11. Reference Types

Reference Types: Definition and Initialization, Pass By Value, Pass by
Reference, Temporary Objects, Const-References

355

Swap!

// POST: values of x and y have been exchanged

void swap(in X, in y) o

int t = x;

X =7

y =1

}

int main() {
int a = 2;
int b = 1;
swap(a, b);

assert(a == 1 && b == 2); // ok! (:)

356

Reference Types

m We can make functions change the values of the call arguments

357

Reference Types

m We can make functions change the values of the call arguments
m not a function-specific concept, but a new class of types: reference types

357

Reference Types: Definition

T& read as “T-reference”

-

underlying type

358

Reference Types: Definition

T& read as “T-reference”

-

underlying type

m T& has the same range of values and functionalityas T ...

358

Reference Types: Definition

T& read as “T-reference”

-

underlying type

m T& has the same range of values and functionalityas T ...
m ... butinitialization and assignment work differently

358

Anakin Skywalker alias Darth Vader

P s e,

Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // Alias
darth_vader = 22;

std::cout << anakin_skywalker;

360

Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // Alias
darth_vader = 22;

std::cout << anakin_skywalker;

anakin_skywalker

360

Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // Alias
darth_vader = 22;

std::cout << anakin_skywalker;

anakin_skywalker darth_vader

360

Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // Alias
darth_vader = 22;

std::cout << anakin_skywalker;

anakin_skywalker darth_vader

V\J

I ref PPl]]

360

Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // Alias

darth_vader = 22; assignment to the L-value behind the alias

std::cout << anakin_skywalker;

anakin_skywalker darth_vader

V\J

I ref PPl]]

360

Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // Alias
darth_vader = 22;

std::cout << anakin_skywalker; // 22

anakin_skywalker darth_vader

V\J

HEEENE NI R

360

Reference Types: Intialization and Assignment

int& darth_vader = anakin_skywalker;

m Avariable of reference type (a reference) must be initialized with an
-Value

361

Reference Types: Intialization and Assignment

int& darth_vader = anakin_skywalker;

m Avariable of reference type (a reference) must be initialized with an
-Value

m The variable becomes an alias of the L-value (a different name for the
referenced object)

361

Reference Types: Intialization and Assignment

int& darth_vader = anakin_skywalker;
darth_vader = 22; // effect: anakin_skywalker = 22

m Avariable of reference type (a reference) must be initialized with an
-Value

m The variable becomes an alias of the L-value (a different name for the
referenced object)

m Assignment to the reference updates the object behind the alias

361

Reference Types: Implementation

Internally, a value of type T& is represented by the address of an object of
type T.

int& j; // Error: j must be an alias of something

362

Reference Types: Implementation

Internally, a value of type T& is represented by the address of an object of
type T.

int& j; // Error: j must be an alias of something

int& k = 5; // Error: literal 5 has no address

362

Pass by Reference

void increment (int& i) {
++3;

}

int j = 5;
increment (j);
std::cout << j;

363

Pass by Reference

void increment (int& i) {
++3;

}

int j = 5;

increment (j);

std::cout << j;

363

Pass by Reference

initialization of the formal arguments: i be-

void increment (int& i)<f— .
comes an alias of call argument j

++3;
}
int j = 5;
increment (j);
std::cout << j;

363

Pass by Reference

void increment (int& i) {
++1;

}

int j = 5;

increment (j);

std::cout << j;

363

Pass by Reference

void increment (int& i) {
++3;

}

int j = 5;

increment (j);

std::cout << j; // 6

363

Pass by Reference

Formal argument is of reference type:

= Pass by Reference

Formal argument is (internally) initialized with the address of the call
argument (L-value) and thus becomes an alias.

364

Pass by Value

Formal argument is not of reference type:

= Pass by Value

Formal argument is initialized with the value of the actual parameter
(R-Value) and thus becomes a copy.

