
17. Recursion 2

Building a Calculator, Streams, Formal Grammars, Extended
Backus Naur Form (EBNF), Parsing Expressions
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Motivation: Calculator
Goal: we build a command line calculator

Example

Input: 3 + 5
Output: 8
Input: 3 / 5
Output: 0.6
Input: 3 + 5 * 20
Output: 103
Input: (3 + 5) * 20
Output: 160
Input: -(3 + 5) + 20
Output: 12

binary Operators +, -, *, / and numbers

floating point arithmetic

precedences and associativities like in C++

parentheses

unary operator -
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Naive Attempt (without Parentheses)
double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’∗’)
lval ∗= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";

Input 2 + 3 * 3 =
Result 15
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Analyzing the Problem
Example
Input:

13 + 4 ∗ (15− 7∗ 3) =

Needs to be stored such that
evaluation can be performed

Example
This lecture is pretty much recursive.
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Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming
symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).
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Formal Grammars

Alphabet: finite set of symbols
Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)

569

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , ( Expression )
-Number, -( Expression )
Factor * Factor, Factor
Factor / Factor , ...
Term + Term, Term
Term - Term, ...

Factor

Term

Expression
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The EBNF for Expressions

A factor is

a number,
an expression in parentheses or
a negated factor.

factor = unsigned_number
| "(" expression ")"
| "−" factor.

alternative

terminal symbol

non-terminal symbol
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The EBNF for Expressions

A term is

factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "∗" factor | "/" factor }.

optional repetition
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The EBNF for Expressions

factor = unsigned_number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.
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Parsing

Parsing: Check if a string is valid according to the EBNF.
Parser: A program for parsing.
Useful: From the EBNF we can (nearly) automatically generate a
parser:

Rules become functions
Alternatives and options become if–statements.
Nonterminial symbols on the right hand side become function calls
Optional repetitions become while–statements
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Functions (Parser with Evaluation)
Expression is read from an input stream.

// POST: extracts a factor from is
// and returns its value
double factor (std::istream& is);

// POST: extracts a term from is
// and returns its value
double term (std::istream& is);

// POST: extracts an expression from is
// and returns its value
double expression (std::istream& is);
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One Character Lookahead. . .
. . . to find the right alternative.

// POST: leading whitespace characters are extracted
// from is , and the first non−whitespace character
// is returned (0 if there is no such character)
char lookahead (std:: istream& is)
{

if ( is . eof ()) // eof : end of file (checks if stream is finished )
return 0;

is >> std :: ws; // skip all whitespaces
if ( is . eof ())

return 0; // end of stream
return is .peek(); // next character in is

}
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Cherry-Picking

. . . to extract the desired character.

// POST: if ch matches the next lookahead then consume it
// and return true; return false otherwise
bool consume (std::istream& is, char ch)
{

if (lookahead(is) == ch){
is >> ch;
return true;

}
return false ;

}
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Evaluating Factors
double factor (std :: istream& is)
{

double v;
if (consume(is, ’ ( ’ )) {

v = expression (is );
consume(is, ’ ) ’ );

} else if (consume(is, ’−’)) {
v = −factor (is );

} else {
is >> v;

}
return v;

}
factor = "(" expression ")"

| "−" factor
| unsigned_number.
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Evaluating Terms
double term (std:: istream& is)
{

double value = factor ( is );
while(true){

if (consume(is, ’∗’ ))
value ∗= factor ( is );

else if (consume(is, ’/’ ))
value /= factor( is )

else
return value;

}
}

term = factor { "∗" factor | "/" factor }.
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Evaluating Expressions
double expression (std :: istream& is)
{
double value = term(is);
while(true){

if (consume(is, ’+’))
value += term (is);

else if (consume(is, ’−’))
value −= term(is)

else
return value;

}
}

expression = term { "+" term |"−" term }.
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Recursion!

Factor

Term

Expression
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EBNF — and it works!

EBNF (calculator.cpp, Evaluation from left to right):

factor = unsigned_number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.

std::stringstream input ("1−2−3");
std::cout << expression (input) << "\n"; // −4

583


