
6. Control Statements II
Visibility, Local Variables, While Statement, Do Statement, Jump Statements

174

Visibility

Declaration in a block is not visible outside of the block.
int main()
{

{
int i = 2;

}
std::cout << i; // Error: undeclared name
return 0;

}

bl
oc

k

m
ai

n
bl

oc
k

„Blickrichtung“

175

Potential Scope

in the block

{
...
int i = 2;
...

}

in function body

int main() {
...
int i = 2;
...
return 0;

}

in control statement

for (int i = 0; i < 10; ++i) {s += i; ... }

177

Potential Scope

in the block

{
...
int i = 2;
...

}

in function body

int main() {
...
int i = 2;
...
return 0;

}

in control statement

for (int i = 0; i < 10; ++i) {s += i; ... }

sc
op

e

sc
op

e
scope

177

Scope

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}

178

Potential Scope

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}

178

Real Scope

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}

178

Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs
int k = 2;
std::cout << --k; // outputs

}
}

Local variables (declaration in a block) have automatic storage duration.

180

Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs 6, 7, 8, 9, 10
int k = 2;
std::cout << --k; // outputs 1, 1, 1, 1, 1

}
}

Local variables (declaration in a block) have automatic storage duration.

180

Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs
int k = 2;
std::cout << --k; // outputs

}
}

Local variables (declaration in a block) have automatic storage duration.

180

while Statement

while (condition)
statement

is equivalent to

for (; condition;)
statement

182

while Statement

while (condition)
statement

is equivalent to

for (; condition;)
statement

182

Example: The Collatz-Sequence (n ∈ N)

n0 = n

ni =

ni−1

2 , if ni−1 even
3ni−1 + 1 , if ni−1 odd

, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

185

The Collatz-Sequence

n0 = n

ni =

ni−1

2 , if ni−1 even
3ni−1 + 1 , if ni−1 odd

, i ≥ 1.

n=5: 5

, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

185

The Collatz-Sequence

n0 = n

ni =

ni−1

2 , if ni−1 even
3ni−1 + 1 , if ni−1 odd

, i ≥ 1.

n=5: 5, 16

, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

185

The Collatz-Sequence

n0 = n

ni =

ni−1

2 , if ni−1 even
3ni−1 + 1 , if ni−1 odd

, i ≥ 1.

n=5: 5, 16, 8

, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

185

The Collatz-Sequence

n0 = n

ni =

ni−1

2 , if ni−1 even
3ni−1 + 1 , if ni−1 odd

, i ≥ 1.

n=5: 5, 16, 8, 4

, 2, 1, 4, 2, 1, ... (repetition at 1)

185

The Collatz-Sequence

n0 = n

ni =

ni−1

2 , if ni−1 even
3ni−1 + 1 , if ni−1 odd

, i ≥ 1.

n=5: 5, 16, 8, 4, 2

, 1, 4, 2, 1, ... (repetition at 1)

185

The Collatz-Sequence

n0 = n

ni =

ni−1

2 , if ni−1 even
3ni−1 + 1 , if ni−1 odd

, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1

, 4, 2, 1, ... (repetition at 1)

185

The Collatz-Sequence

n0 = n

ni =

ni−1

2 , if ni−1 even
3ni−1 + 1 , if ni−1 odd

, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4

, 2, 1, ... (repetition at 1)

185

The Collatz-Sequence

n0 = n

ni =

ni−1

2 , if ni−1 even
3ni−1 + 1 , if ni−1 odd

, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2

, 1, ... (repetition at 1)

185

The Collatz-Sequence

n0 = n

ni =

ni−1

2 , if ni−1 even
3ni−1 + 1 , if ni−1 odd

, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1

, ... (repetition at 1)

185

The Collatz-Sequence

n0 = n

ni =

ni−1

2 , if ni−1 even
3ni−1 + 1 , if ni−1 odd

, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

185

do Statement

do
statement

while (condition);

is equivalent to

statement
while (condition)

statement

190

do Statement

do
statement

while (condition);

is equivalent to

statement
while (condition)

statement

190

break and continue in practice

Advantage: Can avoid nested if-elseblocks (or complex disjunctions)

