6. Control Statements Il

Visibility, Local Variables, While Statement, Do Statement, Jump Statements

174

Declaration in a block is not visible outside of the block.

int main()

{
L
3| 3 int i = 2;
=
o std::cout << i; // Error: wundeclared name
= return O;

}"BHckﬁchtung“

175

Potential Scope

in the block in function body
{ int main() {
int i = 2; int i = 2;
} return O;
}

in control statement

for (int i = 0; i < 10; ++i) {s +=1i; ... }

177

Potential Scope

in the block in function body
{ int main() {
o int i = 2; int i = 2;
= ()
S S
21} § return O;
}

in control statement

for (int i = 0; i < 10; ++i) {s +=i; ... }
scope

177

Scope

int main()
{
int i = 2;
for (int i = 0; i < 5; ++i)
// outputs 0,1,2,3,4
std::cout << i;
// outputs 2
std::cout << i;
return O;

178

Potential Scope

int main()
{
int i = 2;
for (int i = 0; i < 5; ++i)
// outputs 0,1,2,3,4
std::cout << ij;
// outputs 2
std::cout << ij;
return O;

178

Scope

int main()
{
int i = 2;
for (int i = 0; i < 5; ++i)
// outputs 0,1,2,3,4
std::cout << i;
// outputs 2
std::cout << i;
return O;

178

Local Variables

int main()
{
int i = 5;
for (int j = 0; j < 5; ++j) {
std::cout << ++i; // outputs
int k = 2;
std::cout << --k; // outputs

180

Local Variables

int main()
{
int i = 5;
for (int j = 0; j < 5; ++j) {
std::cout << ++i; // outputs 6, 7, 8, 9, 10
int k = 2;
std::cout << --k; // outputs 1, 1, 1, 1, 1

180

Local Variables

int main()

{
int i = 5;
for (int j = 0; j < 5; ++j) {
std::cout << ++i; // outputs
int k = 2;
std::cout << --k; // outputs
}
}

Local variables (declaration in a block) have automatic storage duration.

180

while Statement

while (condition)
statement

182

while Statement

while (condition)
statement

is equivalent to

for (; condition;)
statement

182

Example: The Collatz-Sequence

2 Q>

E 5 |f n;,—1 even
BN =) =
3n;—1+1 | it Nn;—1 odd

185

The Collatz-Sequence

Bnyg=n
Ni_)
St ,ifn,_, even
mn, =< 2 ' 0>
3ni—1+1 if n,_; odd

n=5: 5

185

The Collatz-Sequence

Bnyg=n
Ni_)
St ,ifn,_, even
mn, =< 2 ' i >
3ni—1+1 if n,_; odd

n=5:5, 16

185

The Collatz-Sequence

Bnyg=n
Ni_)
St ,ifn,_, even
mn, =< 2 ' i >
3ni—1+1 if n,_; odd

n=5:5, 16, 8

185

The Collatz-Sequence

Bnyg=n
Ni_)
St ,ifn,_, even
mn, =< 2 ' i >
3ni—1+1 if n,_; odd

n=5:5,16, 8, &

185

The Collatz-Sequence

Bnyg=n
Ni_)
St ,ifn,_, even
mn, =< 2 ' i >
3ni—1+1 if n,_; odd

n=5:5, 16, 8, 4, 2

185

The Collatz-Sequence

Bnyg=n
Ni_)
St ,ifn,_, even
mn, =< 2 ' i >
3ni—1+1 if n,_; odd

n=5:5,16, 8, 4, 2, 1

185

The Collatz-Sequence

Bnyg=n
n;— .
—=L , ifni_; even
mon=q 2 , i
3n;—1+1 | it Nn;—1 odd

n=5:5,16,8, 4,2, 1, 4

185

The Collatz-Sequence

Bnyg=n
n;— .
—=L , ifni_; even
mon=q 2 , i
3n;—1+1 | it Nn;—1 odd

n=5:5,16,8, 4,2, 1, 4 2

185

The Collatz-Sequence

Bnyg=n
n;— .
—=L , ifni_; even
mon=q 2 , i
3n;—1+1 | it Nn;—1 odd

n=5:5,16,8, 4,2, 1, 4 2,1

185

The Collatz-Sequence

Bnyg=n
n;— .
—=L , ifni_; even
mon=q 2 , i
3n;—1+1 | it Nn;—1 odd

n=5:5,16, 8, 4 2,1, 4,2, 1, ... (repetition at 1)

185

do Statement

do
statement
while (condition);

190

do Statement

do
statement
while (condition);

IS equivalent to

statement
while (condition)
statement

190

break and continue in practice

m Advantage: Can avoid nested if-elseblocks (or complex disjunctions)

