
19. Classes

Classes, Member Functions, Constructors, Stack, Linked List,
Dynamic Memory, Copy-Constructor, Assignment Operator, Concept
Dynamic Datatype

644

Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

Application Code

rational r;
r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private

Good news: r.d = 0 cannot happen
any more by accident.

Bad news: the customer cannot do any-
thing any more . . .

. . . and we can’t, either.
(no operator+,. . .)

645

Member Functions: Declaration
class rational {
public:

// POST: return value is the numerator of ∗this
int numerator () const {

return n;
}
// POST: return value is the denominator of ∗this
int denominator () const {

return d;
}

private:
int n;
int d; // INV: d!= 0

};

pu
bl

ic
ar

ea

member function

member functions have ac-
cess to private data

the scope of members in a
class is the whole class, inde-
pendent of the declaration or-
der

646

Member Functions: Call

// Definition des Typs
class rational {

...
};
...
// Variable des Typs
rational r;

int n = r.numerator(); // Zaehler
int d = r.denominator(); // Nenner

member access

647

Member Functions: Definition

// POST: returns numerator of *this
int numerator () const
{

return n;
}

A member function is called for an expression of the class. in the function,
*this is the name of this implicit argument. this itself is a pointer to it.

const refers to *this, i.e., it promises that the value associated with the implicit
argument cannot be changed

n is the shortcut in the member function for (*this).n

648

Comparison
It would look like this...
class rational {

int n;
...

public:
int numerator () const
{

return (*this).n;
}

};

rational r;
...
std::cout << r.numerator();

... without member functions
struct bruch {

int n;
...

};

int numerator (const bruch∗ dieser)
{

return (∗dieser).n;
}

bruch r;
..
std::cout << numerator(&r);

649

Member-Definition: In-Class vs. Out-of-Class
class rational {

int n;
...

public:
int numerator () const
{

return n;
}
....

};

No separation between
declaration and definition (bad
for libraries)

class rational {
int n;
...

public:
int numerator () const;
...

};

int rational::numerator () const
{

return n;
}

This also works.
650

Constructors

are special member functions of a class that are named like the
class
can be overloaded like functions, i.e. can occur multiple times with
varying signature
are called like a function when a variable is declared. The
compiler chooses the “closest” matching function.
if there is no matching constructor, the compiler emits an error
message.

651

Initialisation? Constructors!
class rational
{
public :

rational (int num, int den)
: n (num), d (den)

{
assert (den != 0);

}
...
};
...
rational r (2,3); // r = 2/3

Initialization of the
member variables

function body.

652

Constructors: Call

directly

rational r (1,2); // initialisiert r mit 1/2

indirectly (copy)

rational r = rational (1,2);

653

Initialisation “rational = int”?
class rational
{
public :

rational (int num)
: n (num), d (1)

{}
...
};
...
rational r (2); // explicit initialization with 2
rational s = 2; // implicit conversion

empty function body

654

User Defined Conversions

are defined via constructors with exactly one argument

rational (int num)
: n (num), d (1)

{}

rational r = 2; // implizite Konversion

User defined conversion from int to
rational. values of type int can now
be converted to rational.

655

The Default Constructor
class rational
{
public :

...
rational ()

: n (0), d (1)
{}

...
};
...
rational r ; // r = 0

empty list of arguments

⇒ There are no uninitiatlized variables of type rational any more!

656

The Default Constructor

is automatically called for declarations of the form
rational r;
is the unique constructor with empty argmument list (if existing)
must exist, if rational r; is meant to compile
if in a struct there are no constructors at all, the default
constructor is automatically generated

657

RAT PACKr Reloaded . . .

Customer’s program now looks like this:

// POST: double approximation of r
double to_double (const rational r)
{

double result = r.numerator();
return result / r.denominator();

}

We can adapt the member functions together with the
representation X

658

RAT PACKr Reloaded . . .

be
fo

re

class rational {
...
private:

int n;
int d;

};

int numerator () const
{

return n;
}

af
te

r

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const{
if (is_positive)

return n;
else {

int result = n;
return −result;

}
} 659

RAT PACKr Reloaded ?

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const
{

if (is_positive)
return n;

else {
int result = n;
return −result;

}
}

value range of nominator and denominator like before
possible overflow in addition

660

Encapsulation still Incompleete
Customer’s point of view (rational.h):

class rational {
public:

// POST: returns numerator of ∗this
int numerator () const;
...

private:
// none of my business

};

We determined denominator and nominator type to be int
Solution: encapsulate not only data but alsoe types.

