19. Classes

Classes, Member Functions, Constructors, Stack, Linked List,
Dynamic Memory, Copy-Constructor, Assignment Operator, Concept
Dynamic Datatype

Member Functions: Declaration

class rational {
public:
// POST: return value is the numerator of xthis

int numerator () const member function
return ny

}

// POST: return value is the denominator of s#this

int denominator () const {
return d; ——

¥

private: ~
int n; \‘\
int d; // INV: dl= 0 «—=

public area

member functions have ac-
cess to private data

the scope of members in a
class is the whole class, inde-
pendent of the declaration or-
der

Encapsulation: public/private

Good news: r.d = 0 cannot happen
any more by accident.

class rational {

int n;

i . : 1=

int d; // INV: d !=0 Bad news: the customer cannot do any-
}; thing any more ...
Application Code ...and we can't, either.

. (no operator+,...)
rational r;

r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private

Member Functions: Call

// Definition des Typs
class rational {

};

// Variable des Typs
rational T3 member access

int n = r.numerator(); // Zaehler
int d = r.denominator(); // Nenner

Member Functions: Definition

// POST: returns numerator of *this
int numerator () const
{

return n;

}

m A member function is called for an expression of the class. in the function,
*this is the name of this implicit argument. this itself is a pointer to it.

m const refers to *this, i.e., it promises that the value associated with the implicit
argument cannot be changed

m nis the shortcut in the member function for (*this) .n

Member-Definition: In-Class vs. Out-of-Class

class rational { class rational {

int n; int n;
public: public:
int numerator () const int numerator () const;
{
return n; };
¥

s int rational::numerator () const

}; {

m No separation between
declaration and definition (bad
for libraries)

return n;

m This also works.

Comparison
It would look like this... ... without member functions

class rational { struct bruch {

int n; int n;
public: };
int numerator () const
{ int numerator (const bruch# dieser)
return (*this).n; {
} return (xdieser).n;
} }
rational r; bruch r;
std::cout << r.numerator(); | std::cout << numerator(&r);

Constructors

m are special member functions of a class that are named like the
class

m can be overloaded like functions, i.e. can occur multiple times with
varying signature

m are called like a function when a variable is declared. The
compiler chooses the “closest” matching function.

m if there is no matching constructor, the compiler emits an error
message.

Initialisation? Constructors!

class rational

{
public:
rational (int num, int den) R
: n (num), d (den) Initialization of the
¢ member variables
assert (den != 0); «——— function body.
}
}

rational r (2,3); //r =2/3

Initialisation “rational = int”?

class rational
{
public:
rational (int num)
: n (num), d (1)
{} «——— empty function body

Y

rational r (2); // explicit initialization with 2
rational s = 2; // implicit conversion

Constructors: Call

m directly

rational r (1,2); // initialisiert r mit 1/2

m indirectly (copy)

rational r = rational (1,2);

User Defined Conversions

are defined via constructors with exactly one argument

User defined conversion from int to
rational (int num) «—— rational. values of type int can now
:n (num), d (1) be converted to rational.
{3

rational r = 2; // implizite Konversion

The Default Constructor The Default Constructor

class rational

{
public: empty list of arguments m is automatically called for declarations of the form

;;tional ()/ rational r;

:n (0, d (D m is the unique constructor with empty argmument list (if existing)

o m must exist, if rational r; is meant to compile
}; m if in a struct there are no constructors at all, the default
constructor is automatically generated
rational r; // =0

= There are no uninitiatlized variables of type rational any more!

RAT PACK® Reloaded ... RAT PACK® Reloaded ...
, . . class rational { int numerator () const
Customer’s program now looks like this: o {
o private: return n;
= X
// POST: double approximation of r [} int nj }
double to_double (const rational r) Q int d;
{ };
double result = r.numerator();
return result / r.denominator(); class rational { int numerator () const{
. if (is_positive)
private: return n;
X . = unsigned int n; else {
m We can adapt the member functions together with the 30:3 unsigned int d; int result = n;
representation v’ © bool is_positive; return —result;
} }

}

RAT PACK® Reloaded ?

class rational { int numerator () const
private: if (is_positive)

unsigned int n; return n;

unsigned int d; else {

bool is_positive; int result = n;
}; return —result;

}
}

m value range of nominator and denominator like before
m possible overflow in addition

Fix: “our” type rational: : integer
Customer’s point of view (rational.h):

public:
using integer = int; // might change
// POST: returns numerator of *this
integer numerator () const;

m We provide an additional type!
m Determine only Functionality, e.g:

m implicit conversion int — rational::integer
m function double to_double (rational::integer)

Encapsulation still Incompleete

Customer’s point of view (rational.h):

class rational {

public:
// POST: returns numerator of *this
int numerator () const;

private:
// none of my business

i

m We determined denominator and nominator type to be int
m Solution: encapsulate not only data but alsoe types.