365

References in the Context of intervals_intersect

// PRE: [al, b1l], [a2, b2] are (generalized) intervals,
// POST: returns true if [al, bl], [a2, b2] intersect, in which case
// [1, h] contains the intersection of [al, bl], [a2, b2]
bool intervals_intersect(int& 1, int& h,
int al, int bl, int a2, int b2) {

sort(al, bl); ay]?
sort(a2, b2); : i - i
1 = std::max(al, a2); // Assignments a by

h = std::min(bl, b2); // via references
return 1 <= h;

¥

int lo = 0; int hi = 0;
if (intervals_intersect(lo, hi, 0, 2, 1, 3)) // Initialization
Std::COUt << ||[|| << 10 << n’u << hl << n]u << "\Il"; // [1’2] 366

References in the Context of intervals_intersect

// POST: a <= b
void sort(int& a, int& b) {
if (a > b)
std::swap(a, b); // Initialization ("passing through" a, b

bool intervals_intersect(int& 1, int& h,
int al, int bl, int a2, int b2) {
sort(al, bl); // Initialization
sort(a2, b2); // Initialization
1 = std::max(al, a2);
h = std::min(bl, b2);
return 1 <= h;

367

Return by Reference

m Even the return type of a function can be a reference type: Return by
Reference

368

Return by Reference

m Even the return type of a function can be a reference type: Return by
Reference

int& inc(int& i) {

return ++i;

3

368

Return by Reference

m Even the return type of a function can be a reference type: Return by
Reference

int& inc(int& i) {
return ++i;

3

m call inc(x), for some int variable x, has exactly the semantics of the
pre-increment ++x

368

Return by Reference

m Even the return type of a function can be a reference type: Return by
Reference

int& inc(int& i) {
return ++i;
}
m call inc(x), for some int variable x, has exactly the semantics of the
pre-increment ++x

m Function call itself now is an L-value

368

Return by Reference

m Even the return type of a function can be a reference type: Return by
Reference

int& inc(int& i) {
return ++i;

3

m call inc(x), for some int variable x, has exactly the semantics of the
pre-increment ++x

m Function call itself now is an L-value

m Thus possible: inc(inc(x)) or ++(inc(x))

368

Temporary Objects

What is wrong here?

int& foo(int i) {
return i;

}

369

Temporary Objects

What is wrong here?

int& foo(int i) {
return i;

}

int k = 3;
int& j = foo(k); // j is an alias of a zombie
std::cout << j; // undefined behavior

369

Temporary Objects

What is wrong here?

int& foo(int i) {
return i;

}

// main()

int k = 3;
int& j = foo(k); // j is an alias of a zombie
std::cout << j; // undefined behavior

369

Temporary Objects

What is wrong here?

value of the actual parameter is
pushed onto the call stack
int& foo(int i) {
return i;

} 3 ——1i // foo(k)

// main()

int k = 3;
int& j = foo(k); // j is an alias of a zombie
std::cout << j; // undefined behavior

369

Temporary Objects

What is wrong here?

i is returned as reference

int& foo(int i) {
return i;

} 3 i i // foo(k)
// main()
int k = 3;

int& j = foo(k); // j is an alias of a zombie
std::cout << j; // undefined behavior

369

Temporary Objects

What is wrong here?

...and disappears from the stack

int& foo(int i) {

return i;
} memory re-

leased \
// main()
int k = 3;

int& j = foo(k); // j is an alias of a zombie
std::cout << j; // undefined behavior

369

Temporary Objects

What is wrong here?

j becomes alias to released memory

int& foo(int i) {

return i;
} memory re-

leased \
j 7/ mainQ
int k = 3;

int& j = foo(k); // j is an alias of a zombie
std::cout << j; // undefined behavior

369

Temporary Objects

What is wrong here?

Accessing j is undefined behaviour!

int& foo(int i) {

return i;
} memory re-

leased \
j 7/ mainQ
int k = 3;

int& j = foo(k); // j is an alias of a zombie
std::cout << j; // undefined behavior

369

The Reference Guidline

Reference Guideline

When a reference is created, the object referred to must “stay alive” at
least as long as the reference.

370

Const-References

m have type const T &

m type can be interpreted as “(const T) &”

m can be initialized with R-Values (compiler generates a temporary object
with sufficient lifetime)

3n

Const-References

m have type const T &

m type can be interpreted as “(const T) &”

m can be initialized with R-Values (compiler generates a temporary object
with sufficient lifetime)
const T& r = lvalue;

r is initialized with the address of lvalue (efficient)

3n

Const-References

m have type const T &
m type can be interpreted as “(const T) &”

m can be initialized with R-Values (compiler generates a temporary object
with sufficient lifetime)

const T& r = rvalue;

r is initialized with the address of a temporary object with the value of the
rvalue (pragmatic)

3n

What exactly does Constant Mean?

