
18. Structs and Classes I

Rational Numbers, Struct Definition, Overlading Functions and
Operators, Const-References, Encapsulation

606

Calculating with Rational Numbers

Rational numbers (Q) are of the form
n

d
with n and d in Z

C++does not provide a built-in type for rational numbers

Goal
We build a C++-type for rational numbers ourselves!

607

Vision
How it could (will) look like

// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;
std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";

608

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable (numerator)

member variable (denominator)

Invariant: specifies valid
value combinations (infor-
mal).

struct defines a new type
formal range of values: cartesian product of the value ranges of
existing types
real range of values: rational ( int× int.

609



Accessing Member Variables
struct rational {

int n;
int d; // INV: d != 0

};

rational add (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}

rn
rd

:=
an
ad

+
bn
bd

=
an · bd + ad · bn

ad · bd 610

A First Struct: Functionality

// new type rational
struct rational {

int n;
int d; // INV: d != 0

};

// POST: return value is the sum of a and b
rational add (const rational a, const rational b)
{

rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}

Meaning: every object of the new type is rep-
resented by two objects of type int the ob-
jects are called n and d .

A struct defines a new type, not a variable!

member access to the int objects of a.
611

Input

// Input r
rational r;
std::cout << "Rational number r:\n";
std::cout << " numerator =? ";
std::cin >> r.n;
std::cout << " denominator =? ";
std::cin >> r.d;

// Input s the same way
rational s;
...

612

Vision comes within Reach ...

// computation
const rational t = add (r, s);

// output
std::cout << "Sum is " << t.n << "/" << t.d << ".\n";

613



Struct Definitions

struct T {
T1 name1 ;
T2 name2 ;

... ...
Tn namen ;

};

name of the new type (identifier)

names of the underlying
types

names of the member
variables

Range of Values of T: T1 × T2 × ...× Tn

614

Struct Defintions: Examples

struct rational_vector_3 {
rational x;
rational y;
rational z;

};

underlying types can be fundamental or user defined

615

Struct Definitions: Examples

struct extended_int {
// represents value if is_positive==true
// and −value otherwise
unsigned int value;
bool is_positive;

};

the underlying types can be different

616

Structs: Accessing Members

expr.namek

expression of struct-type T name of a member-variable of type T.

member access operator .

expression of type Tk; value is the value of
the object designated by namek

617



Structs: Initialization and Assignment

Default Initialization:

rational t;

Member variables of t are default-initialized
for member variables of fundamental types nothing happens
(values remain undefined)

618

Structs: Initialization and Assignment

Initialization:

rational t = {5, 1};

Member variables of t are initialized with the values of the list,
according to the declaration order.

619

Structs: Initialization and Assignment

Assignment:

rational s;
...
rational t = s;

The values of the member variables of s are assigned to the
member variables of t.

620

Structs: Initialization and Assignment

Initialization:

rational t = add (r, s);

t is initialized with the values of add(r, s)

t.n
t.d = add (r, s) .n

.d ;

621



Structs: Initialization and Assignment

Assignment:

rational t;
t = add (r, s);

t is default-initialized
The value of add (r, s) is assigned to t

622

Structs: Initialization and Assignment

rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member variables are uninitialized
member-wise initialization:
t.n = 1, t.d = 5

member-wise copy

member-wise copy

member-wise copy

623

Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and != , not so for structs! Why?

member-wise comparison does not make sense in general...

...otherwise we had, for example,
2

3
6= 4

6

624

Structs as Function Arguments
void increment(rational dest, const rational src)
{

dest = add (dest, src ); // modifies local copy only
}

Call by Value !

rational a;
rational b;
a.d = 1; a.n = 2;
b = a;
increment (b, a); // no effect!
std :: cout << b.n << "/" << b.d; // 1 / 2

625



Structs as Function Arguments
void increment(rational & dest, const rational src)
{

dest = add (dest, src );
}

Call by Reference

rational a;
rational b;
a.d = 1; a.n = 2;
b = a;
increment (b, a);
std :: cout << b.n << "/" << b.d; // 2 / 2

626

User Defined Operators

Instead of

rational t = add(r, s);
we would rather like to write

rational t = r + s;

This can be done with Operator Overloading.

627

Overloading Functions

Functions can be addressed by name in a scope
It is even possible to declare and to defined several functions
with the same name
the “correct” version is chosen according to the signature of the
function.