RAT PACK® Revolutions

Finally, a customer program that remains stable

// POST: double approximation of r
double to_double (const rational r)
{
rational::integer n = r.numerator();
rational::integer d = r.denominator();
return to_double (n) / to_double (d);
¥

Separate Declaration and Definition

class rational {

public:
rational (int num, int denum);
using integer = int;
integer numerator () conmst;

private:
}

rational::rational (int num, int den):
n (num), d (den) {}

rational::integer rational::numerator () const
+ ~

Motivation: Stack

rational.h

rational.cpp

{
return n; class name :: member name
} oot
Motivation: Stack (push, pop, top, empty) We Need a new Kind of Container

Our main container: Array (T[1)

m Contiguous area of memory, random access (to ith element)
m Simulation of a stack with an array?

= No, at some point the array will become “full”.

Goal: we implement a stack class o8
Question: howdowecreat'e ‘1‘5‘6‘3‘8‘9‘3‘3‘8@‘
space on the stack when push is

called?

not possible to execute push(3) here!

Arrays are no all-rounders. ..

m It is expensive to insert or delete elements “in the middle .

[[olefafe]ofo]afe]o]

T

8

If we want to insert,
we have to move ev-
erything to the right
(if there is space at
alll)

The new Container: Linked List

m No contiguous area of memory and no random

access
m Each element “knows” its successor

m Insertion and deletion of arbitrary elements is
simple, even at the beginning of the list

m = A stack can be implemented as linked list

pointer

Arrays are no all-rounders...

m |t is expensive to insert or delete elements “in the middle ”.

[elelofefefo]o]e]e]]

T If we want to remove this el-
ement, we have to move ev-
erything to the right of it.

Linked List: Zoom

element (type struct list_node)

5] #f

key (type int) next (type 1ist_nodex)

struct list_node {
int key;
list_nodex next;
// constructor
list_node (int k, list_nodex n)
: key (k), next () {}
}

Stack = Pointer to the Top Element

element (type struct list_node)

— 5] #

key (type int) next (type list_node*)

class stack {

list_nodex top_node;
public:

void push (int value);

T8

Dynamic Memory

m For dynamic data structures like lists we need dynamic memory

m Up to now we had to fix the memory sizes of variable at compile
time

m Pointers allow to request memory at runtime

® Dynamic memory management in C-+-+ with operators new and
delete

Sneak Preview: push (4)

void stack::push (int value)

{
top_node = new list_node (value, top_node);

}

top_node

N

The new Expression

underlying type

new 7 (...) LS
constructor arguments
new-Operator
m Effect: new object of type T is allocated in memory ...

® ...and initialized by means of the matching constructor.
m Value: address of the new object

new for Arrays
underlying type

expression of type T*

new T [expr]

type int, value n; expr not necessarily

new-Operator
B constant!

® memory for an array with length » and underlying type T is

allocated

m Value of the expression is the address of the first element of the
array

The delete Expression

Objects generated with new have dynamic storage duration: they
“live” until they are explicitly deleted

J type void

delete expr

delete-Operator pointer of type T pointing to an object
that had been created with new.

m Effect: object is deleted and memory is released

The new Expression push(4)

m Effect: new object of type Tis allocated in memory ...
m ...and intialized by means of the matching constructor
m Value: address of the new object

top_node = new list_node (value, top_node);

top_node
4] o—{1]of—{5[ef—{6]["]
delete for Arrays
delete[] expr type void

pointer of type T% that points
to an array that previously
had been allocated using
new

delete-Operator

m Effect: array is deleted and memory is released

Carefult with new and delete!

rational* t = new rational;
rational* s = t;
delete s;
int nominator = (*t).denominator(); «—— emor: memory already released!

memory for tis allocated

other pointers may also point to the same object

.. and used for releaseing the object

Dereferencing of ,dangling pointers”

m Pointer to released objects: dangling pointers
m Releasing an object more than once using delete is a similar severe error

m delete can be easily forgotten: consequence are memory leaks. Can lead to
memory overflow in the long run.

Stack Continued:

void stack: :pop()

{
assert (lempty());
list_node* p = top_node;
top_node = top_node->next;
delete p;

} shortcut for (*top_node) .next

top_node

popO)

Who is born must die...

Guideline “Dynamic Memory”
For each new there is a matching delete!

Non-compliance leads to memory leaks

m old objects that occupy memory...
| ...until it is full (heap overflow)

Traverse the Stack print ()
void stack::print (std::ostream& o) const
{
const list_node* p = top_node;
while (p != nullptr) {
0 << p->key << " "; // 156
P = p—>next;

Output Stack:

class stack {
public:
void push (int value) {...}

void print (std::ostream& o) const {...}
private:
list_nodex top_node;

};

// POST: s is written to o

operator<<

std::ostream& operator<< (std::ostream& o, const stack& s)

{
s.print (0);
return o;

}

Stack Done?

stack si;

sl.push (1);

sl.push (3);

sl.push (2);

std::cout << s1 << "\n"; // 23 1

stack s2 = si;
std::cout << s2 << "\n"; // 231

si.pop O;
std::cout << sl << "\n"; // 3 1

s2.pop (); // Oops, crash!

