

Evaluation of Arithmetic Expressions, Associativity and Precedence, Arithmetic Operators, Domain of Types **int**, **unsigned int**

Example: power8.cpp

int a; // Input
int r; // Result

std::cout << "Compute a^8 for a = ?"; std::cin >> a;

```
r = a * a; // r = a<sup>2</sup>
r = r * r; // r = a<sup>4</sup>
```

std::cout << "a^8 = " << r*r << '\n';</pre>

Terminology: L-Values and R-Values

L-Wert ("Left of the assignment operator")

- Expression identifying a **memory location**
- For example a variable (we'll see other L-values later in the course)
- **Value** is the content at the memory location according to the type of the expression.
- L-Value can change its value (e.g. via assignment)

Terminology: L-Values and R-Values

R-Wert ("**R**ight of the assignment operator")

- Expression that is no L-value
- Example: integer literal **0**
- Any L-Value can be used as R-Value (but not the other way round)...
- ... by using the value of the L-value
 (e.g. the L-value a could have the value 2, which is then used as an R-value)
- An R-Value *cannot change* its value

L-Values and R-Values

Celsius to Fahrenheit

}

// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.
#include <iostream>

```
int main() {
    // Input
    std::cout << "Temperature in degrees Celsius =? ";
    int celsius;
    std::cin >> celsius;
```

9 * celsius / 5 + 32

9 * celsius / 5 + 32

Arithmetic expression,

contains three literals, a variable, three operator symbols How to put the expression in parentheses?

Precedence

Multiplication/Division before Addition/Subtraction

9 * celsius / 5 + 32

bedeutet

```
(9 * celsius / 5) + 32
```

Rule 1: precedence

Multiplicative operators (*, /, %) have a higher precedence ("bind more strongly") than additive operators (+, –)

Associativity

From left to right

9 * celsius / 5 + 32

bedeutet

```
((9 * celsius) / 5) + 32
```

Rule 2: Associativity

Arithmetic operators (*, /, %, +, -) are left associative: operators of same precedence evaluate from left to right

Arity

Sign
-3 - 4
means
(-3) - 4
Rule 3: Arity
Unary operators +, – first, then binary operators +, –.

Parentheses

Any expression can be put in parentheses by means of

- associativities
- precedences
- arities (number of operands)

of the operands in an unambiguous way (Details in the lecture notes).

Expression Trees

Parentheses yield the expression tree

Evaluation Order

"From top to bottom" in the expression tree

Evaluation Order

Order is not determined uniquely:

Expression Trees – Notation

Common notation: root on top

Evaluation Order - more formally

Valid order: any node is evaluated after its children

C++: the valid order to be used is not defined.

"Good expression": any valid evaluation order leads to the same result.
 Example for a "bad expression": a*(a=2)

Evaluation order

Guideline

Avoid modifying variables that are used in the same expression more than once.

Arithmetic operations

	Symbol	Arity	Precedence	Associativity
Unary +	+	1	16	right
Negation	-	1	16	right
Multiplication	*	2	14	left
Division	/	2	14	left
Modulo	%	2	14	links
Addition	+	2	13	left
Subtraction	-	2	13	left

All operators: [R-value \times] R-value \rightarrow R-value

Interlude: Assignment expression - in more detail

- Already known: a = b means Assignment of b (R-value) to a (L-value). Returns: L-value.
- What does a = b = c mean?

Answer: assignment is right-associative

$$a = b = c \iff a = (b = c)$$

Multiple assignment: $a = b = 0 \implies b=0; a=0$

Division

Operator / implements integer division

5 / 2 has value 2

- In fahrenheit.cpp
 - 9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

■ Mathematically equivalent... but not in C++!

```
9 / 5 * celsius + 32
```

15 degrees Celsius are 47 degrees Fahrenheit

Loss of Precision

Guideline

- Watch out for potential loss of precision
- Postpone operations with potential loss of precision to avoid "error escalation"

Division and Modulo

Modulo-operator computes the rest of the integer division

5 / 2 has value 2, **5 % 2** has value 1.

It holds that

(-a)/b == -(a/b)

It also holds:

(a / b) * b + a % b has the value of a.

From the above one can conclude the results of division and modulo with negative numbers

Increment and decrement

Increment / Decrement a number by one is a frequent operation
works like this for an L-value:

expr = expr + 1.