201

break and continue in practice

m Advantage: Can avoid nested if-elseblocks (or complex disjunctions)

m But they result in additional jumps and thus potentially complicate the
control flow

201

break and continue in practice

m Advantage: Can avoid nested if-elseblocks (or complex disjunctions)

m But they result in additional jumps and thus potentially complicate the
control flow

m Their use is thus controversial, and should be carefully considered

201

Control Flow for

for (init statement condition ; expression)
statement

init-statement

condition
statement
expression

206

Control Flow for

for (init statement condition ; expression)
statement

init-statement

condition

statement
false

expression

206

Control Flow for

for (init statement condition ; expression)
statement

init-statement

condition

statement
false

expression

206

Control Flow break and continue in for

init-statement

condition

statement

expression

207

Control Flow break and continue in for

init-statement

condition

statement

break
expression

207

Control Flow break and continue in for

init-statement

condition

statement

expression

207

Control Flow break and continue in for

init-statement

condition

statement

expression

ontinue

207

Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to arbitrary
places in the program (goto).

212

Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to arbitrary
places in the program (goto)

goto

212

Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to arbitrary

places in the program (goto).
Languages based on them:
m Machine Language

goto

212

Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to arbitrary

places in the program (goto).

Languages based on them:

m Machine Language

m Assembler (“higher” machine language)

goto

212

Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to arbitrary

places in the program (goto).

Languages based on them:

m Machine Language

m Assembler (“higher” machine language)

m BASIC, the first programming language for the
general public (1964)

goto

212

BASIC and home computers...

..allowed a whole generation of young adults to program.

Home-Computer Commodore C64 (1982)

213

Spaghetti-Code with goto

using the programming language BASIC:

214

Spaghetti-Code with goto

Output of all prime numbers
using the programming language BASIC: true

214

The “right” Iteration Statement

Goals: readability, conciseness, in particular

215

The “right” Iteration Statement

Goals: readability, conciseness, in particular
m few statements

215

The “right” Iteration Statement

Goals: readability, conciseness, in particular
m few statements
m few lines of code

215

The “right” Iteration Statement

Goals: readability, conciseness, in particular
m few statements
m few lines of code
m simple control flow

215

The “right” Iteration Statement

Goals: readability, conciseness, in particular
m few statements
m few lines of code
m simple control flow
m simple expressions

215

The “right” Iteration Statement

Goals: readability, conciseness, in particular
m few statements
m few lines of code
m simple control flow
m simple expressions
Often not all goals can be achieved simultaneously.

215

Odd Numbersin {0,...,100}

First (correct) attempt:

for (unsigned int i = 0; i < 100; ++i) {
if (1 % 2 ==0)
continue;
std::cout << i << "\n";

216

Odd Numbersin {0,...,100}

Less statements, less lines:
for (unsigned int i = 0; i < 100; ++i) {

if (1 % 2 !=0)
std::cout << i << "\n";

217

Odd Numbersin {0,...,100}

Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

218

Odd Numbersin {0,...,100}

Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement

218

Outputting Grades

1. Functional requirement:

6 — "Excellent ... You passed!"
5,4 — "You passed!"
3 — "Close, but ... You failed!"
2,1 — "You failed!"
otherwise — "Error!"

220

Outputting Grades

1. Functional requirement:

6 — "Excellent ... You passed!"
5,4 — "You passed!"
3 — "Close, but ... You failed!"
2,1 — "You failed!"
otherwise — "Error!"

2. Moreover: Avoid duplication of text and code

220

Outputting Grades with if Statements

int grade;

if (grade == 6) std::cout << "Excellent ... ";

if (4 <= grade && grade <= 6) {
std::cout << "You passed!";

} else if (1 <= grade && grade < 4) {
if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";

} else std::cout << "Error!";

221

Outputting Grades with if Statements

int grade;

if (grade == 6) std::cout << "Excellent ... ";

if (4 <= grade && grade <= 6) {
std::cout << "You passed!";

} else if (1 <= grade && grade < 4) {
if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";

} else std::cout << "Error!";

Disadvantage: Control flow — and thus program behaviour — not quite
obvious

221

Outputting Grades with switch Statement

switch (grade) {

case 6: std::cout << "Excellent ... ";

case 5:

case 4: std::cout << "You passed!";
break;

case 3: std::cout << "Close, but ... ";

case 2:

case 1: std::cout << "You failed!";
break;

default: std::cout << "Error!";

222

Outputting Grades with switch Statement

switch (grade) { ¢ Jump to matching case
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";
break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";
break;

default: std::cout << "Error!";

222

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5: Fall-through
case 4: std::cout << "You passed!";
break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";
break;
default: std::cout << "Error!";