But they result in additional jumps and thus potentially complicate the
control flow
Their use is thus controversial, and should be carefully considered

201

break and continue in practice

Advantage: Can avoid nested if-elseblocks (or complex disjunctions)
But they result in additional jumps and thus potentially complicate the
control flow

Their use is thus controversial, and should be carefully considered

201

break and continue in practice

Advantage: Can avoid nested if-elseblocks (or complex disjunctions)
But they result in additional jumps and thus potentially complicate the
control flow
Their use is thus controversial, and should be carefully considered

201

Control Flow for

for (init statement condition ; expression)
statement

init-statement

condition

statement

expression

true

false

206

Control Flow for

for (init statement condition ; expression)
statement

init-statement

condition

statement

expression

true

false

206

Control Flow for

for (init statement condition ; expression)
statement

init-statement

condition

statement

expression

true

false

206

Control Flow break and continue in for

init-statement

condition

statement

expression

break
continue

207

Control Flow break and continue in for

init-statement

condition

statement

expression
break

continue

207

Control Flow break and continue in for

init-statement

condition

statement

expression

break
continue

207

Control Flow break and continue in for

init-statement

condition

statement

expression

break

continue

207

Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to arbitrary
places in the program (goto).

Languages based on them:
Machine Language

Assembler (“higher” machine language)
BASIC, the first programming language for the
general public (1964)

if

goto

212

Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to arbitrary
places in the program (goto).

Languages based on them:
Machine Language

Assembler (“higher” machine language)
BASIC, the first programming language for the
general public (1964)

if

goto

212

Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to arbitrary
places in the program (goto).
Languages based on them:

Machine Language

Assembler (“higher” machine language)
BASIC, the first programming language for the
general public (1964)

if

goto

212

Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to arbitrary
places in the program (goto).
Languages based on them:

Machine Language
Assembler (“higher” machine language)

BASIC, the first programming language for the
general public (1964)

if

goto

212

Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to arbitrary
places in the program (goto).
Languages based on them:

Machine Language
Assembler (“higher” machine language)
BASIC, the first programming language for the
general public (1964)

if

goto

212

BASIC and home computers...

...allowed a whole generation of young adults to program.

Home-Computer Commodore C64 (1982)

213

Spaghetti-Code with goto

Output of of ???????????
using the programming language BASIC:

true

true

214

Spaghetti-Code with goto

Output of all prime numbers
using the programming language BASIC:

true

true

214

The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements
few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

215

The “right” Iteration Statement

Goals: readability, conciseness, in particular
few statements

few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

215

The “right” Iteration Statement

Goals: readability, conciseness, in particular
few statements
few lines of code

simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

215

The “right” Iteration Statement

Goals: readability, conciseness, in particular
few statements
few lines of code
simple control flow

simple expressions
Often not all goals can be achieved simultaneously.

215

The “right” Iteration Statement

Goals: readability, conciseness, in particular
few statements
few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

215

The “right” Iteration Statement

Goals: readability, conciseness, in particular
few statements
few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

215

Odd Numbers in {0, . . . , 100}

First (correct) attempt:

for (unsigned int i = 0; i < 100; ++i) {
if (i % 2 == 0)

continue;
std::cout << i << "\n";

}

216

Odd Numbers in {0, . . . , 100}

Less statements, less lines:

for (unsigned int i = 0; i < 100; ++i) {
if (i % 2 != 0)

std::cout << i << "\n";
}

217

Odd Numbers in {0, . . . , 100}

Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement

218

Odd Numbers in {0, . . . , 100}

Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement

218

Outputting Grades

1. Functional requirement:

6→ "Excellent ... You passed!"
5, 4→ "You passed!"

3→ "Close, but ... You failed!"
2, 1→ "You failed!"

otherwise→ "Error!"

2. Moreover: Avoid duplication of text and code

220

Outputting Grades

1. Functional requirement:

6→ "Excellent ... You passed!"
5, 4→ "You passed!"