628

Function Overloading

A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call (we do not go into details)

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2); // compiler chooses f4
std::cout << pow (3,3); // compiler chooses f3

629



Operator Overloading

Operators are special functions and can be overloaded
Name of the operator op:

operatorop

we already know that, for example, operator+ exists for different
types

630

Adding rational Numbers – Before

// POST: return value is the sum of a and b
rational add (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = add (r, s);

631

Adding rational Numbers – After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = r + s;

infix notation

632

Other Binary Operators for Rational Numbers

// POST: return value is difference of a and b
rational operator− (rational a, rational b);

// POST: return value is the product of a and b
rational operator∗ ( rational a, rational b);

// POST: return value is the quotient of a and b
// PRE: b != 0
rational operator/ ( rational a, rational b);

633



Unary Minus

has the same symbol as the binary minus but only one argument:

// POST: return value is −a
rational operator− (rational a)
{

a.n = −a.n;
return a;

}

634

Comparison Operators

are not built in for structs, but can be defined

// POST: returns true iff a == b
bool operator== (rational a, rational b)
{

return a.n ∗ b.d == a.d ∗ b.n;
}

2

3
=

4

6
X

635

Arithmetic Assignment

We want to write

rational r;
r.n = 1; r.d = 2; // 1/2

rational s;
s.n = 1; s.d = 3; // 1/3

r += s;
std::cout << r.n << "/" << r.d; // 5/6

636

Operator+= First Trial
rational operator+= (rational a, rational b)
{

a.n = a.n ∗ b.d + a.d ∗ b.n;
a.d ∗= b.d;
return a;

}

does not work. Why?

The expression r += s has the desired value, but because the arguments are
R-values (call by value!) it does not have the desired effect of modifying r.

The result of r += s is, against the convention of C++ no L-value.

637



Operator +=
rational& operator+= (rational& a, rational b)
{

a.n = a.n ∗ b.d + a.d ∗ b.n;
a.d ∗= b.d;
return a;

}

this works

The L-value a is increased by the value of b and returned as
L-value

r += s; now has the desired effect.
638

In/Output Operators

can also be overloaded.

Before:

std::cout << "Sum is "
<< t.n << "/" << t.d << "\n";

After (desired):

std::cout << "Sum is "
<< t << "\n";

639

In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out,

rational r)
{

return out << r.n << "/" << r.d;
}

writes r to the output stream
and returns the stream as L-value.

640

Input

// PRE: in starts with a rational number
// of the form "n/d"
// POST: r has been read from in
std::istream& operator>> (std::istream& in,

rational& r)
{

char c; // separating character ’/’
return in >> r.n >> c >> r.d;

}

reads r from the input stream
and returns the stream as L-value.

641



Goal Attained!
// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;

std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";

operator >>

operator +

operator<< 642

Recall: Large Objects ...
struct SimulatedCPU {

unsigned int pc;
int stack[16];
unsigned int stackPosition;
unsigned int memory[65536];

};

void outputState (SimulatedCPU p) {
std::cout << "pc=" << p.pc;
std::cout << ", stack: ";
for (unsigned int i = p.stackPosition; i != 0; −−i)

std::cout << p.stack[i−1];
}

call by value: more than 256k get copied!

643

... are Better Passed as Const-Reference
struct SimulatedCPU {

unsigned int pc;
int stack[16];
unsigned int stackPosition;
unsigned int memory[65536];

};

void outputState (const SimulatedCPU& p) {
std::cout << "pc=" << p.pc;
std::cout << ", stack: ";
for (int i = p.stackPosition; i != 0; −−i)

std::cout << p.stack[i−1];
}

call by reference: only the address gets copied.

644

A new Type with Functionality. . .

struct rational {
int n;
int d; // INV: d != 0

};

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}
...

645



. . . should be in a Library!

rational.h:
Definition of a struct rational
Function declarations

rational.cpp:
arithmetic operators (operator+, operator+=, ...)
relational operators (operator==, operator>, ...)
in/output (operator >>, operator <<, ...)

646

Thought Experiment

The three core missions of ETH:

research
education
technology transfer

We found a startup: RAT PACKr!

Selling the rational library to customers
ongoing development according to customer’s demands

647

The Customer is Happy
. . . and programs busily using rational.

output as double-value (35 → 0.6)

// POST: double approximation of r
double to_double (rational r)
{

double result = r.n;
return result / r.d;

}
648

The Customer Wants More
“Can we have rational numbers with an extended value range?”

Sure, no problem, e.g.:

struct rational {
int n;
int d;

};
⇒

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

649



New Version of RAT PACKr

It sucks, nothing works any more!
What is the problem?

−3
5 is sometimes 0.6, this cannot be true!

That is your fault. Your conversion to double
is the problem, our library is correct.

Up to now it worked, therefore the new
version is to blame!

650

Liability Discussion

// POST: double approximation of r
double to_double (rational r){

double result = r.n;
return result / r.d;

}

correct using. . .

struct rational {
int n;
int d;

};

. . . not correct using

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

r.is_positive and result.is_positive
do not appear.

651

We are to Blame!!

Customer sees and uses our representation of rational numbers
(initially r.n, r.d)
When we change it (r.n, r.d, r.is_positive), the customer’s
programs do not work anymore.
No customer is willing to adapt the programs when the version of
the library changes.

⇒ RAT PACKr is history. . .

652

Idea of Encapsulation (Information Hiding)

A type is uniquely defined by its value range and its functionality
The representation should not be visible.
⇒ The customer is not provided with representation but with
functionality!

str.length(),
v.push_back(1),. . .

653



Classes

provide the concept for encapsulation in C++
are a variant of structs
are provided in many object oriented programming languages

654

Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

only difference

struct: by default nothing is hidden
class : by default everything is hidden

is used instead of struct if anything at all
shall be “hidden”

655


