
20. Dynamic Data Structures I

Dynamic Memory, Addresses and Pointers, Const-Pointer Arrays,
Array-based Vectors
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Recap: vector<T>

Can be initialised with arbitrary size n

Supports various operations:
e = v[i]; // Get element
v[i] = e; // Set element
l = v.size (); // Get size
v. push_front (e); // Prepend element
v. push_back (e); // Append element
...

A vector is a dynamic data structure, whose size may change at runtime

592



Recap: vector<T>

Can be initialised with arbitrary size n
Supports various operations:
e = v[i]; // Get element
v[i] = e; // Set element
l = v.size (); // Get size
v. push_front (e); // Prepend element
v. push_back (e); // Append element
...

A vector is a dynamic data structure, whose size may change at runtime

592



Recap: vector<T>

Can be initialised with arbitrary size n
Supports various operations:
e = v[i]; // Get element
v[i] = e; // Set element
l = v.size (); // Get size
v. push_front (e); // Prepend element
v. push_back (e); // Append element
...

A vector is a dynamic data structure, whose size may change at runtime

592



Our Own Vector!

Today, we’ll implement our own vector: vec
Step 1: vec<int> (today)
Step 2: vec<T> (later, only superficially)
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Vectors in Memory

Already known: A vector has a contiguous memory layout

Question: How to allocate a chunk of memory of arbitrary size during
runtime, i.e. dynamically?
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new for Arrays

new T[expr]

underlying type

new-Operator type int, value n

E�ect: new contiguous chunk of memory n elements of type T is
allocated

This chunk of memory is called an array (of length n)
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new for Arrays

p = new T[expr]

underlying type

new-Operator type int, value n

Value: the starting address of the memory chunk
p

Type: A pointer T* (more soon)
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Outlook: new and delete

new T[expr]

So far: memory (local variables, function arguments) “lives” only inside
a function call

But now: memory chunk inside vector must not “die” before the vector
itself
Memory allocated with new is not automatically deallocated (= released)
Every new must have a matching delete that releases the memory
explicitly→ in two weeks
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new (Without Arrays)

new T(...)

underlying type

new-Operator constructor arguments

E�ect: memory for a new object of type T is allocated . . .
. . . and initialized by means of the matching constructor
Value: address of the new T object, Type: Pointer T*
Also true here: object “lives” until deleted explicitly (usefulness will
become clearer later)
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Pointer Types

T* Pointer type for base type T

An expression of type T* is called pointer (to T)

int* p; // Pointer to an int
std::string* q; // Pointer to a std::string
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Pointer Types

T* Pointer type for base type T

A T* must actually point to a T

int* p = ...;
std::string* q = p; // compiler error!
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Pointer Types

Value of a pointer to T is the address of an object of type T

int* p = ...;
std::cout << p; // e.g. 0x7ffd89d5f7cc

int (e.g. 5) addr
addr

(e.g. 0x7ffd89d5f7cc)
p

601



Pointer Types

Value of a pointer to T is the address of an object of type T

int* p = ...;
std::cout << p; // e.g. 0x7ffd89d5f7cc

int (e.g. 5) addr
addr

(e.g. 0x7ffd89d5f7cc)
p

601



Pointer Types

Value of a pointer to T is the address of an object of type T

int* p = ...;
std::cout << p; // e.g. 0x7ffd89d5f7cc

int (e.g. 5) addr
addr

(e.g. 0x7ffd89d5f7cc)
p

601



Address Operator

Question: How to obtain an object’s address?

1. Directly, when creating a new object via new

2. For existing objects: via the address operator &

&expr expr: l-value of type T

Value of the expression: the address of object (l-value) expr
Type of the expression: A pointer T* (of type T )
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Address Operator

int i = 5; // i initialised with 5
int* p = &i;

5

addr
i

&i = addr

p

Next question: How to “follow” a pointer?
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Dereference Operator

Answer: by using the dereference operator *

*expr expr: r-value of type T *

Value of the expression: the value of the object located at the address
denoted by expr
Type of the expression: T
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Dereference Operator

int i = 5;
int* p = &i; // p = address of i
int j = *p;

5

addr
i

&i = addr

p

*p = 5

j
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Dereference Operator

int i = 5;
int* p = &i; // p = address of i
int j = *p; // j = 5

5

addr
i

&i = addr

p

*p = 5

j
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Address and Dereference Operator

pointer (R-value)

object (L-value)

& *
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Mnenmonic Trick

The declaration
T* p; // p is of the type “pointer to T”

can be read as
T *p; // *p is of type T
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Null-Pointer

Special pointer value that signals that no object is pointed to
represented b the literal nullptr (convertible to T*)
int* p = nullptr;

Cannot be dereferenced (runtime error)
Exists to avoid undefined behaviour
int* p; // Accessing p is undefined behaviour
int* q = nullptr; // q explicitly points nowhere
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Pointer Arithmetic: Pointer plus int

T* p = new T[n]; // p points to first array element

p

p+3 p+n

Question: How to point to rear elements?

