17. Recursion 2

Building a Calculator, Streams, Formal Grammars, Extended
Backus Naur Form (EBNF), Parsing Expressions

564

Naive Attempt (without Parentheses)

double lval;
std::cin >> 1lval;

char op;

while (std::cin >> op && op != ’=’) {
double rval;
std::cin >> rval;

if (op == ’+7)
lval += rval;
else if (op == ’%7)
lval *x= rval;
else ...

Input 2 + 3 * 3 =
Result 15

}

std::cout << "Ergebnis " << lval << "\n";
566

Motivation: Calculator

Goal: we build a command line calculator

Example

Input: 3 + 5

Output: 8

Input: 3 / 5

Output: 0.6

Input: 3 + 5 * 20
Output: 103

Input: (3 + 5) * 20
Output: 160

Input: -(3 + 5) + 20
Output: 12

binary Operators +, -, *, / and numbers
floating point arithmetic
precedences and associativities like in C+-+

parentheses

unary operator -
565

Analyzing the Problem

13+ 4% (15 — 7% 3) =

L,ﬁﬁ‘J

Needs to be stored such that
evaluation can be performed

567

Analyzing the Problem

13+4%(15—7x%3)

“Understanding an expression requires lookahead to upcoming

symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C+-+).

Short Communications
Programming Languages

What Can We Do about the
Unnecessary Diversity of
Notation for Syntactic
Definitions?

Niklaus Wirth
Federal Institute of Technology (ETH), Zirich, and
Xerox Palo Alto Research Center

Key Words and Phrases: syntactic description
language, extended BNF
CR Categories: 4.20

The population of programming languages is stead-
ily growing, and there is no end of this growth in sight
Many language definitions appear in journals, many
are found in technical reports, and perhaps an even
greater number remains confined to proprietory circles.
After frequent exposure 1o these definitions, one can-
not fail to notice the lack of “common denominators.”
The only widely accepted fact is that the language
structure is defined by a syntax. But even notation for
syntactic description eludes any commonly agreed stan-
dard form, although the underlying ancestor is invaria-
bly the Backus-Naur Form of the Algol 60 report. As
variations are often only slight, they become annoying
for their very lack of an apparent motivation.

Out of sympathy with the troubled reader who is
weary of adapting to a new variant of BNF each time
another language definition appears, and without any
claim for originality, 1 venture to submit a simple
notation that has proven valuable and satisfactory in
use. It has the following properties to recommend it

Copyright © 1977, Association for Computing Machinery. Inc
General permission to republish, but not for profit, all or part of
this material s granted provided that ACM's copyright

given and that reference is made 1o the publication, 1o its date of

Author's present address: Xerox Corporation, Palo Alio Re-
search Center, 3333 Coyote Hill Road, Palo Alto, CA 94304,

Communications. November 1977
o Volume 20
the ACM Number 11

“The notation distinguishes clearly between meta-,
terminal, and nonterminal symbols
1t does not exclude characters used as metasymbols
from use as symbols of the language (as e.g. *|” in
BNF).
It contains an explicit iteration construct, and
thereby avoids the heavy use of recursion for
expressing simple repetition
4. 1t avoids the use of an explicit symbol for the
empty string (such as (empty) o ¢)
5. Itis based on the ASCII character set
This meta language can therefore conveniently be
used to define its own syntax, which may serve here as
an example of its use. The word identifier is used to
denote nonterminal symbol, and literal stands for termi-
nal symbol. For brevity, identifier and character are
not defined in further detail.

»

syntax = {production}.

production = identifier " =" expression "."

expression = term {"[" term}.

term = factor {factor}.

factor = identifier | literal | "(" expression ")"
" expression "] | "{" expression "}"*

literal - " character {character) " """ "',

Repetition is denoted by curly brackets, i.e. {a}
stands for €| a| aa| aaa| Optionality is expressed
by square brackets, i.c. [a] stands for a | €. Parentheses
merely serve for grouping, e.g. (a]b)c stands for ac| be.
Terminal symbols, i.e. literals, are enclosed in quote
marks (and, if a quote mark appears as a literal itself, it
is written twice), which is consistent with common
practice in programming languages.