3→ "Close, but ... You failed!"
2, 1→ "You failed!"

otherwise→ "Error!"

2. Moreover: Avoid duplication of text and code

220

Outputting Grades with if Statements

int grade;
...
if (grade == 6) std::cout << "Excellent ... ";
if (4 <= grade && grade <= 6) {

std::cout << "You passed!";
} else if (1 <= grade && grade < 4) {

if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";

} else std::cout << "Error!";

Disadvantage: Control flow – and thus program behaviour – not quite
obvious

221

Outputting Grades with if Statements

int grade;
...
if (grade == 6) std::cout << "Excellent ... ";
if (4 <= grade && grade <= 6) {

std::cout << "You passed!";
} else if (1 <= grade && grade < 4) {

if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";

} else std::cout << "Error!";

Disadvantage: Control flow – and thus program behaviour – not quite
obvious

221

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Advantage: Control flow clearly recognisable

222

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Jump to matching case

Advantage: Control flow clearly recognisable

222

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Fall-through

Advantage: Control flow clearly recognisable

222

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Fall-through

Exit switch

Advantage: Control flow clearly recognisable

222

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Fall-through

Advantage: Control flow clearly recognisable

222

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Fall-through

Exit switch

Advantage: Control flow clearly recognisable

222

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}
In all other cases

Advantage: Control flow clearly recognisable

222

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}
Advantage: Control flow clearly recognisable

222

The switch-Statement

switch (expression)
statement

expression: Expression, convertible to integral type
statement : arbitrary statemet, in which case and default-lables are
permitted, break has a special meaning.

Use of fall-through property is controversial and should be carefully
considered (corresponding compiler warning can be enabled)

223

The switch-Statement

switch (expression)
statement

expression: Expression, convertible to integral type
statement : arbitrary statemet, in which case and default-lables are
permitted, break has a special meaning.
Use of fall-through property is controversial and should be carefully
considered (corresponding compiler warning can be enabled)

223

7. Floating-point Numbers I

Types float and double; Mixed Expressions and Conversion; Holes in the
Value Range

226

“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82 degrees Fahrenheit.

227

“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82 degrees Fahrenheit.

richtig wäre 82.4

227

“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =? ";
float celsius; // Enable fractional numbers
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82.4 degrees Fahrenheit.

227

Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

228

Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

82.4 = 0000082.400

228

Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

82.4 = 0000082.400

Disadvantages
Value range is getting even smaller than for integers.

228

Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

0.0824 = 0000000.082

Disadvantages
Representability depends on the position of the decimal point.

third place truncated

228

Floating-point numbers

Observation: same number, di�erent representations with varying
“e�ciency”, e.g.

0.0824 = 0.00824 · 101 = 0.824 · 10−1

= 8.24 · 10−2 = 824 · 10−4

Number of significant digits remains constant

Floating-point number representation thus:

Fixed number of significant places (e.g. 10),
Plus position of the decimal point via exponent
Number is Mantissa× 10Exponent

229

Floating-point numbers

Observation: same number, di�erent representations with varying
“e�ciency”, e.g.

0.0824 = 0.00824 · 101 = 0.824 · 10−1

= 8.24 · 10−2 = 824 · 10−4

Number of significant digits remains constant

Floating-point number representation thus:

Fixed number of significant places (e.g. 10),
Plus position of the decimal point via exponent
Number is Mantissa× 10Exponent

229

Types float and double

are the fundamental C++ types for floating point numbers
approximate the field of real numbers (R, +,×) from mathematics

have a big value range, su�cient for many applications:

float: approx. 7 digits, exponent up to ±38
double: approx. 15 digits, exponent up to ±308

are fast on most computers (hardware support)

230

Types float and double

are the fundamental C++ types for floating point numbers
approximate the field of real numbers (R, +,×) from mathematics
have a big value range, su�cient for many applications:

float: approx. 7 digits, exponent up to ±38
double: approx. 15 digits, exponent up to ±308

are fast on most computers (hardware support)