→ via Pointer arithmetic:

p yields the value of the first array element, *p its value
*(p + i) yields the value of the ith array element, for 0 ≤ i < n
*p is equivalent to *(p + 0)
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Pointer Arithmetic: Pointer plus int

int* p0 = new int[7]{1,2,3,4,5,6,7}; // p0 points to 1st element
int* p3 = p0 + 3;
*(p3 + 2) = 600;
std::cout << *(p0 + 5);

1 2 3 4 5 6 7

p0

p3

600

+ 2

+ 5
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Pointer Arithmetic: Pointer plus int

int* p0 = new int[7]{1,2,3,4,5,6,7}; // p0 points to 1st element
int* p3 = p0 + 3; // p3 points to 4th element
*(p3 + 2) = 600; // set value of 6th element to 600
std::cout << *(p0 + 5); // output 6th element’s value (i.e. 600)

1 2 3 4 5 6 7

p0

p3

600

+ 2

+ 5
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Sequential Pointer Iteration
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

p

+ 3

ititit ititit ititit itit

for (char* it = p;
it != p + 3;
++it) {

std::cout << *it << ’ ’;
}
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Random Access to Arrays
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

The expression *(p + i)
can also be written as p[i]

E.g. p[1] == *(p + 1) == ’y’
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Random Access to Arrays

iteration over an array via indices and random access:
char* p = new char[3]{’x’, ’y’, ’z’};

for (int i = 0; i < 3; ++i)
std::cout << p[i] << ’ ’;

But: this is less e�cient than the previously shown sequential access via
pointer iteration
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Random Access to Arrays

T* p = new T[n];

size s
of a T

Access p[i], i.e. *(p + i), “costs” computation p + i · s
Iteration via random access (p[0], p[1], . . . ) costs one addition and one
multiplication per access
Iteration via sequentiall access (++p, ++p, . . . ) costs only one addition per
access
Sequential access is thus to be preferred for iterations
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Reading a book . . .with random access

Random Access
open book on page 1
close book
open book on pages 2-3
close book
open book on pages 4-5
close book
....

Sequential Access
open book on page 1
turn the page
turn the page
turn the page
turn the page
turn the page
...
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Reading a book . . .with sequential access

Random Access
open book on page 1
close book
open book on pages 2-3
close book
open book on pages 4-5
close book
....

Sequential Access
open book on page 1
turn the page
turn the page
turn the page
turn the page
turn the page
...
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Arrays in Functions

C++covention: arrays (or a segment of it) are passed using two pointers
begin end

begin: Pointer to the first element
end: Pointer past the last element
[begin, end) Designates the elements of the segment of the array
[begin, end) is empty if begin == end
[begin, end) must be a valid range, i.e. a (pot. empty) array segment
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Arrays in (mutating) Functions: fill

// PRE: [begin, end) is a valid range
// POST: Every element within [begin, end) was set to value
void fill(int* begin, int* end, int value) {

for (int* p = begin; p != end; ++p)
*p = value;

}

int* p = new int[5];
fill(p, p+5, 1); // Array at p becomes {1, 1, 1, 1, 1}
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Functions with/without E�ect

Pointers can (like references) be used for functions with e�ect. Example:
fill

But many functions don’t have an e�ect, they only read the data
⇒ Use of const
So far, for example:
const int zero = 0;
const int& nil = zero;
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Positioning of Const

const T is equivalent to T const (and can be written like this):

const int zero = ... ⇐⇒ int const zero = ...
const int& nil = ... ⇐⇒ int const& nil = ...

