3. Integers

Evaluation of Arithmetic Expressions, Associativity and Precedence, Arithmetic Operators, Domain of Types int, unsigned int

Celsius to Fahrenheit

110

9 * celsius / 5 + 32

- Arithmetic expression,
- contains three literals, a variable, three operator symbols

How to put the expression in parentheses?

Precedence

```
Multiplication/Division before Addition/Subtraction

9 * celsius / 5 + 32

bedeutet

(9 * celsius / 5) + 32
```

Rule 1: precedence

Multiplicative operators (*, /, %) have a higher precedence ("bind more strongly") than additive operators (+, -)

Associativity

From left to right

9 * celsius / 5 + 32

bedeutet

((9 * celsius) / 5) + 32

Rule 2: Associativity

Arithmetic operators (*, /, %, +, -) are left associative: operators of same precedence evaluate from left to right

Arity

Rule 3: Arity

Unary operators +, - first, then binary operators +, -.

-3 - 4

means

(-3) - 4

Parentheses

Any expression can be put in parentheses by means of

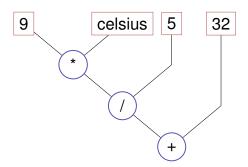
- associativities
- precedences
- arities (number of operands)

of the operands in an unambiguous way (Details in the lecture notes).

Expression Trees

Parentheses yield the expression tree

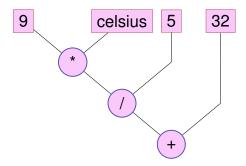
(((9 * celsius) / 5) + 32)



Evaluation Order

"From top to bottom" in the expression tree

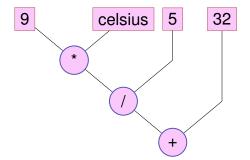
$$9 * celsius / 5 + 32$$



Evaluation Order

Order is not determined uniquely:

$$9 * celsius / 5 + 32$$

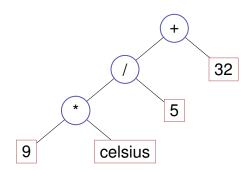


118

Expression Trees – Notation

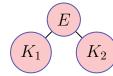
Common notation: root on top

$$9 * celsius / 5 + 32$$



Evaluation Order – more formally

■ Valid order: any node is evaluated *after* its children



In C++, the valid order to be used is not defined.

- "Good expression": any valid evaluation order leads to the same result.
- Example for a "bad expression": (a+b)*(a++)

Evaluation order

Arithmetic operations

Guideline

Avoid modifying variables that are used in the same expression more than once.

	Symbol	Arity	Precedence	Associativity
Unary +	+	1	16	right
Negation	-	1	16	right
Multiplication	*	2	14	left
Division	/	2	14	left
Modulus	%	2	14	links
Addition	+	2	13	left
Subtraction	-	2	13	left

All operators: [R-value \times] R-value \to R-value

All operators. [n-value \times] n-value \rightarrow n-value

Assignment expression – in more detail

- Already known: a = b means Assignment of b (R-value) to a (L-value). Returns: L-value
- What does a = b = c mean?
- Answer: assignment is right-associative

$$a = b = c \iff a = (b = c)$$

Example multiple assignment:

$$a = b = 0 \Longrightarrow b=0$$
; $a=0$

Division and Modulus

- Operator / implements integer division
 - 5 / 2 has value 2
- In fahrenheit.cpp

$$9 * celsius / 5 + 32$$

15 degrees Celsius are 59 degrees Fahrenheit

■ Mathematically equivalent...but not in C++!

$$9 / 5 * celsius + 32$$

15 degrees Celsius are 47 degrees Fahrenheit

Division and Modulus

Increment and decrement

■ Modulus-operator computes the rest of the integer division

5 / 2 has value 2,

5 % 2 has value 1.

It holds that:

(a / b) * b + a % b has the value of a.

- Increment / Decrement a number by one is a frequent operation
- works like this for an L-value:

$$expr = expr + 1.$$

Disadvantages

- relatively long
- expr is evaluated twice (effects!)