222

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";

case 5: Fall-through
case 4: std::cout << "You passed!";

break; 4 Exit switch
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;

default: std::cout << "Error!";

222

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";
break;
case 3: std::cout << "Close, but ... ";

case 2: Fall-through
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

222

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";

case 5:
case 4: std::cout << "You passed!";
break;
case 3: std::cout << "Close, but ... ";
case 2: Fall-through
case 1: std::cout << "You failed!";
break; (Exit switch

default: std::cout << "Error!";

222

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";
break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";
break;
default: std::cout << "Error!"; (— In all other cases

222

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";

case 5:

case 4: std::cout << "You passed!";
break;

case 3: std::cout << "Close, but ... ";

case 2:

case 1: std::cout << "You failed!";
break;

default: std::cout << "Error!";

}

Advantage: Control flow clearly recognisable

222

The switch-Statement

switch (expression)
statement

m expression: Expression, convertible to integral type
m statement : arbitrary statemet, in which case and default-lables are
permitted, break has a special meaning.

223

The switch-Statement

switch (expression)
statement

m expression: Expression, convertible to integral type

m statement : arbitrary statemet, in which case and default-lables are
permitted, break has a special meaning.

m Use of fall-through property is controversial and should be carefully
considered (corresponding compiler warning can be enabled)

223

7. Floating-point Numbers |

Types float and double; Mixed Expressions and Conversion; Holes in the
Value Range

226

“Proper” Calculation

// Input

std::cout << "Temperature in degrees Celsius =7 ";
int celsius;

std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "
<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82 degrees Fahrenheit.

227

“Proper” Calculation

// Input

std::cout << "Temperature in degrees Celsius =7 ";
int celsius;

std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "
<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82 degrees Fahrenheit.
AN
richtig ware 82.4

227

“Proper” Calculation

// Input

std::cout << "Temperature in degrees Celsius =7 ";
float celsius; // Enable fractional numbers
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "
<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82.4 degrees Fahrenheit.

227

Fixed-point numbers

m fixed number of integer places (e.g. 7)
m fixed number of decimal places (e.g. 3)

228

Fixed-point numbers

m fixed number of integer places (e.g. 7)
m fixed number of decimal places (e.g. 3)

82.4 = 0000082.400

228

Fixed-point numbers

m fixed number of integer places (e.g. 7)
m fixed number of decimal places (e.g. 3)

82.4 = 0000082.400

Disadvantages
m Value range is getting even smaller than for integers.

228

Fixed-point numbers

m fixed number of integer places (e.g. 7)
m fixed number of decimal places (e.g. 3)

0.0824 = 0000000.082¢+ third place truncated

Disadvantages
m Representability depends on the position of the decimal point.

228

Floating-point numbers

m Observation: same number, different representations with varying
“efficiency” eg.

0.0824 =0.00824-10' =0.824-107"
=8.24-1072 =824-107*

Number of significant digits remains constant

229

Floating-point numbers

m Observation: same number, different representations with varying
“efficiency” eg.

0.0824 =0.00824-10' =0.824-107"
=8.24-1072 =824-107*

Number of significant digits remains constant

m Floating-point number representation thus:

m Fixed number of significant places (e.g. 10),
m Plus position of the decimal point via exponent
m Numberis Mantissa x 10Exponent

229

Types float and double

m are the fundamental C++ types for floating point numbers
m approximate the field of real numbers (R, +, x) from mathematics

230

Types float and double

m are the fundamental C++ types for floating point numbers
m approximate the field of real numbers (R, +, x) from mathematics
m have a big value range, sufficient for many applications:

m float: approx. 7 digits, exponent up to +38
B double: approx. 15 digits, exponent up to 308

230

Types float and double

m are the fundamental C++ types for floating point numbers
m approximate the field of real numbers (R, +, x) from mathematics
m have a big value range, sufficient for many applications:

m float: approx. 7 digits, exponent up to +38
B double: approx. 15 digits, exponent up to 308

m are fast on most computers (hardware support)

230

Arithmetic Operators

Analogous to int, but ...
m Division operator / models a “proper” division (real-valued, not integer)
m No modulo operator, i.e. no %

231

are different from integers

1

~

integer part

232

are different from integers by providing

m decimal point 1.23

1.0 : type double, value 1 [_\j

integer part

fractional part

232

are different from integers by providing

m decimal point 1 e-7

1.0 : type double, value 1 [__j M

integer part exponent

B Or exponent.

1e3: type double, value 1000

232

are different from integers by providing

m decimal point

1.0 : type double, value 1

m and / or exponent.

