
2. Integers

Evaluation of Arithmetic Expressions, Associativity and Precedence,
Arithmetic Operators, Domain of Types int, unsigned int

78



Example: power8.cpp

int a; // Input
int r; // Result

std::cout << "Compute a^8 for a = ?";
std::cin >> a;

r = a * a; // r = a^2
r = r * r; // r = a^4

std::cout << "a^8 = " << r*r << ’\n’;

79



Terminology: L-Values and R-Values

L-Wert (“Left of the assignment operator”)
Expression identifying a memory location
For example a variable
(we’ll see other L-values later in the course)
Value is the content at the memory location according to the type of the
expression.
L-Value can change its value (e.g. via assignment)

80



Terminology: L-Values and R-Values

R-Wert (“Right of the assignment operator”)
Expression that is no L-value
Example: integer literal 0
Any L-Value can be used as R-Value (but not the other way round) . . .
. . . by using the value of the L-value
(e.g. the L-value a could have the value 2, which is then used as an
R-value)
An R-Value cannot change its value

81



L-Values and R-Values

std::cout << "Compute a^8 for a = ? ";
int a;
std::cin >> a;

int r = a * a; // r = a^2
r = r * r; // r = a^4

std::cout << a<< "^8 = " << r * r << ".\ n";

return 0;

L-value (expression + address)
L-value (expression + address)

R-Value (expression that is not an L-value)

R-Value

R-Value

82



Celsius to Fahrenheit
// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.
#include <iostream>

int main() {
// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
return 0;

}

15 degrees Celsius are 59 degrees Fahrenheit

83



9 * celsius / 5 + 32

9 * celsius / 5 + 32

Arithmetic expression,
contains three literals, a variable, three operator symbols

How to put the expression in parentheses?

84



Precedence

Multiplication/Division before Addition/Subtraction

9 * celsius / 5 + 32

bedeutet

(9 * celsius / 5) + 32

Rule 1: precedence

Multiplicative operators (*, /, %) have a higher precedence ("bind more
strongly") than additive operators (+, -)

85



Associativity

From left to right

9 * celsius / 5 + 32

bedeutet

((9 * celsius) / 5) + 32

Rule 2: Associativity

Arithmetic operators (*, /, %, +, -) are left associative: operators of same
precedence evaluate from left to right

86



Arity

Sign

-3 - 4

means

(-3) - 4

Rule 3: Arity

Unary operators +, - �rst, then binary operators +, -.

87



Parentheses

Any expression can be put in parentheses by means of
associativities
precedences
arities (number of operands)

of the operands in an unambiguous way (Details in the lecture notes).

88



Expression Trees

Parentheses yield the expression tree

(((9 * celsius) / 5) + 32)

+

/

*

9 celsius 5 32

89



Evaluation Order

"From top to bottom" in the expression tree

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

90



Evaluation Order

Order is not determined uniquely:

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

91



Expression Trees – Notation

Common notation: root on top

9 * celsius / 5 + 32

+

/

*

9 celsius

5

32

92



Evaluation Order – more formally

Valid order: any node is evaluated after its children

E

K1 K2

C++: the valid order to be
used is not de�ned.

"Good expression": any valid evaluation order leads to the same result.
Example for a “bad expression”: a*(a=2)

93



Evaluation order

Guideline

Avoid modifying variables that are used in the same expression more
than once.

94



Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right

Negation - 1 16 right

Multiplication * 2 14 left

Division / 2 14 left

Modulo % 2 14 links

Addition + 2 13 left

Subtraction - 2 13 left

All operators: [R-value ×] R-value→ R-value
95



Interlude: Assignment expression – in more detail

Already known: a = b means Assignment of b (R-value) to a (L-value).
Returns: L-value.
What does a = b = c mean?
Answer: assignment is right-associative

a = b = c ⇐⇒ a = (b = c)

Multiple assignment: a = b = 0 =⇒ b=0; a=0

96



Division
Operator / implements integer division

5 / 2 has value 2

In fahrenheit.cpp

9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . . but not in C++!

