8. Floating-point Numbers II

Floating-point Number Systems; IEEE Standard; Limits of
Floating-point Arithmetics; Floating-point Guidelines; Harmonic
Numbers

Floating-point number Systems

F (B3, p, €min, €max) coNtains the numbers

p—1
£> difT B
i=0

d; € {0““"‘[‘771}, ec {eminwuyemax}'

represented in base (:

+ d(].d1 P d,),l X ‘66,

Floating-point Number Systems
A Floating-point number system is defined by the four natural
numbers:

m [> 2, the base,

m p > 1, the precision (number of places),
B e, the smallest possible exponent,

B e, the largest possible exponent.

Notation:
F(*j P, €min, CnuL\')

Floating-point Number Systems

Example
m 3=10

Representations of the decimal number 0.1

1.0-107%, 0.1-10°, 0.01-10%,

Normalized representation Set of Normalized Numbers
Normalized number:

+ d(].dl - dp,1 X 667 (1(; 7é 0

F*<£6)~ P; €min, Hnmx)
The normalized representation is unique and therefore prefered.

The number 0 (and all numbers smaller than 5“»») have no
normalized representation (we will deal with this later)!

Normalized Representation Binary and Decimal Systems

(only positive numbers)

dyedidy ‘ e=-2 e=-1 e
1.00, 0.25 0.5 1
1.01, 0.3125 0.625 il
1
1

g Z m Internally the computer computes with § = 2
b 25 & (binary system)
g (7) m Literals and inputs have g = 10
(decimal system)
m Inputs have to be converted!

1.10, 0.375 0.75
1.11, 0.4375 0.875

0 8
%wmuvvvv —t—t—t T T

100-272=1 111-22=7

Conversion Decimal — Binary

Assume, 0 < z < 2.

Binary representation:
0

o=) b2 =boboab b s ..

i=—00

-1 0
=bot Y b2 =bot+ D b2

i=—00 1=—00
0
= by + (Z bi—12[> /2
1 oo}
1eb-2b-3b_4
Binary representation of 1.1
z b x—0b 2(z—0b)
11 by=1 0.1 0.2
02 b1 =0 0.2 0.4
04 by=0 0.4 0.8
0.8 b3=0 0.8 1.6
1.6 by=1 0.6 1.2
1.2 b5;=1 0.2 0.4

= 1.00011, periodic, not finite

Conversion Decimal — Binary

Assume 0 < x < 2.

m Hence: 2/ = b_1,b_2b_3b_4... =2 (x — by)
m Step 1 (for z): Compute by:

o L1
"= 0, otherwise

m Step 2 (for x): Compute b_1,b_o,...:
Gotostep 1 (fora’ =2 (z — b))

Binary Number Representations of 1.1 and 0.1

m are not finite, hence there are errors when converting into a (finite)
binary floating-point system.

m 1.1f and 0.1f do not equal 1.1 and 0.1, but are slightly inaccurate
approximation of these numbers.

m Indiff.cpp: 1.1 — 1.0 £ 0.1

Binary Number Representations of 1.1 and 0.1

on my computer:

1.1 1.1000000000000000888178 . ..
1.1f = 1.1000000238418...

Computing with Floating-point Numbers

Example (5 =2, p =4):

1.111-272
+ 1.011-27!

=1.001-2°

1. adjust exponents by denormalizing one number 2. binary addition of the
significands 3. renormalize 4. round to p significant places, if necessary

The Excel-2007-Bug

std::cout << 850 % 77.1; // 65535

(=) MultBug - Microsoft Excel (Trial) - = x
. fx | =850°77.1

A [c D E F K
1 [_100000]
2
W < » W] Sheetl | Sheet2 Sheet3 e
Ready [EEEFTTe! 9 o

m 77.1 does not have a finite binary representation, we obtain
65534.9999999999927 . ..

m For this and exactly 11 other “rare” numbers the output (and only

the output) was wrong.

The IEEE Standard 754

m is used nearly everywhere
Single precision (float) numbers:

F*(2,24,-126,127) puso, e

defines floating-point number systems and their rounding behavior

m Double precision (double) numbers:

F*(2,53,-1022,1023) puso.c....

m All arithmetic operations round the exact result to the next
representable number

The IEEE Standard 754

Why
F*(2,24, —126,127)?

m 1 sign bit

m 23 bit for the significand (leading bit is 1 and is not stored)

m 8 bit for the exponent (256 possible values)(254 possible
exponents, 2 special values: 0, co,...)

= 32 bit in total.

