
18. Structs and Classes I

Rational Numbers, Struct Definition, Overlading Functions and
Operators, Const-References, Encapsulation
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Calculating with Rational Numbers

Rational numbers (Q) are of the form
n

d
with n and d in Z

C++does not provide a built-in type for rational numbers

Goal
We build a C++-type for rational numbers ourselves!
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Vision
How it could (will) look like

// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;
std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";
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A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable (numerator)

member variable (denominator)

Invariant: specifies valid
value combinations (infor-
mal).

struct defines a new type
formal range of values: cartesian product of the value ranges of
existing types
real range of values: rational ( int× int.
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Accessing Member Variables
struct rational {

int n;
int d; // INV: d != 0

};

rational add (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}

rn
rd

:=
an
ad

+
bn
bd

=
an · bd + ad · bn

ad · bd 610

A First Struct: Functionality

// new type rational
struct rational {

int n;
int d; // INV: d != 0

};

// POST: return value is the sum of a and b
rational add (const rational a, const rational b)
{

rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}

Meaning: every object of the new type is rep-
resented by two objects of type int the ob-
jects are called n and d .

A struct defines a new type, not a variable!

member access to the int objects of a.
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Input

// Input r
rational r;
std::cout << "Rational number r:\n";
std::cout << " numerator =? ";
std::cin >> r.n;
std::cout << " denominator =? ";
std::cin >> r.d;

// Input s the same way
rational s;
...
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Vision comes within Reach ...

// computation
const rational t = add (r, s);

// output
std::cout << "Sum is " << t.n << "/" << t.d << ".\n";
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Struct Definitions

struct T {
T1 name1 ;
T2 name2 ;

... ...
Tn namen ;

};

name of the new type (identifier)

names of the underlying
types

names of the member
variables

Range of Values of T: T1 × T2 × ...× Tn
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Struct Defintions: Examples

struct rational_vector_3 {
rational x;
rational y;
rational z;

};

underlying types can be fundamental or user defined
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Struct Definitions: Examples

struct extended_int {
// represents value if is_positive==true
// and −value otherwise
unsigned int value;
bool is_positive;

};

the underlying types can be different
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Structs: Accessing Members

expr.namek

expression of struct-type T name of a member-variable of type T.

member access operator .

expression of type Tk; value is the value of
the object designated by namek
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Structs: Initialization and Assignment

Default Initialization:

rational t;

Member variables of t are default-initialized
for member variables of fundamental types nothing happens
(values remain undefined)
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Structs: Initialization and Assignment

Initialization:

rational t = {5, 1};

Member variables of t are initialized with the values of the list,
according to the declaration order.
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Structs: Initialization and Assignment

Assignment:

rational s;
...
rational t = s;

The values of the member variables of s are assigned to the
member variables of t.
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Structs: Initialization and Assignment

Initialization:

rational t = add (r, s);

t is initialized with the values of add(r, s)

t.n
t.d = add (r, s) .n

.d ;
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Structs: Initialization and Assignment

Assignment:

rational t;
t = add (r, s);

t is default-initialized
The value of add (r, s) is assigned to t
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Structs: Initialization and Assignment

rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member variables are uninitialized
member-wise initialization:
t.n = 1, t.d = 5

member-wise copy

member-wise copy

member-wise copy
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Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and != , not so for structs! Why?

member-wise comparison does not make sense in general...

...otherwise we had, for example,
2

3
6= 4

6
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Structs as Function Arguments
void increment(rational dest, const rational src)
{

dest = add (dest, src ); // modifies local copy only
}

Call by Value !

rational a;
rational b;
a.d = 1; a.n = 2;
b = a;
increment (b, a); // no effect!
std :: cout << b.n << "/" << b.d; // 1 / 2
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Structs as Function Arguments
void increment(rational & dest, const rational src)
{

dest = add (dest, src );
}

Call by Reference

rational a;
rational b;
a.d = 1; a.n = 2;
b = a;
increment (b, a);
std :: cout << b.n << "/" << b.d; // 2 / 2
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User Defined Operators

Instead of

rational t = add(r, s);
we would rather like to write

rational t = r + s;

This can be done with Operator Overloading.
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Overloading Functions

Functions can be addressed by name in a scope
It is even possible to declare and to defined several functions
with the same name
the “correct” version is chosen according to the signature of the
function.
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Function Overloading

A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call (we do not go into details)

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2); // compiler chooses f4
std::cout << pow (3,3); // compiler chooses f3
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Operator Overloading

Operators are special functions and can be overloaded
Name of the operator op:

operatorop

we already know that, for example, operator+ exists for different
types
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Adding rational Numbers – Before

// POST: return value is the sum of a and b
rational add (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = add (r, s);
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Adding rational Numbers – After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = r + s;

infix notation
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Other Binary Operators for Rational Numbers

// POST: return value is difference of a and b
rational operator− (rational a, rational b);

// POST: return value is the product of a and b
rational operator∗ ( rational a, rational b);