9 / 5 * celsius + 32

15 degrees Celsius are 47 degrees Fahrenheit

97



Loss of Precision

Guideline
Watch out for potential loss of precision
Postpone operations with potential loss of precision to avoid “error
escalation”

98



Division and Modulo

Modulo-operator computes the rest of the integer division

5 / 2 has value 2, 5 % 2 has value 1.
It holds that

(-a)/b == -(a/b)

It also holds:
(a / b) * b + a % b has the value of a.

From the above one can conclude the results of division and modulo
with negative numbers

99



Increment and decrement

Increment / Decrement a number by one is a frequent operation
works like this for an L-value:

expr = expr + 1.

Disadvantages
relatively long
expr is evaluated twice

Later: L-valued expressions whose evaluation is “expensive”
expr could have an e�ect (but should not, cf. guideline)

100



In-/Decrement Operators
Post-Increment

expr++

Value of expr is increased by one, the old value of expr is returned (as R-value)
Pre-increment

++expr

Value of expr is increased by one, the new value of expr is returned (as L-value)
Post-Dekrement

expr--

Value of expr is decreased by one, the old value of expr is returned (as R-value)
Prä-Dekrement

--expr

Value of expr is increased by one, the new value of expr is returned (as L-value)

101



In-/decrement Operators

use arity prec assoz L-/R-value

Post-increment expr++ 1 17 left L-value→ R-value

Pre-increment ++expr 1 16 right L-value→ L-value

Post-decrement expr-- 1 17 left L-value→ R-value

Pre-decrement --expr 1 16 right L-value→ L-value

102



In-/Decrement Operators

int a = 7;
std::cout << ++a << "\n"; // 8
std::cout << a++ << "\n"; // 8
std::cout << a << "\n"; // 9

103



In-/Decrement Operators

Is the expression
++expr;← we favour this

equivalent to
expr++;?

Yes, but
Pre-increment can be more e�cient (old value does not need to be
saved)
Post In-/Decrement are the only left-associative unary operators (not
very intuitive)

104



C++ vs. ++C

Strictly speaking our language should be named ++C because
it is an advancement of the language C
while C++ returns the old C.

105



Arithmetic Assignments

a += b
⇔

a = a + b

analogously for -, *, / and %

106



Arithmetic Assignments

Gebrauch Bedeutung

+= expr1 += expr2 expr1 = expr1 + expr2

-= expr1 -= expr2 expr1 = expr1 - expr2

*= expr1 *= expr2 expr1 = expr1 * expr2

/= expr1 /= expr2 expr1 = expr1 / expr2

%= expr1 %= expr2 expr1 = expr1 % expr2

Arithmetic expressions evaluate expr1 only once.
Assignments have precedence 4 and are right-associative.

107



Binary Number Representations

Binary representation (Bits from {0, 1})

bnbn−1 . . . b1b0

corresponds to the number bn · 2n + · · ·+ b1 · 2 + b0

101011 corresponds to 43.

Most Signi�cant Bit (MSB)
Least Signi�cant Bit (LSB)

108



Computing Tricks

Estimate the orders of magnitude of powers of two.2:

210 = 1024 = 1Ki ≈ 103.
220 = 1Mi ≈ 106,
230 = 1Gi ≈ 109,
232 = 4 · (1024)3 = 4Gi.
264 = 16Ei ≈ 16 · 1018.

2Decimal vs. binary units: MB - Megabyte vs. MiB - Megabibyte (etc.)
kilo (K, Ki) – mega (M, Mi) – giga (G, Gi) – tera(T, Ti) – peta(P, Pi) – exa (E, Ei)

109



Hexadecimal Numbers

Numbers with base 16

hnhn−1 . . . h1h0

corresponds to the number

hn · 16n + · · ·+ h1 · 16 + h0.

notation in C++: pre�x 0x

0xff corresponds to 255.

Hex Nibbles

hex bin dec
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
a 1010 10
b 1011 11
c 1100 12
d 1101 13
e 1110 14
f 1111 15

110



Why Hexadecimal Numbers?

A Hex-Nibble requires exactly 4 bits. Numbers 1, 2, 4 and 8 represent bits
0, 1, 2 and 3.
“compact representation of binary numbers”

111



Why Hexadecimal Numbers?
“For programmers and technicians” (user manual of the chess computers
Mephisto II, 1981)

ht
tp

:/
/w

ww
.z

an
ch

et
ta

.n
et

/d
ef

au
lt

.a
sp

x?
Ca

te
go

ri
e=

EC
HI

QU
IE

RS
&P

ag
e=

do
cu

me
nt

at
io

ns

112

http://www.zanchetta.net/default.aspx?Categorie=ECHIQUIERS&Page=documentations


Example: Hex-Colors

#00FF00
r g b

113



Why Hexadecimal Numbers?
The NZZ could have saved a lot of space ...