661

Fix: “our” type rational::integer

Customer’s point of view (rational.h):

public:
using integer = int; // might change
// POST: returns numerator of ∗this
integer numerator () const;

We provide an additional type!
Determine only Functionality, e.g:

implicit conversion int→ rational::integer
function double to_double (rational::integer)

662

RAT PACKr Revolutions

Finally, a customer program that remains stable

// POST: double approximation of r
double to_double (const rational r)
{

rational::integer n = r.numerator();
rational::integer d = r.denominator();
return to_double (n) / to_double (d);

}

663

Separate Declaration and Definition

class rational {
public:

rational (int num, int denum);
using integer = int;
integer numerator () const;
...

private:
...

};
rational::rational (int num, int den):

n (num), d (den) {}
rational::integer rational::numerator () const
{

return n;
}

rational.h

rational.cpp

class name :: member name

664

Motivation: Stack

665

Motivation: Stack (push, pop, top, empty)

3
5
1
2

push(4)

4
3
5
1
2

pop()
3
5
1
2

pop() 5
1
2

push(1)
1
5
1
2

3
5
1
2

top()→ 3
3
5
1
2

empty()→ false Goal: we implement a stack class

Question: how do we create
space on the stack when push is
called?

666

We Need a new Kind of Container

Our main container: Array (T[])

Contiguous area of memory, random access (to ith element)
Simulation of a stack with an array?
No, at some point the array will become “full”.

1 5 6 3 8 9 3 3 8 9

top

3

not possible to execute push(3) here!

667

Arrays are no all-rounders. . .

It is expensive to insert or delete elements “in the middle ”.

1 5 6 3 8 9 3 3 8 9

8 If we want to insert,
we have to move ev-
erything to the right
(if there is space at
all!)

1 5 6 3 8 9 3 3 8 9

668

Arrays are no all-rounders. . .

It is expensive to insert or delete elements “in the middle ”.

1 5 6 3 8 8 9 3 3 8 9

If we want to remove this el-
ement, we have to move ev-
erything to the right of it.

1 5 6 8 8 9 3 3 8 9

669

The new Container: Linked List

No contiguous area of memory and no random
access
Each element “knows” its successor
Insertion and deletion of arbitrary elements is
simple, even at the beginning of the list
⇒ A stack can be implemented as linked list

1 5 6 3 8 8 9
pointer

670

Linked List: Zoom

1 5 6

element (type struct list_node)

key (type int) next (type list_node*)

struct list_node {
int key;
list_node∗ next;
// constructor
list_node (int k, list_node∗ n)

: key (k), next (n) {}
};

671

Stack = Pointer to the Top Element

1 5 6

element (type struct list_node)

key (type int) next (type list_node*)

class stack {
list_node∗ top_node;

public:
void push (int value);
...

};

672

Sneak Preview: push(4)

void stack::push (int value)
{

top_node = new list_node (value, top_node);
}

top_node

1 5 64

673

Dynamic Memory

For dynamic data structures like lists we need dynamic memory
Up to now we had to fix the memory sizes of variable at compile
time
Pointers allow to request memory at runtime
Dynamic memory management in C++ with operators new and
delete

674

The new Expression

new T (...)

underlying type

new-Operator

type T*

constructor arguments

Effect: new object of type T is allocated in memory . . .
. . . and initialized by means of the matching constructor.
Value: address of the new object

675

new for Arrays

new T [expr]

underlying type

new-Operator type int, value n; expr not necessarily
constant!

expression of type T*

memory for an array with length n and underlying type T is
allocated
Value of the expression is the address of the first element of the
array

676

The new Expression push(4)

Effect: new object of type T is allocated in memory . . .
. . . and intialized by means of the matching constructor
Value: address of the new object

top_node = new list_node (value, top_node);

top_node

1 5 64

677

The delete Expression

Objects generated with new have dynamic storage duration: they
“live” until they are explicitly deleted

delete expr
delete-Operator pointer of type T*, pointing to an object

that had been created with new.

type void

Effect: object is deleted and memory is released

678

delete for Arrays

delete[] expr

delete-Operator

pointer of type T*, that points
to an array that previously
had been allocated using
new

type void

Effect: array is deleted and memory is released

679

Carefult with new and delete!

rational* t = new rational;
rational* s = t;
delete s;
int nominator = (*t).denominator();

memory for t is allocated

other pointers may also point to the same object

... and used for releaseing the object

error: memory already released!

Dereferencing of „dangling pointers”

Pointer to released objects: dangling pointers

Releasing an object more than once using delete is a similar severe error

delete can be easily forgotten: consequence are memory leaks. Can lead to
memory overflow in the long run.

680

Who is born must die. . .

Guideline “Dynamic Memory”
For each new there is a matching delete!