Obviously not...

Empty Stack , empty (), top()

stack: :stack() // default constructor
: top_node (nullptr)
{3

bool stack::empty () const
{
return top_node == nullptr;

}

int stack::top () const
{
assert (lempty());
return top_node—>key;

}
What has gone wrong?
sl.top_node .-------’
i EIC e KT

Pointer to “zombie™ .
member-wise initialization: copies the

top_node pointer only.

s2.top_node
stack s2 = silje——
std::cout << s2 << "\n"; // 231

si.pop O;
std::cout << sl << "\n"; // 3 1

s2.pop OO; // Oops, crash!

We need a real copy

sl.top_node

3[e—{1]e

s2.top_node

3[e—{1]e

stack s2 = si;
std::cout << s2 << "\n"; // 231

si.pop O;
std::cout << s1 << "\n"; // 31

s2.pop O; // ok

It works with a Copy Constructor

We use a copy function of the 1ist_node:
// POST: xthis is initialized with a copy of s
stack::stack (const stack& s)
: top_node (nullptr)
{
if (s.top_node != nullptr)
top_node = s.top_node->copy();

s.top_node .n n n
(xthis) .top_node 0—>

The Copy Constructor

m The copy constructor of a class T is the unique constructor with
declaration
T (const T&x);
m is automatically called when values of type T are initialized with
values of type T
Tx=t; (t of type T)
Tx (t);
m If there is no copy-constructor declared then it is generated
automatically (and initializes member-wise — reason for the
problem above

The (Recursive) Copy Function of 1ist node

// POST: pointer to a copy of the list starting

/7 at *this is returned
list_nodex list_node::copy () const
{

if (next != nullptr)

return new list_node (key, next->copy());
else

return new list_node (key, nullptr);

}

this 0—»@—0
o—[2[e}—3[e—f1[e}—e

Initialization -~ Assignment!

stack si;

si.push (1);

si.push (3);

si.push (2);

std::cout << s1 << "\n"; // 2 3 1

stack s2;
s2 = sl; // Zuweisung

si.pop O;

std::cout << s1 << "\n"; // 3 1
s2.pop O); // Oops, Crash!

It works with an Assignment Operator!

Here a release function of the 1ist_node is used:

// POST: «this (left operand) is getting a copy of s (right operand)

stack& stack::operator= (const stack& s)

{
if (top_node != s.top_node) { // keine Selbstzuweisung!
if (top_node != nullptr) {
top_node->clear(); // loesche Listenknoten
top_node = nullptr;
}
if (s.top_node != nullptr)
top_node = s.top_node->copy(); // kopiere s nach xthis
}

return *this; // Rueckgabe als L—Wert (Konvention)

}

The Assignment Operator

m Overloading operator= as a member function
m Like the copy-constructor without initializer, but additionally

m Releasing memory for the “old” value
m Check for self-assignment (s1=s1) that should not have an effect

m If there is no assignment operator declared it is automatically
generated (and assigns member-wise — reason for the problem
above

The (recursive) release function of 1ist node

// POST: the list starting at xthis is deleted
void list_node::clear ()
{
if (next != nullptr)
next->clear();
delete this;
}

this ———>

Zombie Elements

{
stack s1; // local variable
sl.push (1);
sil.push (3);
sil.push (2);
std::cout << s1 << "\n"; // 2 3 1
}

// sl has died (become invalid)...

m ...but the three elements of the stack s1 continue to live (memory
leak)!
m They should be released together with s1.

Using a Destructor, it Works

// POST: the dynamic memory of xthis is deleted
stack: : ~stack()
{
if (top_node != nullptr)
top_node—>clear();

}

m automatically deletes all stack elements when the stack is being
released

m Now our stack class follows the guideline “dynamic memory”

The Destructor

m The Destructor of class T is the unique member function with

declaration
~T();

m is automatically called when the memory duration of a class object
ends

m If no destructor is declared, it is automatically generated and calls
the destructors for the member variables (pointers top_node, no
effect — reason for zombie elements

Dynamic Datatype

m Type that manages dynamic memory (e.g. our class for a stack)
m Other Applications:

m Lists (with insertion and deletion “in the middle”)
m Trees (next week)
m waiting queues
m graphs
m Minimal Functionality:
m Constructors
Destructor }

]
m Copy Constructor
m Assignment Operator

Rule of Three: if a class defines at least
one of them, it must define all three