// POST: return value is the quotient of a and b
// PRE: b != 0
rational operator/ ( rational a, rational b);
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Unary Minus

has the same symbol as the binary minus but only one argument:

// POST: return value is −a
rational operator− (rational a)
{

a.n = −a.n;
return a;

}
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Comparison Operators

are not built in for structs, but can be defined

// POST: returns true iff a == b
bool operator== (rational a, rational b)
{

return a.n ∗ b.d == a.d ∗ b.n;
}

2

3
=

4

6
X
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Arithmetic Assignment

We want to write

rational r;
r.n = 1; r.d = 2; // 1/2

rational s;
s.n = 1; s.d = 3; // 1/3

r += s;
std::cout << r.n << "/" << r.d; // 5/6
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Operator+= First Trial
rational operator+= (rational a, rational b)
{

a.n = a.n ∗ b.d + a.d ∗ b.n;
a.d ∗= b.d;
return a;

}

does not work. Why?

The expression r += s has the desired value, but because the arguments are
R-values (call by value!) it does not have the desired effect of modifying r.

The result of r += s is, against the convention of C++ no L-value.

637



Operator +=
rational& operator+= (rational& a, rational b)
{

a.n = a.n ∗ b.d + a.d ∗ b.n;
a.d ∗= b.d;
return a;

}

this works

The L-value a is increased by the value of b and returned as
L-value

r += s; now has the desired effect.
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In/Output Operators

can also be overloaded.

Before:

std::cout << "Sum is "
<< t.n << "/" << t.d << "\n";

After (desired):

std::cout << "Sum is "
<< t << "\n";
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In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out,

rational r)
{

return out << r.n << "/" << r.d;
}

writes r to the output stream
and returns the stream as L-value.
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Input

// PRE: in starts with a rational number
// of the form "n/d"
// POST: r has been read from in
std::istream& operator>> (std::istream& in,

rational& r)
{

char c; // separating character ’/’
return in >> r.n >> c >> r.d;

}

reads r from the input stream
and returns the stream as L-value.
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Goal Attained!
// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;

std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";

operator >>

operator +

operator<< 642

Recall: Large Objects ...
struct SimulatedCPU {

unsigned int pc;
int stack[16];
unsigned int stackPosition;
unsigned int memory[65536];

};

void outputState (SimulatedCPU p) {
std::cout << "pc=" << p.pc;
std::cout << ", stack: ";
for (unsigned int i = p.stackPosition; i != 0; −−i)

std::cout << p.stack[i−1];
}

call by value: more than 256k get copied!
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... are Better Passed as Const-Reference
struct SimulatedCPU {

unsigned int pc;
int stack[16];
unsigned int stackPosition;
unsigned int memory[65536];

};

void outputState (const SimulatedCPU& p) {
std::cout << "pc=" << p.pc;
std::cout << ", stack: ";
for (int i = p.stackPosition; i != 0; −−i)

std::cout << p.stack[i−1];
}

call by reference: only the address gets copied.
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A new Type with Functionality. . .

struct rational {
int n;
int d; // INV: d != 0

};

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}
...

645



. . . should be in a Library!

rational.h:
Definition of a struct rational
Function declarations

rational.cpp:
arithmetic operators (operator+, operator+=, ...)
relational operators (operator==, operator>, ...)
in/output (operator >>, operator <<, ...)
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Thought Experiment

The three core missions of ETH:

research
education
technology transfer

We found a startup: RAT PACKr!

Selling the rational library to customers
ongoing development according to customer’s demands
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The Customer is Happy
. . . and programs busily using rational.

output as double-value (35 → 0.6)

// POST: double approximation of r
double to_double (rational r)
{

double result = r.n;
return result / r.d;

}
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The Customer Wants More
“Can we have rational numbers with an extended value range?”

Sure, no problem, e.g.:

struct rational {
int n;
int d;

};
⇒

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};
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New Version of RAT PACKr

It sucks, nothing works any more!
What is the problem?

−3
5 is sometimes 0.6, this cannot be true!

That is your fault. Your conversion to double
is the problem, our library is correct.

Up to now it worked, therefore the new
version is to blame!
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Liability Discussion

// POST: double approximation of r
double to_double (rational r){

double result = r.n;
return result / r.d;

}

correct using. . .

struct rational {
int n;
int d;

};

. . . not correct using

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

r.is_positive and result.is_positive
do not appear.
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We are to Blame!!

Customer sees and uses our representation of rational numbers
(initially r.n, r.d)
When we change it (r.n, r.d, r.is_positive), the customer’s
programs do not work anymore.
No customer is willing to adapt the programs when the version of
the library changes.

⇒ RAT PACKr is history. . .
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Idea of Encapsulation (Information Hiding)

A type is uniquely defined by its value range and its functionality
The representation should not be visible.
⇒ The customer is not provided with representation but with
functionality!

str.length(),
v.push_back(1),. . .
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Classes

provide the concept for encapsulation in C++
are a variant of structs
are provided in many object oriented programming languages
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Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

only difference

struct: by default nothing is hidden
class : by default everything is hidden

is used instead of struct if anything at all
shall be “hidden”
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