Floating-point Rules Rule 1

Do not test rounded floating-point numbers for equality.

for (float i = 0.1; i !=1.0; i += 0.1)
std::cout << i << "\n";

endless loop because i never becomes exactly 1

The IEEE Standard 754

Why
F*(2,53, —1022,1023)?

m 1 sign bit
m 52 bit for the significand (leading bit is 1 and is not stored)

m 11 bit for the exponent (2046 possible exponents, 2 special
values: 0, co,...)

= 64 bit in total.

Floating-point Rules Rule 2

Do not add two numbers of very different orders of magnitude!

1.000 - 2°
+1.000 - 2°
=1.00001 - 2°
“=”1.000 - 2° (Rounding on 4 places)

Addition of 1 does not have any effect!

Harmonic Numbers Rule 2

m The n-the harmonic number is

n

H, = —~Inn.
i

m This sum can be computed in forward or backward direction,
which is mathematically clearly equivalent

Harmonic Numbers Rule 2

Results:

]
Compute H_n for n =7 10000000
Forward sum = 15.4037
Backward sum = 16.686

]
Compute H_n for n =7 100000000
Forward sum = 15.4037
Backward sum = 18.8079

Harmonic Numbers Rule 2

77 program: harmonic.q

=3
/1 compute the rmonic number in two ways

#include <iostream>
int main()
«

1/ Tnput

std::cout << "Compute H.n for n =2 ";
unsigned int n;

std:icin >> n;

/1 Forward sum
o

11 output

std::cout << "Forward sum = " << fs << "\n"
<< "Backward sum = " << bs << "\n';

return 0;

Harmonic Numbers Rule 2

Observation:

m The forward sum stops growing at some point and is “really”
wrong.

m The backward sum approximates H,, well.

Explanation:

m For1+1/2+1/3+---, later terms are too small to actually
contribute

m Problem similar to 2° + 1 “=” 2°

Floating-point Guidelines Rule 3 Literature

David Goldberg: What Every
Computer Scientist Should Know

About Floating-Point Arithmetic
_ 1991
Do not subtract two numbers with a very similar value. ()

Q
2 3
Cancellation problems, cf. lecture notes. 2SS 9
GUASBERGE

© 1998 Py Gissorgen

Randy Glasbergen, 1996

Functions

m encapsulate functionality that is frequently used (e.g. computing
powers) and make it easily accessible

m structure a program: partitioning into small sub-tasks, each of
which is implemented as a function

9. Functions |

Defining and Calling Functions, Evaluation of Function Calls, the
Type void, Pre- and Post-Conditions = Procedural programming; procedure: a different word for function.

Example: Computing Powers Function to Compute Powers

double a;
int n; // PRE: e >= 0 || b != 0.0
std::cin >> a; // Eingabe a // POST: return value is b~e
std::cin >> n; // Eingabe n double pow(double b, int e)
{
double result = 1.0; double result = 1.0;
if (@< 0) {//am=(1/a)"(n) f "Funktion pow" if (e < 0) { // bTe = (1/b)"(—e)
a =1.0/a; b =1.0/b;
n = —n; e = —e;
} }
for (int i = 0; i < nj; ++i) for (int i = 0; i < e; ++i)
result *= a; result *= b;
return result;
std::cout << a << "7 << n << " = " << resultpow(a,n) << ".\n"; ¥
Function to Compute Powers Function Definitions
// Prog: callpow.cpp
// Define and call a function for computing powers.
#include <iostream> return type argument types
//~4»-/’ l//“““‘~;><:::::::;/\\\\
double pow(double b, int e){...} T fname (T, pname,, T, pname,, ..., Ty pnamey)
block
int main() \
{
std::cout << pow(2.0, —2) << "\n"; // outputs 0.25
std::cout << pow(1.5, 2) << "\n"; // outputs 2.25 body
std::cout << pow(—2.0, 9) << "\n"; // outputs —512
function name formal arguments

return 0;

}

Defining Functions

m may not occur locally, i.e. not in blocks, not in other functions and

not within control statements

m can be written consecutively without separator in a program

double pow (double b, int e)
{

}

int main ()

{

}
Example: Harmonic

// PRE: n >= 0
// POST: returns nth harmonic number

// computed with backward sum
float Harmonic(int n)
{

float res = 0;

for (unsigned int i = n; i >= 1; ——1i)
res += 1.0f / i;

return res;

Example: Xor

// post: returns 1 XOR r
bool Xor(bool 1, bool r)

{
}

return 1 && !'r || !1 && r;

Example: min

// POST: returns the minimum of a and b
int min(int a, int b)

{

if (a<b)
return a;
else
return b;

Function Calls

fname (expression,, expression,, ..., expressiony’)

m All call arguments must be convertible to the respective formal

argument types.

m The function call is an expression of the return type of the
function. Value and effect as given in the postcondition of the

function fname.