Disadvantages

- relatively long
- **expr** is evaluated twice
 - Later: L-valued expressions whose evaluation is "expensive"
 - **expr** could have an effect (but should not, cf. guideline)

In-/Decrement Operators

Post-Increment

expr++

Value of **expr** is increased by one, the **old** value of **expr** is returned (as R-value) **Pre-increment**

++expr

Value of expr is increased by one, the **new** value of expr is returned (as L-value) **Post-Dekrement**

expr--

Value of **expr** is decreased by one, the **old** value of **expr** is returned (as R-value) **Prä-Dekrement**

--expr

Value of expr is increased by one, the **new** value of expr is returned (as L-value)

In-/decrement Operators

	use	arity	prec	assoz	L-/R-value
Post-increment	expr++	1	17	left	L-value \rightarrow R-value
Pre-increment	++expr	1	16	right	L-value \rightarrow L-value
Post-decrement	expr	1	17	left	L-value \rightarrow R-value
Pre-decrement	expr	1	16	right	L-value \rightarrow L-value

In-/Decrement Operators

```
int a = 7;
std::cout << ++a << "\n"; // 8
std::cout << a++ << "\n"; // 8
std::cout << a << "\n"; // 9</pre>
```

In-/Decrement Operators

Is the expression

++expr; ← we favour this
equivalent to
expr++;?

Yes, but

- Pre-increment can be more efficient (old value does not need to be saved)
- Post In-/Decrement are the only left-associative unary operators (not very intuitive)

C++ VS. ++C

Strictly speaking our language should be named ++c because

- it is an advancement of the language C
- while C++ returns the old C.

Arithmetic Assignments

$$\begin{array}{c}
\mathbf{a} += \mathbf{b} \\
\Leftrightarrow \\
\mathbf{a} = \mathbf{a} +
\end{array}$$

b

analogously for -, *, / and %

Arithmetic Assignments

	Gebrauch	Bedeutung
+=	expr1 += expr2	expr1 = expr1 + expr2
-=	expr1 -= expr2	expr1 = expr1 - expr2
*=	expr1 *= expr2	<pre>expr1 = expr1 * expr2</pre>
/=	expr1 /= expr2	<pre>expr1 = expr1 / expr2</pre>
%=	expr1 %= expr2	expr1 = expr1 % expr2

Arithmetic expressions evaluate expr1 only once. Assignments have precedence 4 and are right-associative.

Binary Number Representations

Binary representation (Bits from $\{0,1\}$)

 $b_n b_{n-1} \dots b_1 b_0$

corresponds to the number $b_n \cdot 2^n + \cdots + b_1 \cdot 2 + b_0$

Computing Tricks

■ Estimate the orders of magnitude of powers of two.²:

 $\begin{aligned} 2^{10} &= 1024 = 1 \text{Ki} \approx 10^{3}, \\ 2^{20} &= 1 \text{Mi} \approx 10^{6}, \\ 2^{30} &= 1 \text{Gi} \approx 10^{9}, \\ 2^{52} &= 4 (1024)^{3} = 4 \text{Gi} \\ 2^{54} &= 16 \text{Ei} \approx 16 \cdot 10^{18}. \end{aligned}$

²Decimal vs. binary units: MB - Megabyte vs. MiB - Megabibyte (etc.) kilo (K, Ki) - mega (M, Mi) - giga (G, Gi) - tera(T, Ti) - peta(P, Pi) - exa (E, Ei)

Hexadecimal Numbers

Numbers with base 16

 $h_n h_{n-1} \dots h_1 h_0$

corresponds to the number

 $h_n \cdot 16^n + \dots + h_1 \cdot 16 + h_0.$

notation in C++: prefix $\mathbf{0x}$

0xff corresponds to **255**.

lex Nibbles				
hex	bin	dec		
0	0000	0		
1	0001	1		
2	0010	2		
3	0011	3		
4	0100	4		
5	0101	5		
6	0110	6		
7	0111	7		
8	1000	8		
9	1001	9		
а	1010	10		
b	1011	11		
С	1100	12		
d	1101	13		
е	1110	14		
f	1111	15		

Why Hexadecimal Numbers?

- A Hex-Nibble requires exactly 4 bits. Numbers 1, 2, 4 and 8 represent bits 0, 1, 2 and 3.
- "compact representation of binary numbers"

Why Hexadecimal Numbers?

"For programmers and technicians" (user manual of the chess computers *Mephisto II*, 1981)

Beispiele:

a) Anzeige 8200

MEPHISTO ist mit genau 2 Bauern-Einheiten im Vorteil.

b) Anzeige 7F00

MEPHISTO ist mit genau 1 Bauern-Einheit im Nachteil.

Die Anzeige erfolgt in hexadezimaler Schreibweise. Im Gegensatz zum gewohnten Dezimalsystem gehen die Ziffern an jeder Stelle von 0 bis F (A = 10, B = 11, ..., F = 15).

Für mathematisch Vorgebildete nachstehend die Umrechnungsformel in das dezimale Punktsystem:

 $ABCD = (Ax16^3) + (Bx16^2) + (Cx16^1) + (Dx16^0)$

Für A gilt: 7 = -1; 8 = 0; 9 = +1 usw.

Eine Bauemeinheit (B) wird ausgedrückt in 16² – 256 Punkten. Dieses auf den ersten Blick vielleicht etwas komplizierte System dient der Service-Freundlichkeit von MEPHISTO, sowie insbesondere der Entwicklungsarbeit an zukünftigen, noch stärkeren Programmen, ist also mehr für unsere Programmierer und Techniker vorgesehen.

