
6. Control Statements II
Visibility, Local Variables, While Statement, Do Statement, Jump Statements
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Visibility

Declaration in a block is not visible outside of the block.
int main()
{

{
int i = 2;

}
std::cout << i; // Error: undeclared name
return 0;

}
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„Blickrichtung“
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Potential Scope

in the block

{
...
int i = 2;
...

}

in function body

int main() {
...
int i = 2;
...
return 0;

}

in control statement

for (int i = 0; i < 10; ++i) {s += i; ... }
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Scope

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}
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Real Scope

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}
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Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs
int k = 2;
std::cout << --k; // outputs

}
}

Local variables (declaration in a block) have automatic storage duration.
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Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs 6, 7, 8, 9, 10
int k = 2;
std::cout << --k; // outputs 1, 1, 1, 1, 1

}
}

Local variables (declaration in a block) have automatic storage duration.
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Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs
int k = 2;
std::cout << --k; // outputs

}
}

Local variables (declaration in a block) have automatic storage duration.
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while Statement

while (condition)
statement

is equivalent to

for (; condition; )
statement
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while Statement

while (condition)
statement

is equivalent to

for (; condition; )
statement
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Example: The Collatz-Sequence (n ∈ N)

n0 = n

ni =


ni−1

2 , if ni−1 even
3ni−1 + 1 , if ni−1 odd

, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)
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The Collatz-Sequence

n0 = n

ni =


ni−1

2 , if ni−1 even
3ni−1 + 1 , if ni−1 odd

, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)
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do Statement

do
statement

while (condition);

is equivalent to

statement
while (condition)

statement
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do Statement

do
statement

while (condition);

is equivalent to

statement
while (condition)

statement
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break and continue in practice

Advantage: Can avoid nested if-elseblocks (or complex disjunctions)

But they result in additional jumps and thus potentially complicate the
control flow
Their use is thus controversial, and should be carefully considered
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Control Flow for

for ( init statement condition ; expression )
statement

init-statement

condition

statement

expression

true

false
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Control Flow for
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statement
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Control Flow for

for ( init statement condition ; expression )
statement

init-statement

condition

statement

expression

true

false
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Control Flow break and continue in for

init-statement

condition

statement

expression

break
continue
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Control Flow break and continue in for

init-statement

condition

statement

expression
break

continue
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Control Flow break and continue in for

init-statement

condition

statement
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break
continue
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Control Flow break and continue in for

init-statement

condition

statement

expression

break

continue
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Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to arbitrary
places in the program (goto).

Languages based on them:
Machine Language

Assembler (“higher” machine language)
BASIC, the first programming language for the
general public (1964)

if

goto
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Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to arbitrary
places in the program (goto).
Languages based on them:

Machine Language
Assembler (“higher” machine language)
BASIC, the first programming language for the
general public (1964)

if

goto
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BASIC and home computers...

...allowed a whole generation of young adults to program.

Home-Computer Commodore C64 (1982)
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Spaghetti-Code with goto

Output of of ???????????
using the programming language BASIC:

true

true
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Spaghetti-Code with goto

Output of all prime numbers
using the programming language BASIC:

true

true

214



The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements
few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.
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Odd Numbers in {0, . . . , 100}

First (correct) attempt:

for (unsigned int i = 0; i < 100; ++i) {
if (i % 2 == 0)

continue;
std::cout << i << "\n";

}
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Odd Numbers in {0, . . . , 100}

Less statements, less lines:

for (unsigned int i = 0; i < 100; ++i) {
if (i % 2 != 0)

std::cout << i << "\n";
}
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Odd Numbers in {0, . . . , 100}

Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement
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Odd Numbers in {0, . . . , 100}

Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement

218



Outputting Grades

1. Functional requirement:

6→ "Excellent ... You passed!"
5, 4→ "You passed!"

3→ "Close, but ... You failed!"
2, 1→ "You failed!"

otherwise→ "Error!"

2. Moreover: Avoid duplication of text and code
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Outputting Grades with if Statements

int grade;
...
if (grade == 6) std::cout << "Excellent ... ";
if (4 <= grade && grade <= 6) {

std::cout << "You passed!";
} else if (1 <= grade && grade < 4) {

if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";

} else std::cout << "Error!";

Disadvantage: Control flow – and thus program behaviour – not quite
obvious
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Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Advantage: Control flow clearly recognisable
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Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Jump to matching case

Advantage: Control flow clearly recognisable
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Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}
In all other cases

Advantage: Control flow clearly recognisable
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Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}
Advantage: Control flow clearly recognisable
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The switch-Statement

switch (expression)
statement

expression: Expression, convertible to integral type
statement : arbitrary statemet, in which case and default-lables are
permitted, break has a special meaning.