126

40

In-/Decrement Operators

Post-Increment

expr++

Value of expr is increased by one, the old value of expr is returned (as R-value)

Pre-increment

++expr

Value of expr is increased by one, the *new* value of expr is returned (as L-value)

Post-Dekrement

expr--

Value of expr is decreased by one, the *old* value of expr is returned (as R-value)

Prä-Dekrement

--expr

Value of expr is increased by one, the new value of expr is returned (as L-value)

In-/decrement Operators

	use	arity	prec	assoz	L-/R-value
Post-increment	expr++	1	17	left	$\text{L-value} \rightarrow \text{R-value}$
Pre-increment	++expr	1	16	right	$\text{L-value} \rightarrow \text{L-value}$
Post-decrement	expr	1	17	left	$\text{L-value} \to \text{R-value}$
Pre-decrement	expr	1	16	right	$\text{L-value} \rightarrow \text{L-value}$

In-/Decrement Operators

Example int a = 7; std::cout << ++a << "\n"; // 8 std::cout << a++ << "\n"; // 8 std::cout << a << "\n"; // 9</pre>

In-/Decrement Operators

Is the expression

Yes, but

- Pre-increment can be more efficient (old value does not need to be saved)
- Post In-/Decrement are the only left-associative unary operators (not very intuitive)

130

C++ vs. ++C

Arithmetic Assignments

Strictly speaking our language should be named ++C because

- it is an advancement of the language C
- while C++ returns the old C.

a += b \Leftrightarrow a = a + b

analogously for -, *, / and %

13

132

Arithmetic Assignments

	Gebrauch	Bedeutung		
+=	expr1 += expr2	expr1 = expr1 + expr2		
-=	expr1 -= expr2	expr1 = expr1 - expr2		
*=	expr1 *= expr2	expr1 = expr1 * expr2		
/=	expr1 /= expr2	expr1 = expr1 / expr2		
%=	expr1 %= expr2	expr1 = expr1 % expr2		

Arithmetic expressions evaluate expr1 only once.

Assignments have precedence 4 and are right-associative.

Binary Number Representations

Binary representation ("Bits" from $\{0,1\}$)

$$b_n b_{n-1} \dots b_1 b_0$$

corresponds to the number $b_n \cdot 2^n + \cdots + b_1 \cdot 2 + b_0$

Example: 101011 corresponds to 43.

Least Significant Bit (LSB)

Most Significant Bit (MSB)

101

Binary Numbers: Numbers of the Computer?

Truth: Computers calculate using binary numbers.

Binary Numbers: Numbers of the Computer?

Stereotype: computers are talking 0/1 gibberish

Proofito Proteoto Proteoto

Computing Tricks

■ Estimate the orders of magnitude of powers of two.³:

$$2^{10} = 1024 = 1 \text{Ki} \approx 10^3.$$

 $2^{20} = 1 \text{Mi} \approx 10^6,$
 $2^{30} = 1 \text{Gi} \approx 10^9,$
 $2^{32} = 4 \cdot (1024)^3 = 4 \text{Gi}.$
 $2^{64} = 16 \text{Ei} \approx 16 \cdot 10^{18}.$

Hexadecimal Numbers

Numbers with base 16

$$h_n h_{n-1} \dots h_1 h_0$$

corresponds to the number

$$h_n \cdot 16^n + \dots + h_1 \cdot 16 + h_0.$$

notation in C++: prefix 0x

Example: 0xff corresponds to 255.

Hex Nibbles				
hex	bin	dec		
0	0000	0		
1	0001	1		
2	0010	2		
3	0011	3		
4	0100	4		
5	0101	5		
6	0110	6		
7	0111	7		
8	1000	8		
9	1001	9		
а	1010	10		
b	1011	11		
С	1100	12		
d	1101	13		
е	1110	14		
f	1111	15		

100

Why Hexadecimal Numbers?