Non-compliance leads to memory leaks

old objects that occupy memory. . .
. . . until it is full (heap overflow)

681

Stack Continued: pop()

void stack::pop()
{

assert (!empty());
list_node* p = top_node;
top_node = top_node->next;
delete p;

}

top_node
p

1 5 6

shortcut for (*top_node).next

682

Traverse the Stack print()

void stack::print (std::ostream& o) const
{

const list_node* p = top_node;
while (p != nullptr) {

o << p->key << " "; // 1 5 6
p = p->next;

}
}

top_node p

1 5 6
683

Output Stack: operator<<
class stack {
public:

void push (int value) {...}
...
void print (std::ostream& o) const {...}

private:
list_node∗ top_node;

};

// POST: s is written to o
std::ostream& operator<< (std::ostream& o, const stack& s)
{

s.print (o);
return o;

}
684

Empty Stack , empty(), top()
stack::stack() // default constructor

: top_node (nullptr)
{}

bool stack::empty () const
{

return top_node == nullptr;
}

int stack::top () const
{

assert (!empty());
return top_node−>key;

}

685

Stack Done? Obviously not. . .

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n"; // 3 1

s2.pop (); // Oops, crash!

686

What has gone wrong?
s1.top_node

2 3 1

s2.top_node Pointer to “zombie”!

...
stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n"; // 3 1

s2.pop (); // Oops, crash!

member-wise initialization: copies the
top_node pointer only.

687

We need a real copy
s1.top_node 2 3 1

s2.top_node 2 3 1

...
stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n"; // 3 1

s2.pop (); // ok
688

The Copy Constructor

The copy constructor of a class T is the unique constructor with
declaration

T (const T& x);
is automatically called when values of type T are initialized with
values of type T

T x = t; (t of type T)
T x (t);

If there is no copy-constructor declared then it is generated
automatically (and initializes member-wise – reason for the
problem above

689

It works with a Copy Constructor
We use a copy function of the list_node:
// POST: ∗this is initialized with a copy of s
stack::stack (const stack& s)

: top_node (nullptr)
{

if (s.top_node != nullptr)
top_node = s.top_node->copy();

}

s.top_node 2 3 1

(*this).top_node 2 3 1
690

The (Recursive) Copy Function of list node

// POST: pointer to a copy of the list starting
// at ∗this is returned
list_node∗ list_node::copy () const
{

if (next != nullptr)
return new list_node (key, next->copy());

else
return new list_node (key, nullptr);

}

this 2 3 1

2 3 1

691

Initialization 6= Assignment!

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

stack s2;
s2 = s1; // Zuweisung

s1.pop ();
std::cout << s1 << "\n"; // 3 1
s2.pop (); // Oops, Crash!

692

The Assignment Operator

Overloading operator= as a member function
Like the copy-constructor without initializer, but additionally

Releasing memory for the “old” value
Check for self-assignment (s1=s1) that should not have an effect

If there is no assignment operator declared it is automatically
generated (and assigns member-wise – reason for the problem
above

693

It works with an Assignment Operator!
Here a release function of the list_node is used:
// POST: ∗this (left operand) is getting a copy of s (right operand)
stack& stack::operator= (const stack& s)
{

if (top_node != s.top_node) { // keine Selbstzuweisung!
if (top_node != nullptr) {

top_node->clear(); // loesche Listenknoten
top_node = nullptr;

}
if (s.top_node != nullptr)

top_node = s.top_node->copy(); // kopiere s nach ∗this
}
return *this; // Rueckgabe als L−Wert (Konvention)

}
694

The (recursive) release function of list node

// POST: the list starting at ∗this is deleted
void list_node::clear ()
{

if (next != nullptr)
next->clear();

delete this;
}

this 2 3 1

695

Zombie Elements

{
stack s1; // local variable
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

}
// s1 has died (become invalid)...

. . . but the three elements of the stack s1 continue to live (memory
leak)!
They should be released together with s1.

696

The Destructor

The Destructor of class T is the unique member function with
declaration

~T ();
is automatically called when the memory duration of a class object
ends
If no destructor is declared, it is automatically generated and calls
the destructors for the member variables (pointers top_node, no
effect – reason for zombie elements

697

Using a Destructor, it Works

// POST: the dynamic memory of ∗this is deleted
stack::~stack()
{

if (top_node != nullptr)
top_node−>clear();

}

automatically deletes all stack elements when the stack is being
released
Now our stack class follows the guideline “dynamic memory”

698

Dynamic Datatype
Type that manages dynamic memory (e.g. our class for a stack)
Other Applications:

Lists (with insertion and deletion “in the middle”)
Trees (next week)
waiting queues
graphs

Minimal Functionality:
Constructors
Destructor
Copy Constructor
Assignment Operator

Rule of Three: if a class defines at least
one of them, it must define all three

699