Use of fall-through property is controversial and should be carefully
considered (corresponding compiler warning can be enabled)
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The switch-Statement

switch (expression)
statement

expression: Expression, convertible to integral type
statement : arbitrary statemet, in which case and default-lables are
permitted, break has a special meaning.
Use of fall-through property is controversial and should be carefully
considered (corresponding compiler warning can be enabled)
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7. Floating-point Numbers I

Types float and double; Mixed Expressions and Conversion; Holes in the
Value Range

226



“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82 degrees Fahrenheit.
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“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82 degrees Fahrenheit.

richtig wäre 82.4
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“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =? ";
float celsius; // Enable fractional numbers
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82.4 degrees Fahrenheit.
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Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)
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Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

82.4 = 0000082.400
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Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

82.4 = 0000082.400

Disadvantages
Value range is getting even smaller than for integers.
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Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

0.0824 = 0000000.082

Disadvantages
Representability depends on the position of the decimal point.

third place truncated
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Floating-point numbers

Observation: same number, di�erent representations with varying
“e�ciency”, e.g.

0.0824 = 0.00824 · 101 = 0.824 · 10−1

= 8.24 · 10−2 = 824 · 10−4

Number of significant digits remains constant

Floating-point number representation thus:

Fixed number of significant places (e.g. 10),
Plus position of the decimal point via exponent
Number is Mantissa× 10Exponent
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Types float and double

are the fundamental C++ types for floating point numbers
approximate the field of real numbers (R, +,×) from mathematics

have a big value range, su�cient for many applications:

float: approx. 7 digits, exponent up to ±38
double: approx. 15 digits, exponent up to ±308

are fast on most computers (hardware support)
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Arithmetic Operators

Analogous to int, but . . .
Division operator / models a “proper” division (real-valued, not integer)
No modulo operator, i.e. no %

231



Literals
are di�erent from integers

by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27
or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1

.23e-7f

integer part

fractional part

exponent
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Computing with float: Example

Approximating the Euler-Number

e =
∞∑

i=0

1
i! ≈ 2.71828 . . .

using the first 10 terms.
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Computing with float: Euler Number

std::cout << "Approximating the Euler number... \n";

// values for i-th iteration, initialized for i = 0
float t = 1.0f; // term 1/i!
float e = 1.0f; // i-th approximation of e

// iteration 1, ..., n
for (unsigned int i = 1; i < 10; ++i) {

t /= i; // 1/(i-1)! -> 1/i!
e += t;
std::cout << "Value after term " << i << ": "

<< e << "\n";
}
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Computing with float: Euler Number

Value after term 1: 2
Value after term 2: 2.5
Value after term 3: 2.66667
Value after term 4: 2.70833
Value after term 5: 2.71667
Value after term 6: 2.71806
Value after term 7: 2.71825
Value after term 8: 2.71828
Value after term 9: 2.71828
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.

In mixed expressions integers are converted to floating point numbers.
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point numbers.

9 * celsius / 5 + 32

Typ float, value 28
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point numbers.

9 * 28.0f / 5 + 32

236



Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point numbers.

9 * 28.0f / 5 + 32

is converted to float : 9.0f
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point numbers.

252.0f / 5 + 32

is converted to float : 5.0f
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point numbers.

50.4f + 32

is converted to float : 32.0f
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point numbers.

82.4f
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Holes in the value range

float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< n1 - n2 - d << "\n";
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Holes in the value range

float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< n1 - n2 - d << "\n";

input 1.5

input 1.0

input 0.5
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Holes in the value range

float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< n1 - n2 - d << "\n";

input 1.5

input 1.0

input 0.5

output 0
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Holes in the value range

float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< n1 - n2 - d << "\n";

input 1.1

input 1.0

input 0.1
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Holes in the value range

float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< n1 - n2 - d << "\n";

input 1.1

input 1.0

input 0.1

output 2.23517e-8
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Holes in the value range

float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< n1 - n2 - d << "\n";

input 1.1

input 1.0

input 0.1

output 2.23517e-8 W
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Value range

Integer Types:
Over- and Underflow relatively frequent, but ...
the value range is contiguous (no holes): Z is “discrete”.

Floating point types:
Overflow and Underflow seldom, but ...
there are holes: R is “continuous”.
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Integer Types:
Over- and Underflow relatively frequent, but ...
the value range is contiguous (no holes): Z is “discrete”.

Floating point types:
Overflow and Underflow seldom, but ...
there are holes: R is “continuous”.
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