- A Hex-Nibble requires exactly 4 bits. Numbers 1, 2, 4 and 8 represent bits 0, 1, 2 and 3.
- "compact representation of binary numbers"

```
32-bit numbers consist of eight hex-nibbles: 0 \times 000000000 -- 0 \times ffffffff. 0 \times 400 = 1Ki = 1'024. 0 \times 100000 = 1Mi = 1'048'576. 0 \times 40000000 = 1Gi = 1'073.741,824. 0 \times 80000000: highest bit of a 32-bit number is set 0 \times ffffffff: all bits of a 32-bit number are set 0 \times 60000000 is an address in the upper 2G of the 32-bit address space"
```

Example: Hex-Colors

³Decimal vs. binary units: MB - Megabyte vs. MiB - Megabibyte (etc.) kilo (K, Ki) – mega (M, Mi) – giga (G, Gi) – tera(T, Ti) – peta(P, Pi) – exa (E, Ei)

Why Hexadecimal Numbers?

"For programmers and technicians" (Excerpt of a user manual of the chess computers *Mephisto II*, 1981)

Why Hexadecimal Numbers?

The NZZ could have saved a lot of space ...

Domain of Type int

```
For example
Minimum int value is -2147483648.
Maximum int value is 2147483647.
Where do these numbers come from?
```

Domain of the Type int

■ Representation with B bits. Domain comprises the 2^B integers:

$$\{-2^{B-1}, -2^{B-1}+1, \dots, -1, 0, 1, \dots, 2^{B-1}-2, 2^{B-1}-1\}$$

- On most platforms B = 32
- For the type int C++ guarantees $B \ge 16$
- Background: Section 2.2.8 (Binary Representation) in the lecture notes.

Where does this partitioning come from?

14

Over- and Underflow

The Type unsigned int

- Arithmetic operations (+,-,*) can lead to numbers outside the valid domain.
- Results can be incorrect!

power8.cpp:
$$15^8 = -1732076671$$

power20.cpp: $3^{20} = -808182895$

■ There is *no error message!*

Domain

$$\{0, 1, \dots, 2^B - 1\}$$

- All arithmetic operations exist also for unsigned int.
- Literals: 1u, 17u...

146

Mixed Expressions

Conversion

■ Operators can have operands of different type (e.g. int and unsigned int).

- Such mixed expressions are of the "more general" type unsigned int.
- int-operands are *converted* to unsigned int.

Using two complements representation, nothing happens internally

Conversion "reversed"

Signed Number Representation

The declaration

int
$$a = 3u$$
;

converts 3u to int.

The value is preserved because it is in the domain of int; otherwise the result depends on the implementation.

■ (Hopefully) clear by now: binary number representation without sign, e.g.

$$[b_{31}b_{30}\dots b_0]_u \ \widehat{=} \ b_{31}\cdot 2^{31} + b_{30}\cdot 2^{30} + \dots + b_0$$

- Obviously required: use a bit for the sign.
- Looking for a consistent solution

The representation with sign should coincide with the unsigned solution as much as possible. Positive numbers should arithmetically be treated equal in both systems.

Computing with Binary Numbers (4 digits)

Computing with Binary Numbers (4 digits)

Simple Addition

2	0010
+3	+0011
5	0101
ction	

Simple Subtraction

Addition with Overflow

150

Negative Numbers?

1

Computing with Binary Numbers (4 digits)

Simpler -1

1	0001
+(-1)	1111
0	(1)0000

Utilize this:

Computing with Binary Numbers (4 digits)

Invert!

Computing with Binary Numbers (4 digits)

Negation: inversion and addition of 1

$$-a = \bar{a} + 1$$

lacktriangle Wrap around semantics (calculating modulo 2^B

$$-a = 2^B - a$$

Why this works

Modulo arithmetics: Compute on a circle⁴

⁴The arithmetics also work with decimal numbers (and for multiplication).

Negative Numbers (3 Digits)

	a	-a	
0	000	000	0
1	001	111	-1
2	010	110	-2
3	011	101	-3
4	100	100	-4
5	101		
6	110		
7	111		

The most significant bit decides about the sign.

Two's Complement

Negation by bitwise negation and addition of 1

$$-2 = -[0010] = [1101] + [0001] = [1110]$$

■ Arithmetics of addition and subtraction *identical* to unsigned arithmetics

$$3-2=3+(-2)=[0011]+[1110]=[0001]$$

Intuitive "wrap-around" conversion of negative numbers.

$$-n \rightarrow 2^B - n$$

■ Domain: $-2^{B-1} \dots 2^{B-1} - 1$