Received January 1977; revised February 1977

568

Formal Grammars

m Alphabet: finite set of symbols
m Strings: finite sequences of symbols

A formal grammar defines which strings are valid.)

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)

569

Expressions

-(3-(4-5))*(3+4%5) /6

What do we need in a grammar?

m Number, (Expression)
-Number, - (Expression)

m Factor * Factor, Factor

Factor / Factor , ...

m Term + Term, Term
Term - Term, ...

571

The EBNF for Expressions

A factor is

m a number,

B an expression in parentheses or]
non-terminal symbol
®m a negated factor.

factor = unsigned_number/

| " (" expression ")

| "—" factor.
terminal symbol
alternative
The EBNF for Expressions
factor = unsigned number

"(" expression ")"
"—" factor.

factor { "«" factor | "/" factor }.

term

expression = term { "+" term |"—" term }.

The EBNF for Expressions

Atermis

m factor,

m factor * factor, factor / factor,

m factor * factor * factor, factor / factor * factor, ...
...

term = factor {"*" factor | "/" facty}.

optional repetition

Parsing

m Parsing: Check if a string is valid according to the EBNF.

m Parser: A program for parsing.

m Useful: From the EBNF we can (nearly) automatically generate a
parser:

Rules become functions

Alternatives and options become if—statements.

Nonterminial symbols on the right hand side become function calls
Optional repetitions become while—statements

Functions (Parser with Evaluation)

Expression is read from an input stream.

// POST: extracts a factor from is
// and returns its value
double factor (std::istream& is);

// POST: extracts a term from is

// and returns its value

double term (std::istream& is);

// POST: extracts an expression from is

// and returns its value
double expression (std::istream& is);

576

Cherry-Picking
... 1o extract the desired character.

// POST: if ch matches the next lookahead then consume it

// and return true; return false otherwise
bool consume (std::istreamé& is, char ch)
{
if (lookahead(is) == ch){
is >> ch;

return true;

}

return false;

578

One Character Lookahead...

...to find the right alternative.

// POST: leading whitespace characters are extracted
from is, and the first non—whitespace character
is returned (0 if there is no such character)
char lookahead (std::istreamé& is)

//
//

{

if (is.eof()) // eof: end of file (checks if stream is finished)
return O;

is >> std::ws; // skip all whitespaces

if (is.eof())
return O; // end of stream

return is.peekQ); // next character in is

Evaluating Factors

double factor (std::istreamé& is)

{

double v;

if (consume(s, (7)) {
v = expression (is);
consume(s, ')’);

} else if (consume(s, '—*)) {
v = —factor (is);

} else {
is >> v;

}

return v;

factor = " (" expression ") "
| "—" factor
| unsigned number.

577

579

Evaluating Terms

double term (std::istreamé& is)

double value = factor (is);

if (consume(s, ’*’))
value *= factor (is);

else if (consumed(is, ’/’))
value /= factor(is)

return wvalue;

{
while(true){
else
}
}
Recursion!

term = factor { "+" factor | "/" factor }.

Factor

N

Term

Expression

580

582

Evaluating Expressions

double expression (std ::istreamé& is)
{
double value = term(is);
while(true){
if (consume(s, ’+’))
value += term (is);
else if (consume(s, ’—’))
value —= termf(is)
else
return value;

expression = term { "+" term |"—" term }.

EBNF — and it works!

EBNF (calculator.cpp, Evaluation from left to right):

factor = unsigned number

| "(" expression ")"

| "—" factor.
term = factor { "x" factor | "/" factor }.
expression = term { "+" term | "—" term }.

std::stringstream input ("1-2-3");
std::cout << expression (input) << "\n"; // —4

583