Consider L-value of type const T. Case: 1T is no reference type.
= Then the L-value is a constant
const int n = 5;

int& a = n;
a = 6;

372

What exactly does Constant Mean?

Consider L-value of type const T. Case: 1T is no reference type.
= Then the L-value is a constant

const int n = 5;

int& a = n; // Compiler error: const-qualification discarded
a=6;

The compiler detects our cheating attempt

372

What exactly does Constant Mean?

Consider L-value of type const T. Case 2: T is reference type.

= Then the L-value is a read-only alias which cannot be used to change
the underlying L-value.

373

What exactly does Constant Mean?

Consider L-value of type const T. Case 2: T is reference type.
= Then the L-value is a read-only alias which cannot be used to change
the underlying L-value.

int n = 5;

const int& r = n; // r is read-only alias of n
r = 6; // Compiler error: read-only reference

373

What exactly does Constant Mean?

Consider L-value of type const T. Case 2: T is reference type.

= Then the L-value is a read-only alias which cannot be used to change
the underlying L-value.

int n = 5;

const int& r = n; // r is read-only alias of n
r = 6; // Compiler error: read-only reference

int& rw = n; // rw is read-write alias
W = 6; // OK

373

When to use const T&?

void f_1(7% arg); void f_2(const T& arg);

m Argument types are references; call arguments are thus not copied,
which is efficient

m But only £_2 “promises” to not modify the argument

374

When to use const T&?

void f_1(7% arg); void f_2(const T& arg);

m Argument types are references; call arguments are thus not copied,
which is efficient
m But only £_2 “promises” to not modify the argument

If possible, declare function argument types as const T& (pass by read-
only reference) : efficient and safe.

374

When to use const T&?

void f_1(7% arg); void f_2(const T& arg);

m Argument types are references; call arguments are thus not copied,
which is efficient

m But only £_2 “promises” to not modify the argument

If possible, declare function argument types as const T& (pass by read-
only reference) : efficient and safe.

Typically doesn't pay off for fundamental types (int, double, ...). Types with a larger
memory footprint will be introduced later in this course.

374

12. Vectors |

Vector Types, Sieve of Erathostenes, Memory Layout, Iteration

375

Vectors: Motivation

m Now we can iterate over numbers

for (int i=0; i<n ; ++i) {...}

376

Vectors: Motivation

m Now we can iterate over numbers
for (int i=0; i<n ; ++i) {...}

m ... but not yet over data!

376

Vectors: Motivation

m Now we can iterate over numbers
for (int i=0; i<n ; ++i) {...}

m ... but not yet over data!

m Vectors store homogeneous data.

376

Vectors: a first Application

The Sieve of Erathostenes
m computes all prime numbers < n

377

Vectors: a first Application

The Sieve of Erathostenes
m computes all prime numbers < n
m method: cross out all non-prime numbers

2103|4516 7189101 [12]13[14[15]16(17(18[19]20|21]22|23

377

Vectors: a first Application

The Sieve of Erathostenes
m computes all prime numbers < n
m method: cross out all non-prime numbers

2 (34|56 789101 [12|13[14|15(16(17|18]19]20|21|22|23

Cross out all real factors of 2 ...

377

Vectors: a first Application

The Sieve of Erathostenes
m computes all prime numbers < n
m method: cross out all non-prime numbers

2|3 /|5 7. /19 IV ANE ISRV ARAV ARV AVARY APX]

Cross out all real factors of 2 ...

377

Vectors: a first Application

The Sieve of Erathostenes
m computes all prime numbers < n
m method: cross out all non-prime numbers

2|3 /|5 7. /19 IV ANE ISRV ARAV ARV AVARY APX]

.. and go to the next number

377

Vectors: a first Application

The Sieve of Erathostenes
m computes all prime numbers < n
m method: cross out all non-prime numbers

2 (3| /|5 7. /19 IV ANE ISRV ARAV ARV AVARY APX]

cross out all real factors of 3 ...

377

Vectors: a first Application

The Sieve of Erathostenes
m computes all prime numbers < n
m method: cross out all non-prime numbers

2 (3| /|5 T\ /) 1 13 17 19 /0| 7123

cross out all real factors of 3 ...