Both keyword orders are used in praxis

624
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Const and Pointers

Read the declaration from right to left

int const p; p is a constant integer

int const* p; p is a pointer to a constant integer

int* const p; p is a constant pointer to an integer

int const* const p; p is a constant pointer to a constant integer
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Non-mutating Functions: print

// PRE: [begin, end) is a valid range
// POST: The values in [begin, end) were printed
void print(

int const* const begin,
const int* const end) {

for (int const* p = begin; p != end; ++p)
std::cout << *p << ’ ’;

}
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Likewise (but di�erent keyword order)
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Non-mutating Functions: print

// PRE: [begin, end) is a valid range
// POST: The values in [begin, end) were printed
void print(

int const* const begin,
const int* const end) {

for (int const* p = begin; p != end; ++p)
std::cout << *p << ’ ’;

}

Const pointer to const int
Likewise (but di�erent keyword order)

Pointer, not const, to const int
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Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size

new T[n] allocates a T -array of size n

T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more e�cient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)
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Array-based Vector

Vectors . . . that somehow rings a bell

Now we know how to allocate memory
chunks of arbitrary size . . .
. . . we can implement a vector, based on
such a chunk of memory
avec – an array-based vector of int
elements
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Array-based Vector

Vectors . . . that somehow rings a bell
Now we know how to allocate memory
chunks of arbitrary size . . .
. . . we can implement a vector, based on
such a chunk of memory
avec – an array-based vector of int
elements
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Array-based Vector avec: Class Signature

class avec {
// Private (internal) state:
int* elements;
unsigned int count;

public: // Public interface:
avec(unsigned int size);
unsigned int size() const;
int& operator[](int i);
void print(std::ostream& sink) const;

}

Pointer to first element
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Array-based Vector avec: Class Signature

class avec {
// Private (internal) state:
int* elements; // Pointer to first element
unsigned int count; // Number of elements

public: // Public interface:
avec(unsigned int size); // Constructor
unsigned int size() const; // Size of vector
int& operator[](int i); // Access an element
void print(std::ostream& sink) const; // Output elems.

}
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Constructor avec::avec()

avec::avec(unsigned int size)
: count(size) {

elements = new int[size];
}

Save size

Side remark: vector is not initialised with a default value
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Constructor avec::avec()

avec::avec(unsigned int size)
: count(size) {

elements = new int[size];
}

Allocate memory

Side remark: vector is not initialised with a default value
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Constructor avec::avec()

avec::avec(unsigned int size)
: count(size) {

elements = new int[size];
}

Side remark: vector is not initialised with a default value
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Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
elements = new int[size];

}

elements is a member variable of our avec instance

That instance can be accessed via the pointer this
elements is a shorthand for (*this).elements
Equivalent, but shorter: this->elements
Mnemonic trick: “Follow the pointer to the member variable”
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Function avec::size()

int avec::size() const {
return this->count;

}

Doesn’t modify the vector

Usage example:
avec v = avec(7);
assert(v.size() == 7); // ok
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Function avec::size()

int avec::size() const {
return this->count;

}

Return size
Usage example:
avec v = avec(7);
assert(v.size() == 7); // ok
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Function avec::operator[]

int& avec::operator[](int i) {
return this->elements[i];

}

Return ith element

Element access with index check:
int& avec::at(int i) const {

assert(0 <= i && i < this->count);

return this->elements[i];
}
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Function avec::operator[]

int& avec::operator[](int i) {
return this->elements[i];

}

Usage example:
avec v = avec(7);
std::cout << v[6]; // Outputs a "random" value
v[6] = 0;
std::cout << v[6]; // Outputs 0
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Function avec::print()

Output elements using sequential access:
void avec::print(std::ostream& sink) const {

for (int* p = this->elements;
p != this->elements + this->count;
++p)

{
sink << *p << ’ ’;

}
}

Pointer to first element

Advance pointer element-wise
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{
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}

Advance pointer element-wise

Abort iteration if
past last element
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Function avec::print()

Output elements using sequential access:
void avec::print(std::ostream& sink) const {

for (int* p = this->elements;
p != this->elements + this->count;
++p)

{
sink << *p << ’ ’;

}
}

Advance pointer element-wise

Output current element
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Function avec::print()

Finally: overload output operator:
operator<<( sink,

vec) {
vec.print(sink);
return ;

}

std::ostream& operator<<(std::ostream& sink,
const avec& vec) {

vec.print(sink);
return sink;

}

Observations:

Constant reference to vec, since unchanged
But not to sink: Outputing elements equals change
sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’
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Further Functions?

class avec {
...
void push_front(int e) // Prepend e to vector
void push_back(int e) // Append e to vector
void remove(unsigned int i) // Cut out ith element
...

}

Commonalities: such operations need to change the vector’s size
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Resizing arrays

An allocated block of memory (e.g. new int[3]) cannot be resized later on
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Resizing arrays

3 0 3 2 1 7 4 9 9 8

first last

But eventually, all slots will be in use

Then unavoidable: Allocate larger memory block and copy data over
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Resizing arrays

3 0 3 2 1 7 9 9 84

first last

Deleting elements requires shifting (by copying) all preceding or following
elements

3 0 3 2 1 7 9 9 8

first last

Similar: inserting at arbitrary position
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