Example: pow(a,n): Expression of type double

Evaluation of a Function Call

m Evaluation of the call arguments

m Initialization of the formal arguments with the resulting values
m Execution of the function body: formal arguments behave laike

local variables

m Execution ends with
return expression;

Return value yiels the value of the function call.

Call of pow

Function Calls

For the types we know up to this point it holds that:
m Call arguments are R-values
m The function call is an R-value.

fname: R-value x R-value x - - - x R-value — R-value

Example: Evaluation Function Call

double pow(double b, int e){
assert (e >= 0 || b !'=0);
double result = 1.0;

if (e<0) {
// b"e = (1/b)"(—e)
b =1.0/b;
e = —e;

}

for (int i = 0; i < e ; ++i)
result * = b;
return result;
s

<€

pow (2.0, —2)

Formal arguments

m Declarative region: function definition

m are invisible outside the function definition

m are allocated for each call of the function (automatic storage
duration)

m modifications of their value do not have an effect to the values of
the call arguments (call arguments are R-values)

The type void

® Fundamental type with empty value range
m Usage as a return type for functions that do only provide an effect

// POST: "(i,)" h written to
/! standard o

void print_pair (int i, int j)

std:icout << (" << i << ",

+

" << § << M\a;

int main()

print_pair(3,4); // outputs (3, 4)
return 0;

}

Scope of Formal Arguments

double pow(double b, int e){
double r = 1.0;
if (e<0) {

b =1.0/b;

e = —e;

}

for (int i = 0; i < e ; ++i)
r x = b;

return r;

Not the formal arguments b

|~

int main(){
double b = 2.0;
int e = —2;
double z = pow(b, e);

std::cout << z; // 0.25
std::cout << b; // 2
std::cout << e; // —2
return 0;

and e of pow but the variables

defined here locally in the body of main

void-Functions

m do not require return.

m execution ends when the end of the function body is reached or if

B return; is reached
or

B return expression; is reached.

Expression with type void (e.g. a call of

a function with return type void

Pre- and Postconditions

characterize (as complete as possible) what a function does
document the function for users and programmers (we or other
people)

m make programs more readable: we do not have to understand
how the function works

are ignored by the compiler

Pre and postconditions render statements about the correctness
of a program possible — provided they are correct.

Postconditions

postcondition:
m What is guaranteed to hold after the function call?
m Specifies value and effect of the function call.

Here only value, no effect.

// POST: return value is b~e

Preconditions

precondition:
m what is required to hold when the function is called?
m defines the domain of the function

0¢ is undefined for e < 0
// PRE: e >= 0 || b != 0.0

Pre- and Postconditions

m should be correct:

m jfthe precondition holds when the function is called then also the
postcondition holds after the call.

Funktion pow: works for all numbers b # 0

Pre- and Postconditions

m We do not make a statement about what happens if the
precondition does not hold.

m C++-standard-slang: ,Undefined behavior”.

Function pow: division by 0

White Lies...

// PRE: e >= 0 || b != 0.0
// POST: return value is b~e

is formally incorrect:

m Overflow if e or b are too large

m b potentially not representable as a double (holes in the value range!)

Pre- and Postconditions

m pre-condition should be as weak as possible (largest possible
domain)

m post-condition should be as strong as possible (most detailed
information)

White Lies are Allowed

// PRE: e >= 0 || b != 0.0
// POST: return value is b~e

The exact pre- and postconditions are platform-dependent and often complicated.
We abstract away and provide the mathematical conditions. => compromise
between formal correctness and lax practice.

Checking Preconditions. ..

m Preconditions are only comments.
m How can we ensure that they hold when the function is called?

Postconditions with Asserts

m The result of “complex” computations is often easy to check.
m Then the use of asserts for the postcondition is worthwhile.

// PRE: the discriminant p*p/4 — q is nonnegative
// POST: returns larger root of the polynomial x"2 + p x + q
double root(double p, double q)
{
assert(p+p/4 >= q); // precondition
double x1 = — p/2 + sqrt(p+p/4 — q);
assert (equals(x1+x1+p*x1+q,0)); // postcondition
return x1;

... with assertions

#include <cassert>

// PRE: e >= 0 || b != 0.0

// POST: return value is b~e

double pow(double b, int e) {
assert (e >= 0 || b !=0);
double result = 1.0;

Exceptions

m Assertions are a rough tool; if an assertions fails, the program is
halted in a unrecoverable way.

m C--+provides more elegant means (exceptions) in order to deal
with such failures depending on the situation and potentially
without halting the program

m Failsafe programs should only halt in emergency situations and
therefore should work with exceptions. For this course, however,
this goes too far.