377

Vectors: a first Application

The Sieve of Erathostenes
m computes all prime numbers < n
m method: cross out all non-prime numbers

2 (3| /|5 T\ /) 1 13 17 19 /0| 7123

.. and go to the next number

377

Vectors: a first Application

The Sieve of Erathostenes
m computes all prime numbers < n
m method: cross out all non-prime numbers

2 13|/1|5 7/, 1 13 (17 19 /| /| /|23

at the end of the crossing out process, only prime numbers remain.

377

Vectors: a first Application

The Sieve of Erathostenes
m computes all prime numbers < n
m method: cross out all non-prime numbers

2 13|/1|5 7/, 1 13 (17 19 /| /| /|23

m Question: how do we cross out numbers?

377

Vectors: a first Application

The Sieve of Erathostenes
m computes all prime numbers < n
m method: cross out all non-prime numbers

2 13|/1|5 7/, 1 13 (17 19 /| /| /|23

m Question: how do we cross out numbers?
m Answer: with a vector.

377

Erathostenes with Vectors: Initialization

i < > — .
#include <vector Initialization with n elements

initial value false.

!

std: :vector<bool> crossed_out(n, false);

|

element type in triangular brackets

378

Erathostenes with Vectors: Computation

for (unsigned int i = 2; i < crossed_out.size(); ++i)
if (!'crossed_out[i]l) { // i is prime
std::cout << i << " ";

// cross out all proper multiples of i

for (unsigned int m = 2%i; m < crossed_out.size(); m += i)
crossed_out[m] = true;

379

Memory Layout of a Vector

A vector occupies a contiguous memory area

Example: a vector with 3 elements of type T

381

Memory Layout of a Vector

A vector occupies a contiguous memory area

Example: a vector with 3 elements of type T

W

Memory segments for a value of type T each

381

Memory Layout of a Vector

A vector occupies a contiguous memory area

Example: a vector with 3 elements of type T

Memory segments for a value of type T each

(T occupies e.g. 4 bytes)

381

Random Access

Given
m vector vec with T elements
B int expression exp with value i >0

382

Random Access

Given
m vector vec with T elements
B int expression exp with value i >0

Then the expression

vec [exp]

m is an [-value of type T

382

Random Access

Given
m vector vec with T elements
B int expression exp with value i >0

Then the expression
vec [exp]

m is an [-value of type T
m that refers to the ith element vec (counting from 0!)

| | | | |
T T T T
vec[0] vec[l] vec[2] vec[3]

382

Random Access

vec [exp]

m The value i of exp is called index
m [] isthe index operator (also subscript operator)

383

Random Access

Random access is very efficient:

p: address of vec, I.e. address of the first memory cell

l

\\/_/

s: memory consumption of
T
(in cells)

384

Random Access

Random access is very efficient:

p: address of vec p+ s -1 address of vec [i]

J J

— —

s: memory consumption of vec[7]
T
(in cells)

384

Vector Initialization

B std::vector<int> vec(5);
The five elements of vec are intialized with zeros)

385

Vector Initialization

B std::vector<int> vec(5);
The five elements of vec are intialized with zeros)

B std::vector<int> vec(5, 2);
the 5 elements of vec are initialized with 2

385

Vector Initialization

B std::vector<int> vec(5);
The five elements of vec are intialized with zeros)

B std::vector<int> vec(5, 2);
the 5 elements of vec are initialized with 2

B std::vector<int> vec{4, 3, 5, 2, 1};
the vector is initialized with an initialization list

385

Vector Initialization

B std::vector<int> vec(5);
The five elements of vec are intialized with zeros)

B std::vector<int> vec(5, 2);
the 5 elements of vec are initialized with 2

B std::vector<int> vec{4, 3, 5, 2, 1};
the vector is initialized with an initialization list

B std::vector<int> vec;
An initially empty vector is initialized

385

Attention

Accessing elements outside the valid bounds of a vector leads to
undefined behavior

std::vector vec(10);

for (unsigned int i = 0; i <= 10; ++i)
vec[i] = 30;

386

Attention

Accessing elements outside the valid bounds of a vector leads to
undefined behavior

std::vector vec(10);

for (unsigned int i = 0; i <= 10; ++i)
vec[i] = 30; // Runtime error: accessing vec[10]

386

Attention

Bound Checks

When using a subscript operator on a vector, it is the sole responsibility
of the programmer to check the validity of element accesses.