114



Domain of Type int

// Output the smallest and the largest value of type int.
#include <iostream>
#include <limits>

int main() {
std::cout << "Minimum int value is "

<< std::numeric_limits<int>::min() << ".\n"
<< "Maximum int value is "
<< std::numeric_limits<int>::max() << ".\n";

return 0;
} Minimum int value is -2147483648.

Maximum int value is 2147483647.
Where do these numbers come from?

115



Domain of the Type int

Representation with B bits. Domain comprises the 2B integers:

{−2B−1,−2B−1 + 1, . . . ,−1, 0, 1, . . . , 2B−1 − 2, 2B−1 − 1}

On most platforms B = 32
For the type int C++ guarantees B ≥ 16
Background: Section 2.2.8 (Binary Representation) in the lecture notes.

116



Over- and Under�ow

Arithmetic operations (+,-,*) can lead to numbers outside the valid
domain.
Results can be incorrect!

power8.cpp: 158 = −1732076671

There is no error message!

117



The Type unsigned int

Domain
{0, 1, . . . , 2B − 1}

All arithmetic operations exist also for unsigned int.
Literals: 1u, 17u . . .

118



Mixed Expressions

Operators can have operands of di�erent type (e.g. int and
unsigned int).

17 + 17u

Such mixed expressions are of the “more general” type unsigned int.
int-operands are converted to unsigned int.

119



Conversion

int Value Sign unsigned int Value

x ≥ 0 x

x < 0 x + 2B

Due to a clever representation (two’s complement), no addition is
internally needed

120



Conversion “reversed”

The declaration
int a = 3u;

converts 3u to int.
The value is preserved because it is in the domain of int; otherwise the
result depends on the implementation.

121



Signed Numbers

Note: the remaining slides on signed numbers, computing with binary
numbers, and the two’s complement, are not relevant for the exam

122



Signed Number Representation

(Hopefully) clear by now: binary number representation without sign,
e.g.

[b31b30 . . . b0]u =̂ b31 · 231 + b30 · 230 + · · ·+ b0

Looking for a consistent solution

The representation with sign should coincide with the unsigned solution as
much as possible. Positive numbers should arithmetically be treated equal
in both systems.

123



Computing with Binary Numbers (4 digits)
Simple Addition

2 0010
+3 +0011

5 01012 = 510

Simple Subtraction

5 0101
−3 −0011

2 00102 = 210

124



Computing with Binary Numbers (4 digits)
Addition with Over�ow

7 0111
+10 +1010

17 (1)00012 = 110(= 17 mod 16)

Subtraction with under�ow

5 0101
+(−10) 1010

−5 (. . . 11)10112 = 1110(= −5 mod 16)

125



Why this works

Modulo arithmetics: Compute on a circle3

11 ≡ 23 ≡ −1 ≡
. . . mod 12

+
4 ≡ 16 ≡ . . .

mod 12

=
3 ≡ 15 ≡ . . .

mod 12

3The arithmetics also work with decimal numbers (and for multiplication).
126



Negative Numbers (3 Digits)

a −a

0 000 000 0
1 001 111 -1
2 010 110 -2
3 011 101 -3
4 100 100 -4
5 101
6 110
7 111

The most signi�cant bit decides about the sign and it contributes to the
value.

127



Two’s Complement

Negation by bitwise negation and addition of 1

−2 = −[0010] = [1101] + [0001] = [1110]

Arithmetics of addition and subtraction identical to unsigned
arithmetics

3− 2 = 3 + (−2) = [0011] + [1110] = [0001]

Intuitive “wrap-around” conversion of negative numbers.

−n→ 2B − n

Domain: −2B−1 . . . 2B−1 − 1

128


	Integers
	Präzedenz und Assoziativität
	Expression Trees and Evaluation Order
	Arithmetic operators
	Number Representations
	Domains and Conversion
	Signed Numbers