Beispiele:

8200

7F 0 0

c) Anzeige 805E (E=14) Umrechnung nach folgendem Verfahren: (14x16^o) + (5x16¹) + (0x16²) + (0x16³) = 14+80+0+0 = = +94 Punkte.

d) Anzeige 7F80
 (7--1; F=15) Umrechnung wie folgt:
 (0x16⁰) + (8x16¹) + (15x16²) - (1x16³) = 0+128+3840-4096 =

Example: Hex-Colors

#00FF00 rgb

Why Hexadecimal Numbers?

The NZZ could have saved a lot of space ...

	01001110 01011010 01011010	
Freitag, 8. Juni 2012 · Nr. 131 · 233. Jhg.	01001010 01010110 01001101	www.nzz.ch · Fr. 4.00 · €3.

01000010 01100101 01110010 01101001

01100011 01101000 01110100 01100101

00100000 11111100 01100010 01100101 01110010 00100000 01101110 01100101 01110101 011-00101 01110011 00100000 010. 01101 01100001 01110011

0111001101100001

001 01110010 01101001 01100101 01101110 00001101 00001010 00001101 00001010 01010101 01101110 01101111 00101101 010. 00010 01100101 01101111 01100010 01300001 01100011 01101000 01110100 01100101 011. 00100000 01010011 01100011 01101000 011-00001 01110101 01110000 01101100 01100 00101101000111101000100000

01100110 01100101

01110030 01101110 01300111 01100101 011-01000 01100001 01101100 01110100 0110 00001010 01001100 01100001 01110101 011-

00100000 01110110

01100101 01110010 01100001 01101110 0111 0100 01110111 01101111 01110010 0111010 C1110 CCCC1101 00001010 00001101 000 11 00100000 01000010 01101001 0111001

Domain of Type int

// Output the smallest and the largest value of type int.
#include <iostream>
#include <limits>

Domain of the Type int

Representation with B bits. Domain comprises the 2^B integers:

$$\{-2^{B-1}, -2^{B-1}+1, \dots, -1, 0, 1, \dots, 2^{B-1}-2, 2^{B-1}-1\}$$

- On most platforms B = 32
- For the type int C++ guarantees $B \ge 16$
- Background: Section 2.2.8 (Binary Representation) in the lecture notes.

Over- and Underflow

- Arithmetic operations (+,-,*) can lead to numbers outside the valid domain.
- Results can be incorrect!

power8.cpp: $15^8 = -1732076671$

There is no error message!

The Type unsigned int

Domain

$$\{0, 1, \dots, 2^B - 1\}$$

All arithmetic operations exist also for unsigned int.
Literals: 1u, 17u...

Mixed Expressions

 Operators can have operands of different type (e.g. int and unsigned int).

17 + 17u

- Such mixed expressions are of the "more general" type **unsigned** int.
- int-operands are **converted** to **unsigned** int.

Conversion

Due to a clever representation (two's complement), no addition is internally needed

Conversion "reversed"

The declaration

int a = 3u;

converts **3u** to **int**.

The value is preserved because it is in the domain of **int**; otherwise the result depends on the implementation.

Signed Numbers

Note: the remaining slides on signed numbers, computing with binary numbers, and the two's complement, are *not* relevant for the exam

Signed Number Representation

 (Hopefully) clear by now: binary number representation without sign, e.g.

$$[b_{31}b_{30}\dots b_0]_u \quad \stackrel{\frown}{=} \quad b_{31}\cdot 2^{31} + b_{30}\cdot 2^{30} + \dots + b_0$$

Looking for a consistent solution

The representation with sign should coincide with the unsigned solution as much as possible. Positive numbers should arithmetically be treated equal in both systems.

Computing with Binary Numbers (4 digits)

Simple Addition

Computing with Binary Numbers (4 digits)

Addition with Overflow

7	0111	
+10	+1010	
17	$(1)0001_2$	$= 1_{10} (= 17 \mod 16)$
Subtraction with underflow		
5	0101	
+(-10)	1010	
-5	$(\dots 11)1011_2$	$= 11_{10} (= -5 \mod 16)$

Why this works

Modulo arithmetics: Compute on a circle³

³The arithmetics also work with decimal numbers (and for multiplication).

Negative Numbers (3 Digits)

	a	-a	
0	000	000	0
1	001	111	-1
2	010	110	-2
3	011	101	-3
4	100	100	-4
	101		
6	110		
7	111		

The most significant bit decides about the sign *and* it contributes to the value.

Two's Complement

Negation by bitwise negation and addition of 1

-2 = -[0010] = [1101] + [0001] = [1110]

 Arithmetics of addition and subtraction identical to unsigned arithmetics

$$3 - 2 = 3 + (-2) = [0011] + [1110] = [0001]$$

■ Intuitive "wrap-around" conversion of negative numbers.

 $-n
ightarrow 2^B - n$

Domain: $-2^{B-1} \dots 2^{B-1} - 1$