387

Consequences of illegal index accesses

"out of bounds" array exploit Q

Alle Videos Bilder News Shopping Mehr Einstellungen Tools

Ungefahr 127’000 Ergebnisse (0.30 Sekunden)
——

CWE - CWE-125: Out-of-bounds Read (3.0)

https://cwe.mitre.org » CWE List ¥ Diese Seite Ubersetzen

However, this method only verifies that the given array index is less than the maximum length of the
array but does not check for the minimum value (CWE-839). This will allow a negative value to be
accepted as the input array index, which will result in a out of bounds read (CWE-125) and may allow
access to sensitive ...

CWE - CWE-787: Out-of-bounds Write (3.0)

https://cwe.mitre.org » CWE List ¥ Diese Seite Ubersetzen

This typically occurs when the pointer or its index is incremented or decremented to a position beyond
the bounds of the buffer or when pointer arithmetic results in a position outside of the valid memory
location to name a few. This may result in corruption of sensitive information, a crash, or code execution
among other ...

c - How dangerous is it to access an array out of bounds? - Stack ...
https://stackoverflow.com/.../how-dangerous-is-it-to-access-an-arr... ¥ Diese Seite Ubersetzen

As far as the ISO C standard (the official definition of the language) is concerned, accessing an array

outside its bounds has "undefined behavior". The literal meaning of this is: behavior, upon use of a

nonportable or erroneous program construct or of erroneous data, for which this International Standard

imposes no ... 388

Consequences of illegal index accesses

atabase Search

< c @ @ & https;//www.exploit-db.com/search/?action=search&iq= f-bounds&ig-recaptch JIZXZ4 RO B4 Yin @ o =
I!'xl.ri.l'nnBIE; Home Exploits Shellcode Papers Google Hacking Database Submit Search
2018-03-23 - @ Android Bluetooth - BNEP BNEP_SETUP_CONNECTION_REQUEST_MSG [SYROREINTE Read Android QuarksLab
2018-03-06 « Chrome V8 IT - Empty BytecodejumpTable SRR Read Multiple Google
2018-02-15 « Pdfium Read with Shading Pattern Backed by Pattern Colorspace Multiple Google...
2018-01-17 & Microsoft Edge Chakra - '‘AsmjSByteCodeGenerator:EmitCall' SRS HEMIeE Read Windows Google...
2018-01-17 & Microsoft Edge Chakra IT - YT RCIREISMRER Write Windows Google
2018-01-11 & Microsoft Edge Chakra - ‘AppendLeftOveritemsFromEndSegment Read Windows Google.
2018-01-09 & Microsoft Edge Chakra - ‘asm.js' Read Windows Google...
2017-12-19 & Microsoft Windows - jscriptiRegExpFncObj::LastParen’ Read Windows Google...
2017-11-22 & Webkit -'WebCorer:SVGP ollectPatternAttributes' [STTRSETETGER Read Multiple Google
2017-11-22 & Webkit - 'WebCore::SimpleLineLayout::RunResolver:runForPoint' Read Multiple Google.
2017-11-22 - & WebKit- 'WebCore::RenderText:localCaretRect' Read Multiple Google...
2017-09-25 & AppleiOS 10.2 - Broadcom [SRAMEIAMIEE Write when Handling 802.11k Neighbor Report... ios Google...
2017-09-25 & Adobe Flash - Read in applyToRange Multiple Google.
2017-09-25 & Adobe Flash - ETRORININEE Write in MP4 Edge Processing Multiple Google.
2017-09-25 & Adobe Flash - Memory Read in MP4 Parsing Multiple Google.
20170919 « Microsoft Edge 38.14393.1066.0 - 'COptionsCollectionCacheltem::GetAt Read Windows Google.
2017-09-18 & Microsoft Windows Kernel - ‘win32k.sys' "TTF' Font Processing ST TRSEEREE Read with... Windows Google
2017-0918 & Microsoft Windows Kernel - 'win32k.sys' . TTF' Font Processing [T SOEENIEE Reads/Writes.. Windows Google...
2017-09-06 & Jungo DriverWizard WinDriver < 12.4.0 - Kernel SHTSSEEINGER Write Privilege Escalation Windows mr_me
2017-08-17 & Microsoft Edge - (S MUREEMIEE Access when Fetching Source Windows Google. 389
2017-08-17 & Adobe Flash - Invoke Accesses Trait SN RURCETIEE Windows Google.

Vectors Offer Great Functionality

Here a few example functions, additional follow later in the course.

