
2. Integers

Evaluation of Arithmetic Expressions, Associativity and Precedence,
Arithmetic Operators, Domain of Types int, unsigned int
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Example: power8.cpp

int a; // Input
int r; // Result

std::cout << "Compute a^8 for a = ?";
std::cin >> a;

r = a * a; // r = a^2
r = r * r; // r = a^4

std::cout << "a^8 = " << r*r << ’\n’;
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Terminology: L-Values and R-Values

L-Wert (“Left of the assignment operator”)
Expression identifying a memory location
For example a variable
(we’ll see other L-values later in the course)
Value is the content at the memory location according to the type of the
expression.
L-Value can change its value (e.g. via assignment)
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Terminology: L-Values and R-Values

R-Wert (“Right of the assignment operator”)
Expression that is no L-value
Example: integer literal 0
Any L-Value can be used as R-Value (but not the other way round) . . .
. . . by using the value of the L-value
(e.g. the L-value a could have the value 2, which is then used as an
R-value)
An R-Value cannot change its value
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L-Values and R-Values

std::cout << "Compute a^8 for a = ? ";
int a;
std::cin >> a;

int r = a * a; // r = a^2
r = r * r; // r = a^4

std::cout << a<< "^8 = " << r * r << ".\ n";

return 0;

L-value (expression + address)
L-value (expression + address)

R-Value (expression that is not an L-value)

R-Value

R-Value
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Celsius to Fahrenheit
// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.
#include <iostream>

int main() {
// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
return 0;

}

15 degrees Celsius are 59 degrees Fahrenheit
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9 * celsius / 5 + 32

9 * celsius / 5 + 32

Arithmetic expression,
contains three literals, a variable, three operator symbols

How to put the expression in parentheses?
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Precedence

Multiplication/Division before Addition/Subtraction

9 * celsius / 5 + 32

bedeutet

(9 * celsius / 5) + 32

Rule 1: precedence

Multiplicative operators (*, /, %) have a higher precedence ("bind more
strongly") than additive operators (+, -)
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Associativity

From left to right

9 * celsius / 5 + 32

bedeutet

((9 * celsius) / 5) + 32

Rule 2: Associativity

Arithmetic operators (*, /, %, +, -) are left associative: operators of same
precedence evaluate from left to right
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Arity

Sign

-3 - 4

means

(-3) - 4

Rule 3: Arity

Unary operators +, - �rst, then binary operators +, -.
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Parentheses

Any expression can be put in parentheses by means of
associativities
precedences
arities (number of operands)

of the operands in an unambiguous way (Details in the lecture notes).
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Expression Trees

Parentheses yield the expression tree

(((9 * celsius) / 5) + 32)

+

/

*

9 celsius 5 32
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Evaluation Order

"From top to bottom" in the expression tree

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32
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Evaluation Order

Order is not determined uniquely:

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32
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Expression Trees – Notation

Common notation: root on top

9 * celsius / 5 + 32

+

/

*

9 celsius

5

32
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Evaluation Order – more formally

Valid order: any node is evaluated after its children

E

K1 K2

C++: the valid order to be
used is not de�ned.

"Good expression": any valid evaluation order leads to the same result.
Example for a “bad expression”: a*(a=2)
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Evaluation order

Guideline

Avoid modifying variables that are used in the same expression more
than once.
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Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right

Negation - 1 16 right

Multiplication * 2 14 left

Division / 2 14 left

Modulo % 2 14 links

Addition + 2 13 left

Subtraction - 2 13 left

All operators: [R-value ×] R-value→ R-value
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Interlude: Assignment expression – in more detail

Already known: a = b means Assignment of b (R-value) to a (L-value).
Returns: L-value.
What does a = b = c mean?
Answer: assignment is right-associative

a = b = c ⇐⇒ a = (b = c)

Multiple assignment: a = b = 0 =⇒ b=0; a=0
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Division
Operator / implements integer division

5 / 2 has value 2

In fahrenheit.cpp

9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . . but not in C++!