230

Types float and double

are the fundamental C++ types for floating point numbers
approximate the field of real numbers (R, +,×) from mathematics
have a big value range, su�cient for many applications:

float: approx. 7 digits, exponent up to ±38
double: approx. 15 digits, exponent up to ±308

are fast on most computers (hardware support)

230

Arithmetic Operators

Analogous to int, but . . .
Division operator / models a “proper” division (real-valued, not integer)
No modulo operator, i.e. no %

231

Literals
are di�erent from integers

by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27
or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1

.23e-7f

integer part

fractional part

exponent

232

Literals
are di�erent from integers by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27
or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1.23

e-7f

integer part

fractional part

exponent

232

Literals
are di�erent from integers by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1

.23

e-7

f

integer part

fractional part

exponent

232

Literals
are di�erent from integers by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

and / or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1.23e-7

f

integer part

fractional part

exponent

232

Literals
are di�erent from integers by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

and / or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1.23e-7f

integer part

fractional part

exponent

232

Computing with float: Example

Approximating the Euler-Number

e =
∞∑

i=0

1
i! ≈ 2.71828 . . .

using the first 10 terms.

233

Computing with float: Euler Number

std::cout << "Approximating the Euler number... \n";

// values for i-th iteration, initialized for i = 0
float t = 1.0f; // term 1/i!
float e = 1.0f; // i-th approximation of e

// iteration 1, ..., n
for (unsigned int i = 1; i < 10; ++i) {

t /= i; // 1/(i-1)! -> 1/i!
e += t;
std::cout << "Value after term " << i << ": "

<< e << "\n";
}

234

Computing with float: Euler Number

Value after term 1: 2
Value after term 2: 2.5
Value after term 3: 2.66667
Value after term 4: 2.70833
Value after term 5: 2.71667
Value after term 6: 2.71806
Value after term 7: 2.71825
Value after term 8: 2.71828
Value after term 9: 2.71828

235

Mixed Expressions, Conversion

Floating point numbers are more general than integers.

In mixed expressions integers are converted to floating point numbers.

236

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point numbers.

236

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point numbers.

9 * celsius / 5 + 32

236

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point numbers.

9 * celsius / 5 + 32

Typ float, value 28

236

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point numbers.

9 * 28.0f / 5 + 32

236

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point numbers.

9 * 28.0f / 5 + 32

is converted to float : 9.0f

236

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point numbers.

252.0f / 5 + 32

is converted to float : 5.0f

236

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point numbers.

50.4f + 32

is converted to float : 32.0f

236

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point numbers.

82.4f

236

Holes in the value range

float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< n1 - n2 - d << "\n";

237

Holes in the value range

float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< n1 - n2 - d << "\n";

input 1.5

input 1.0

input 0.5

237

Holes in the value range

float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< n1 - n2 - d << "\n";

input 1.5

input 1.0

input 0.5

output 0
237

Holes in the value range

float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< n1 - n2 - d << "\n";

input 1.1

input 1.0

input 0.1

237

Holes in the value range

float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< n1 - n2 - d << "\n";

input 1.1

input 1.0

input 0.1

output 2.23517e-8
237

Holes in the value range

float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< n1 - n2 - d << "\n";

input 1.1

input 1.0

input 0.1

output 2.23517e-8 W
ha

ti
s

go
in

g
on

he
re

?

237

Value range

Integer Types:
Over- and Underflow relatively frequent, but ...
the value range is contiguous (no holes): Z is “discrete”.

Floating point types:
Overflow and Underflow seldom, but ...
there are holes: R is “continuous”.

238

Value range

Integer Types:
Over- and Underflow relatively frequent, but ...
the value range is contiguous (no holes): Z is “discrete”.

Floating point types:
Overflow and Underflow seldom, but ...
there are holes: R is “continuous”.

238

	Control Statements II
	Visibility
	Lifetime
	While and Do-While
	Jump Statements
	Control Flow

	Floating-point Numbers I
	Fixed-point Numbers
	Arithmetic Operators and Literals
	Mixed Expressions
	Value Range