390

Vectors Offer Great Functionality

Here a few example functions, additional follow later in the course.

std: :vector<int> v(10);

std::cout << v.at(10);
// Access with index check — runtime error
// Ideal for homework

390

Vectors Offer Great Functionality

Here a few example functions, additional follow later in the course.

std: :vector<int> v(10);

std::cout << v.at(10);
// Access with index check — runtime error
// Ideal for homework

v.push_back(-1); // -1 is appended (added at end)
std::cout << v.size(); // outputs 11
std::cout << v.at(10); // outputs -1

390

13. Characters and Texts |

Characters and Texts, ASCII, UTF-8, Caesar Code

391

Characters and Texts

m We have seen texts before:

std::cout << "Prime numbers in {2,...,999}:\n";

String-Literal

392

Characters and Texts

m We have seen texts before:

std::cout << "Prime numbers in {2,...,999}:\n";

String-Literal

m can we really work with texts?

392

Characters and Texts

m We have seen texts before:

std::cout << "Prime numbers in {2,...,999}:\n";

String-Literal
m can we really work with texts? Yes!

Character: Value of the fundamental type char
Text: std::string ~ vector of char elements

392

The type char (“character”)

Represents printable characters (e.g. a?) and control characters (e.g. >\n?)

393

The type char (“character”)

Represents printable characters (e.g. a?) and control characters (e.g. >\n?)

char ¢ = ’a’;

/

Declares and initialises
variable c of type char
with value ’a’

393

The type char (“character”)

Represents printable characters (e.g. a?) and control characters (e.g. >\n?)

char ¢ = ’a’;

/\

Declares and initialises literal of type char
variable c of type char
with value ’a’

393

The type char (“character”)

Is formally an integer type
m values convertible to int / unsigned int

394

The type char (“character”)

Is formally an integer type
m values convertible to int / unsigned int
m values typically occupy 8 Bit

domain:
{-128,...,127} or {0,...,255}

394

The ASCII-Code

m Defines concrete conversion rules char — (unsigned) int

Zeichen — {0,...,127}

A, ’B’, ... , ’Z’ — 65,66, ...,90
a’, 'b’, ... , 'z’ — 97,98, ...,122
207, 217, ..., 97 —5 4849, ... 57

395

The ASCII-Code

m Defines concrete conversion rules char — (unsigned) int

Zeichen — {0,...,127}

A, ’B’, ... , ’Z’ — 65,66, ...,90
a’, 'b’, ... , 'z’ — 97,98, ...,122
207, 217, ..., 97 —5 4849, ... 57

m |s supported on all common computer systems

395

The ASCII-Code

m Defines concrete conversion rules char — (unsigned) int

Zeichen — {0,..., 127}

A, ’B’, ... , ’Z’ — 65,66, ...,90
a’, 'b’, ... , 'z’ — 97,98, ...,122
207, 217, ..., 97 —5 4849, ... 57

m |s supported on all common computer systems
m Enables arithmetic over characters

for (char ¢ = ’a’; c <= ’z’; ++c)
std::cout << c; // abcdefghijklmnopgrstuvwxyz

395

Extension of ASCII: Unicode, UTF-8

m Internationalization of Software = large character sets required. Thus
common today:
m Character set Unicode: 150 scripts, ca. 137,000 characters
m encoding standard UTF-8: mapping characters <+ numbers

396

Extension of ASCII: Unicode, UTF-8

m Internationalization of Software = large character sets required. Thus
common today:
m Character set Unicode: 150 scripts, ca. 137,000 characters
m encoding standard UTF-8: mapping characters <+ numbers

m UTF-8 is a variable-width encoding: Commonly used characters (e.g.
Latin alphabet) require only one byte, other characters up to four

396

Extension of ASCII: Unicode, UTF-8

m Internationalization of Software = large character sets required. Thus

common today:
m Character set Unicode: 150 scripts, ca. 137,000 characters
m encoding standard UTF-8: mapping characters <+ numbers

m UTF-8 is a variable-width encoding: Commonly used characters (e.g.
Latin alphabet) require only one byte, other characters up to four
m Length of a character’s byte sequence is encoded via bit patterns

Useable Bits | Bit patterns
7 | OXXXXXXX
11 | 110xxxxx 10XXXXXX
16 | 1110xxxx 10xxxxXXx 10XXXXXX
21 | 11110xxx 10xxxxxx 10xXXXXX 10XXXXXX