9 / 5 * celsius + 32

15 degrees Celsius are 47 degrees Fahrenheit
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Loss of Precision

Guideline
Watch out for potential loss of precision
Postpone operations with potential loss of precision to avoid “error
escalation”
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Division and Modulo

Modulo-operator computes the rest of the integer division

5 / 2 has value 2, 5 % 2 has value 1.
It holds that

(-a)/b == -(a/b)

It also holds:
(a / b) * b + a % b has the value of a.

From the above one can conclude the results of division and modulo
with negative numbers
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Increment and decrement

Increment / Decrement a number by one is a frequent operation
works like this for an L-value:

expr = expr + 1.

Disadvantages
relatively long
expr is evaluated twice

Later: L-valued expressions whose evaluation is “expensive”
expr could have an e�ect (but should not, cf. guideline)
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In-/Decrement Operators
Post-Increment

expr++

Value of expr is increased by one, the old value of expr is returned (as R-value)
Pre-increment

++expr

Value of expr is increased by one, the new value of expr is returned (as L-value)
Post-Dekrement

expr--

Value of expr is decreased by one, the old value of expr is returned (as R-value)
Prä-Dekrement

--expr

Value of expr is increased by one, the new value of expr is returned (as L-value)
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In-/decrement Operators

use arity prec assoz L-/R-value

Post-increment expr++ 1 17 left L-value→ R-value

Pre-increment ++expr 1 16 right L-value→ L-value

Post-decrement expr-- 1 17 left L-value→ R-value

Pre-decrement --expr 1 16 right L-value→ L-value
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In-/Decrement Operators

int a = 7;
std::cout << ++a << "\n"; // 8
std::cout << a++ << "\n"; // 8
std::cout << a << "\n"; // 9
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In-/Decrement Operators

Is the expression
++expr;← we favour this

equivalent to
expr++;?

Yes, but
Pre-increment can be more e�cient (old value does not need to be
saved)
Post In-/Decrement are the only left-associative unary operators (not
very intuitive)
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C++ vs. ++C

Strictly speaking our language should be named ++C because
it is an advancement of the language C
while C++ returns the old C.
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Arithmetic Assignments

a += b
⇔

a = a + b

analogously for -, *, / and %
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Arithmetic Assignments

Gebrauch Bedeutung

+= expr1 += expr2 expr1 = expr1 + expr2

-= expr1 -= expr2 expr1 = expr1 - expr2

*= expr1 *= expr2 expr1 = expr1 * expr2

/= expr1 /= expr2 expr1 = expr1 / expr2

%= expr1 %= expr2 expr1 = expr1 % expr2

Arithmetic expressions evaluate expr1 only once.
Assignments have precedence 4 and are right-associative.
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Binary Number Representations

Binary representation (Bits from {0, 1})

bnbn−1 . . . b1b0

corresponds to the number bn · 2n + · · ·+ b1 · 2 + b0

101011 corresponds to 43.

Most Signi�cant Bit (MSB)
Least Signi�cant Bit (LSB)
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Computing Tricks

Estimate the orders of magnitude of powers of two.2:

210 = 1024 = 1Ki ≈ 103.
220 = 1Mi ≈ 106,
230 = 1Gi ≈ 109,
232 = 4 · (1024)3 = 4Gi.
264 = 16Ei ≈ 16 · 1018.

2Decimal vs. binary units: MB - Megabyte vs. MiB - Megabibyte (etc.)
kilo (K, Ki) – mega (M, Mi) – giga (G, Gi) – tera(T, Ti) – peta(P, Pi) – exa (E, Ei)
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Hexadecimal Numbers

Numbers with base 16

hnhn−1 . . . h1h0

corresponds to the number

hn · 16n + · · ·+ h1 · 16 + h0.

notation in C++: pre�x 0x

0xff corresponds to 255.

Hex Nibbles

hex bin dec
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
a 1010 10
b 1011 11
c 1100 12
d 1101 13
e 1110 14
f 1111 15
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Why Hexadecimal Numbers?

