
17. Recursion 2

Building a Calculator, Streams, Formal Grammars, Extended
Backus Naur Form (EBNF), Parsing Expressions

564

Motivation: Calculator
Goal: we build a command line calculator

Example

Input: 3 + 5
Output: 8
Input: 3 / 5
Output: 0.6
Input: 3 + 5 * 20
Output: 103
Input: (3 + 5) * 20
Output: 160
Input: -(3 + 5) + 20
Output: 12

binary Operators +, -, *, / and numbers

floating point arithmetic

precedences and associativities like in C++

parentheses

unary operator -
565

Naive Attempt (without Parentheses)
double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’∗’)
lval ∗= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";

Input 2 + 3 * 3 =
Result 15

566

Analyzing the Problem
Example
Input:

13 + 4 ∗ (15− 7∗ 3) =

Needs to be stored such that
evaluation can be performed

Example
This lecture is pretty much recursive.

567

Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming
symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).

568

Formal Grammars

Alphabet: finite set of symbols
Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)

569

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (Expression)
-Number, -(Expression)
Factor * Factor, Factor
Factor / Factor , ...
Term + Term, Term
Term - Term, ...

Factor

Term

Expression

571

The EBNF for Expressions

A factor is

a number,
an expression in parentheses or
a negated factor.

factor = unsigned_number
| "(" expression ")"
| "−" factor.

alternative

terminal symbol

non-terminal symbol

572

The EBNF for Expressions

A term is

factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "∗" factor | "/" factor }.

optional repetition

573

The EBNF for Expressions

factor = unsigned_number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.

574

Parsing

Parsing: Check if a string is valid according to the EBNF.
Parser: A program for parsing.
Useful: From the EBNF we can (nearly) automatically generate a
parser:

Rules become functions
Alternatives and options become if–statements.
Nonterminial symbols on the right hand side become function calls
Optional repetitions become while–statements

575

Functions (Parser with Evaluation)
Expression is read from an input stream.

// POST: extracts a factor from is
// and returns its value
double factor (std::istream& is);

// POST: extracts a term from is
// and returns its value
double term (std::istream& is);

// POST: extracts an expression from is
// and returns its value
double expression (std::istream& is);

576

One Character Lookahead. . .
. . . to find the right alternative.

// POST: leading whitespace characters are extracted
// from is , and the first non−whitespace character
// is returned (0 if there is no such character)
char lookahead (std:: istream& is)
{

if (is . eof ()) // eof : end of file (checks if stream is finished)
return 0;

is >> std :: ws; // skip all whitespaces
if (is . eof ())

return 0; // end of stream
return is .peek(); // next character in is

}
577

Cherry-Picking

. . . to extract the desired character.

// POST: if ch matches the next lookahead then consume it
// and return true; return false otherwise
bool consume (std::istream& is, char ch)
{

if (lookahead(is) == ch){
is >> ch;
return true;

}
return false ;

}

578

Evaluating Factors
double factor (std :: istream& is)
{

double v;
if (consume(is, ’ (’)) {

v = expression (is);
consume(is, ’) ’);

} else if (consume(is, ’−’)) {
v = −factor (is);

} else {
is >> v;

}
return v;

}
factor = "(" expression ")"

| "−" factor
| unsigned_number.

579

Evaluating Terms
double term (std:: istream& is)
{

double value = factor (is);
while(true){

if (consume(is, ’∗’))
value ∗= factor (is);

else if (consume(is, ’/’))
value /= factor(is)

else
return value;

}
}

term = factor { "∗" factor | "/" factor }.
580

Evaluating Expressions
double expression (std :: istream& is)
{
double value = term(is);
while(true){

if (consume(is, ’+’))
value += term (is);

else if (consume(is, ’−’))
value −= term(is)

else
return value;

}
}

expression = term { "+" term |"−" term }.
581

Recursion!

Factor

Term

Expression

582

EBNF — and it works!

EBNF (calculator.cpp, Evaluation from left to right):

factor = unsigned_number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.

std::stringstream input ("1−2−3");
std::cout << expression (input) << "\n"; // −4

583