396

Some Unicode characters in UTF-8

Symbol | Codierung (jeweils 16 Bit)

(o 11101111 10101111 10111001

397

Some Unicode characters in UTF-8

Symbol | Codierung (jeweils 16 Bit)

11101111 10101111 10111001

11100010 10011000 10100000

11100010 10011000 10000011

& oo o G

11100010 10011000 10011001

397

Some Unicode characters in UTF-8

Symbol | Codierung (jeweils 16 Bit)

(o 11101111 10101111 10111001

@
-4 11100010 10011000 10100000

&

%g 11100010 10011000 10011001

11100010 10011000 10000011

A 01000001

PS.: Search for apple "unicode of death" P.S.. Unicode & UTF-8 are not relevant for the exam

397

Replace every printable character in a text by its pre-pre-predecessor.

(32) — 'I" (124)
" (33) — VY (125)
D' (68) — ‘A (65)
o (69) — 'B (66)

398

Caesar-Code: shift-Function

// PRE: divisor > 0

// POST: return the remainder of dividend / divisor
// with 0 <= result < divisor

int mod(int dividend, int divisor);

// POST: if ¢ is one of the 95 printable ASCII characters, c is
// cyclically shifted s printable characters to the right
char shift(char c, int s) {
if (¢ >= 32 && c <= 126) { // c is printable
¢ = 32 + mod(c - 32 + s,95);
3

return c;

399

Caesar-Code: shift-Function

// PRE: divisor > 0

// POST: return the remainder of dividend / divisor
// with 0 <= result < divisor

int mod(int dividend, int divisor);

// POST: if ¢ is one of the 95 printable ASCII characters, c is
// cyclically shifted s printable characters to the right
char shift(char c, int s) {
if (c >= 32 && c <= 126) { // c is printable
c = 32 + mod(c - 32 + s,95);

}
"- 32" transforms interval [32,126] to [0, 94]

return ¢; mod(z, 95)" computes x mod 95 in [0,94]
} "32 +" transforms [0, 94] back to [32,126]

399

Caesar-Code: caesar-Function

// POST: Each character read from std::cin was shifted cyclically
// by s characters and afterwards written to std::cout
void caesar(int s) {

std::cin >> std::noskipws;¢// #include <ios>

char next; Spaces and newline characters

while (std::cin >> next) { shall not be ignored
std::cout << shift(next, s);

}

}

400

Caesar-Code: caesar-Function

// POST: Each character read from std::cin was shifted cyclically
// by s characters and afterwards written to std::cout
void caesar(int s) {

std::cin >> std::noskipws; // #include <ios>

char next;
while (std::cin >> next)«f—
std::cout << shift(next, s);
}
}

Conversion to bool: returns false if and
only if the input is empty

400

Caesar-Code: caesar-Function

// POST: Each character read from std::cin was shifted cyclically
// by s characters and afterwards written to std::cout
void caesar(int s) {

std::cin >> std::noskipws; // #include <ios>

char next;
while (std::cin >> next) {

std: :cout << Shiftéggfzi_fzi__‘~‘
}

} Shift printable characters by s

400

Caesar-Code: Main Program

Encode: shift by n (here: 3)

int main() {
int s;
std::cin >> s;

Khoor#Zruog/#p|#sdvvzrug#lv#45671

// Shift input by s
caesar(s); Encode: shift by —n (here: -3)

return O;

}

Hello World, my password is 1234.

401

Caesar-Code: Generalisation

void caesar(int s) {
std::cin >> std::noskipws;

char next;
while (std::cin >> next) {
std::cout << shift(next, s);
}
}

m Currently only from std: :cin to
std: :cout

402

Caesar-Code: Generalisation

void caesar(int s) {
std::cin >> std::noskipws;

char next;
while (std::cin >> next) {
std::cout << shift(next, s);
}
}

m Currently only from std: :cin to
std: :cout

m Better: from arbitrary character
source (console, file, ...) to
arbitrary character sink (console,

“N.mc
\.QQhuﬂG\“‘““\N“
i
e ... wK

402

	Reference Types
	Reference Types
	Pass by Reference, Pass by Value
	Temporary Objects

	Vectors I
	Sieve of Erathostenes
	Vectors
	Memory Layout and Properties

	Characters and Texts I
	ASCII and UTF8
	Caesar-Code