A Hex-Nibble requires exactly 4 bits. Numbers 1, 2, 4 and 8 represent bits
0, 1, 2 and 3.
“compact representation of binary numbers”
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Why Hexadecimal Numbers?
“For programmers and technicians” (user manual of the chess computers
Mephisto II, 1981)
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Example: Hex-Colors

#00FF00
r g b
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Why Hexadecimal Numbers?
The NZZ could have saved a lot of space ...
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Domain of Type int

// Output the smallest and the largest value of type int.
#include <iostream>
#include <limits>

int main() {
std::cout << "Minimum int value is "

<< std::numeric_limits<int>::min() << ".\n"
<< "Maximum int value is "
<< std::numeric_limits<int>::max() << ".\n";

return 0;
} Minimum int value is -2147483648.

Maximum int value is 2147483647.
Where do these numbers come from?
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Domain of the Type int

Representation with B bits. Domain comprises the 2B integers:

{−2B−1,−2B−1 + 1, . . . ,−1, 0, 1, . . . , 2B−1 − 2, 2B−1 − 1}

On most platforms B = 32
For the type int C++ guarantees B ≥ 16
Background: Section 2.2.8 (Binary Representation) in the lecture notes.
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Over- and Under�ow

Arithmetic operations (+,-,*) can lead to numbers outside the valid
domain.
Results can be incorrect!

power8.cpp: 158 = −1732076671

There is no error message!
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The Type unsigned int

Domain
{0, 1, . . . , 2B − 1}

All arithmetic operations exist also for unsigned int.
Literals: 1u, 17u . . .

118



Mixed Expressions

Operators can have operands of di�erent type (e.g. int and
unsigned int).

17 + 17u

Such mixed expressions are of the “more general” type unsigned int.
int-operands are converted to unsigned int.
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Conversion

int Value Sign unsigned int Value

x ≥ 0 x

x < 0 x + 2B

Due to a clever representation (two’s complement), no addition is
internally needed
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Conversion “reversed”

The declaration
int a = 3u;

converts 3u to int.
The value is preserved because it is in the domain of int; otherwise the
result depends on the implementation.
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Signed Numbers

Note: the remaining slides on signed numbers, computing with binary
numbers, and the two’s complement, are not relevant for the exam
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Signed Number Representation

(Hopefully) clear by now: binary number representation without sign,
e.g.

[b31b30 . . . b0]u =̂ b31 · 231 + b30 · 230 + · · ·+ b0

Looking for a consistent solution

The representation with sign should coincide with the unsigned solution as
much as possible. Positive numbers should arithmetically be treated equal
in both systems.
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Computing with Binary Numbers (4 digits)
Simple Addition

2 0010
+3 +0011

5 01012 = 510

Simple Subtraction

5 0101
−3 −0011

2 00102 = 210
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Computing with Binary Numbers (4 digits)
Addition with Over�ow

7 0111
+10 +1010

17 (1)00012 = 110(= 17 mod 16)

Subtraction with under�ow

5 0101
+(−10) 1010

−5 (. . . 11)10112 = 1110(= −5 mod 16)
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Why this works

Modulo arithmetics: Compute on a circle3

11 ≡ 23 ≡ −1 ≡
. . . mod 12

+
4 ≡ 16 ≡ . . .

mod 12

=
3 ≡ 15 ≡ . . .

mod 12

3The arithmetics also work with decimal numbers (and for multiplication).
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Negative Numbers (3 Digits)

a −a

0 000 000 0
1 001 111 -1
2 010 110 -2
3 011 101 -3
4 100 100 -4
5 101
6 110
7 111

The most signi�cant bit decides about the sign and it contributes to the
value.
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Two’s Complement

Negation by bitwise negation and addition of 1

−2 = −[0010] = [1101] + [0001] = [1110]

Arithmetics of addition and subtraction identical to unsigned
arithmetics

3− 2 = 3 + (−2) = [0011] + [1110] = [0001]

Intuitive “wrap-around” conversion of negative numbers.

−n→ 2B − n

Domain: −2B−1 . . . 2B−1 − 1
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