
wrong.
The backward sum approximates Hn well.

Explanation:

For 1 + 1/2 + 1/3 + · · · , later terms are too small to actually
contribute
Problem similar to 25 + 1 “=” 25

297

Floating-point Guidelines Rule 3

Rule 4
Do not subtract two numbers with a very similar value.

Cancellation problems, cf. lecture notes.

298

Literature

David Goldberg: What Every
Computer Scientist Should Know
About Floating-Point Arithmetic
(1991)

Randy Glasbergen, 1996
299

9. Functions I

Defining and Calling Functions, Evaluation of Function Calls, the
Type void, Pre- and Post-Conditions

300

Functions

encapsulate functionality that is frequently used (e.g. computing
powers) and make it easily accessible
structure a program: partitioning into small sub-tasks, each of
which is implemented as a function

⇒ Procedural programming; procedure: a different word for function.

301

Example: Computing Powers
double a;
int n;
std::cin >> a; // Eingabe a
std::cin >> n; // Eingabe n

double result = 1.0;
if (n < 0) { // a^n = (1/a)^(−n)

a = 1.0/a;
n = −n;

}
for (int i = 0; i < n; ++i)

result ∗= a;

std::cout << a << "^" << n << " = " << ((((resultpow(a,n) << ".\n";

"Funktion pow"

302

Function to Compute Powers

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e)
{

double result = 1.0;
if (e < 0) { // b^e = (1/b)^(−e)

b = 1.0/b;
e = −e;

}
for (int i = 0; i < e; ++i)

result ∗= b;
return result;

}

303

Function to Compute Powers
// Prog: callpow.cpp
// Define and call a function for computing powers.
#include <iostream>

double pow(double b, int e){...}

int main()
{

std::cout << pow(2.0, −2) << "\n"; // outputs 0.25
std::cout << pow(1.5, 2) << "\n"; // outputs 2.25
std::cout << pow(−2.0, 9) << "\n"; // outputs −512

return 0;
}

304

Function Definitions

T fname (T1 pname1,T2 pname2, . . . ,TN pnameN)
block

function name

return type

body

formal arguments

argument types

305

Defining Functions
may not occur locally, i.e. not in blocks, not in other functions and
not within control statements
can be written consecutively without separator in a program

double pow (double b, int e)
{

...
}

int main ()
{

...
}

306

Example: Xor

// post: returns l XOR r
bool Xor(bool l, bool r)
{

return l && !r || !l && r;
}

307

Example: Harmonic

// PRE: n >= 0
// POST: returns nth harmonic number
// computed with backward sum
float Harmonic(int n)
{

float res = 0;
for (unsigned int i = n; i >= 1; −−i)

res += 1.0f / i;
return res;

}

308

Example: min

// POST: returns the minimum of a and b
int min(int a, int b)
{

if (a<b)
return a;

else
return b;

}

309

Function Calls

fname (expression1, expression2, . . . , expressionN)

All call arguments must be convertible to the respective formal
argument types.
The function call is an expression of the return type of the
function. Value and effect as given in the postcondition of the
function fname.

Example: pow(a,n): Expression of type double

310

Function Calls

For the types we know up to this point it holds that:

Call arguments are R-values

The function call is an R-value.

fname: R-value × R-value × · · ·× R-value −→ R-value

311

Evaluation of a Function Call

Evaluation of the call arguments
Initialization of the formal arguments with the resulting values
Execution of the function body: formal arguments behave laike
local variables
Execution ends with
return expression;

Return value yiels the value of the function call.

312

Example: Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

Return

313

Formal arguments

Declarative region: function definition
are invisible outside the function definition
are allocated for each call of the function (automatic storage
duration)
modifications of their value do not have an effect to the values of
the call arguments (call arguments are R-values)

314

Scope of Formal Arguments

double pow(double b, int e){
double r = 1.0;
if (e<0) {

b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

r ∗ = b;
return r;

}

int main(){
double b = 2.0;
int e = −2;
double z = pow(b, e);

std::cout << z; // 0.25
std::cout << b; // 2
std::cout << e; // −2
return 0;

}
Not the formal arguments b and e of pow but the variables
defined here locally in the body of main

315

The type void

Fundamental type with empty value range
Usage as a return type for functions that do only provide an effect

// POST: "(i, j)" has been written to
// standard output
void print_pair (int i, int j)
{

std::cout << "(" << i << ", " << j << ")\n";
}

int main()
{

print_pair(3,4); // outputs (3, 4)
return 0;

}

316

void-Functions

do not require return.
execution ends when the end of the function body is reached or if
return; is reached
or
return expression; is reached.

Expression with type void (e.g. a call of
a function with return type void

317

Pre- and Postconditions

characterize (as complete as possible) what a function does
document the function for users and programmers (we or other
people)
make programs more readable: we do not have to understand
how the function works
are ignored by the compiler
Pre and postconditions render statements about the correctness
of a program possible – provided they are correct.

318

Preconditions

precondition:

what is required to hold when the function is called?

defines the domain of the function

0e is undefined for e < 0

// PRE: e >= 0 || b != 0.0

319

Postconditions

postcondition:

What is guaranteed to hold after the function call?

Specifies value and effect of the function call.

Here only value, no effect.

// POST: return value is b^e

320

Pre- and Postconditions

should be correct:
if the precondition holds when the function is called then also the
postcondition holds after the call.

Funktion pow: works for all numbers b 6= 0

321

Pre- and Postconditions

We do not make a statement about what happens if the
precondition does not hold.
C++-standard-slang: „Undefined behavior”.

Function pow: division by 0

322

Pre- and Postconditions

pre-condition should be as weak as possible (largest possible
domain)
post-condition should be as strong as possible (most detailed
information)

323

White Lies. . .

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e

is formally incorrect:

Overflow if e or b are too large

be potentially not representable as a double (holes in the value range!)

324

White Lies are Allowed

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e

The exact pre- and postconditions are platform-dependent and often complicated.
We abstract away and provide the mathematical conditions. ⇒ compromise
between formal correctness and lax practice.

325

Checking Preconditions. . .

Preconditions are only comments.
How can we ensure that they hold when the function is called?

326

. . . with assertions

#include <cassert>
...
// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e) {

assert (e >= 0 || b != 0);
double result = 1.0;
...

}

327

Postconditions with Asserts

The result of “complex” computations is often easy to check.
Then the use of asserts for the postcondition is worthwhile.

// PRE: the discriminant p∗p/4 − q is nonnegative
// POST: returns larger root of the polynomial x^2 + p x + q
double root(double p, double q)
{

assert(p∗p/4 >= q); // precondition
double x1 = − p/2 + sqrt(p∗p/4 − q);
assert(equals(x1∗x1+p∗x1+q,0)); // postcondition
return x1;

}

328

Exceptions

Assertions are a rough tool; if an assertions fails, the program is
halted in a unrecoverable way.
C++provides more elegant means (exceptions) in order to deal
with such failures depending on the situation and potentially
without halting the program
Failsafe programs should only halt in emergency situations and
therefore should work with exceptions. For this course, however,
this goes too far.

329