1e3: type double, value 1000

1.23e-7 : type double, value 1.23 -

1.23e-/

—~ 1

integer part exponent

fractional part

1077

232

are different from integers by providing

m decimal point 123e-7f

1.0 : type double, value 1 [\j M

1.27f : type float, value 1.27 integer part exponent

m and / or exponent. fractional part

1e3: type double, value 1000
1.23e-7 : type double, value 1.23 - 1077

1.23e-7f : type float, value 1.23- 1077

232

Computing with float: Example

Approximating the Euler-Number

© 1
e=) A~ 271828, .

i=0 v

using the first 10 terms.

233

Computing with float: Euler Number

std::cout << "Approximating the Euler number... \n";

// values for i-th iteration, initialized for i = 0
float t = 1.0f; // term 1/i!
float e = 1.0f; // i-th approximation of e

// iteration 1, ..., n
for (unsigned int i = 1; i < 10; ++i) {
t /= i, // 1/@G-1) -> 1/i!
e += t;
std::cout << "Value after term " << i << ": "
<< e << n\nu;

234

Computing with float: Euler Number

Value after term 1: 2

Value after term 2: 2.5
Value after term 3: 2.66667
Value after term 4: 2.70833
Value after term 5: 2.71667
Value after term 6: 2.71806
Value after term 7: 2.71825
Value after term 8: 2.71828
Value after term 9: 2.71828

235

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.

236

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.
m In mixed expressions integers are converted to floating point numbers.

236

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.
m In mixed expressions integers are converted to floating point numbers.

9 * celsius / 5 + 32

236

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.
m In mixed expressions integers are converted to floating point numbers.

9 * celsius / 5 + 32

T

Typ float, value 28

236

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.
m In mixed expressions integers are converted to floating point numbers.

9 * 28.0f / 5 + 32

236

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.
m In mixed expressions integers are converted to floating point numbers.

9 * 28.0f / 5 + 32

T

is converted to float : 9.0f

236

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.
m In mixed expressions integers are converted to floating point numbers.

2562.0f / 5 + 32

T

is converted to float : 5.0f

236

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.
m In mixed expressions integers are converted to floating point numbers.

50.4f + 32

T

is converted to float : 32.0f

236

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.
m In mixed expressions integers are converted to floating point numbers.

82.4f

236

Holes in the value range

float ni;
std::cout << "First number =7 ";
std::cin >> ni;

float n2;
std::cout << "Second number =7 ";
std::cin >> n2;

float d;
std::cout << "Their difference =7 ";
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< nl - n2 - d << "\n";

237

Holes in the value range

float ni;
std::cout << "First number =7 "; input 1.5
std::cin >> ni;

float n2;
std::cout << "Second number =7 "; input 1.0
std::cin >> n2;

float d;
std::cout << "Their difference =7 "; input 0.5
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< nl - n2 - d << "\n";

237

Holes in the value range

float ni;
std::cout << "First number =7 "; input 1.5
std::cin >> ni;

float n2;
std::cout << "Second number =7 "; input 1.0
std::cin >> n2;

float d;
std::cout << "Their difference =7 "; input 0.5
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< n1 - n2 - d << "\n"; output 0

237

Holes in the value range

float ni;
std::cout << "First number =7 "; input 1.1
std::cin >> ni;

float n2;
std::cout << "Second number =7 "; input 1.0
std::cin >> n2;

float d;
std::cout << "Their difference =7 "; input 0]
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< nl - n2 - d << "\n";

237

Holes in the value range

float ni;
std::cout << "First number =7 "; input 1.1
std::cin >> ni;

float n2;
std::cout << "Second number =7 "; input 1.0
std::cin >> n2;

float d;
std::cout << "Their difference =7 "; input 0]
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< nl - n2 - d << "\n"; output 2.23517e-8

237

Holes in the value range

float ni;

std::cout << "First number =7 "; input 1.1
std::cin >> ni;

float n2;

std::cout << "Second number =7 "; input 1.0

std::cin >> n2;

float d;

std::cout << "Their difference =7 "; input 0]

std::cin >> d;

std::cout << "Computed difference - input difference = "
<< nl - n2 - d << "\n"; output 2.23517e-8

What is going on here?

237

Integer Types:
m Over- and Underflow relatively frequent, but ...
m the value range is contiguous (no holes): Z is “discrete”.

238

Integer Types:

m Over- and Underflow relatively frequent, but ...

m the value range is contiguous (no holes): Z is “discrete”.
Floating point types:

m Overflow and Underflow seldom, but ...

m there are holes: R is “continuous”.

238

	Control Statements II
	Visibility
	Lifetime
	While and Do-While
	Jump Statements
	Control Flow

	Floating-point Numbers I
	Fixed-point Numbers
	Arithmetic Operators and Literals
	Mixed Expressions
	Value Range

