
20. Dynamic Data Structures I

Dynamic Memory, Addresses and Pointers, Const-Pointer Arrays,
Array-based Vectors

591

Recap: vector<T>

Can be initialised with arbitrary size n

Supports various operations:
e = v[i]; // Get element
v[i] = e; // Set element
l = v.size (); // Get size
v. push_front (e); // Prepend element
v. push_back (e); // Append element
...

A vector is a dynamic data structure, whose size may change at runtime

592

Recap: vector<T>

Can be initialised with arbitrary size n
Supports various operations:
e = v[i]; // Get element
v[i] = e; // Set element
l = v.size (); // Get size
v. push_front (e); // Prepend element
v. push_back (e); // Append element
...

A vector is a dynamic data structure, whose size may change at runtime

592

Recap: vector<T>

Can be initialised with arbitrary size n
Supports various operations:
e = v[i]; // Get element
v[i] = e; // Set element
l = v.size (); // Get size
v. push_front (e); // Prepend element
v. push_back (e); // Append element
...

A vector is a dynamic data structure, whose size may change at runtime

592

Our Own Vector!

Today, we’ll implement our own vector: vec
Step 1: vec<int> (today)
Step 2: vec<T> (later, only superficially)

593

Vectors in Memory

Already known: A vector has a contiguous memory layout

Question: How to allocate a chunk of memory of arbitrary size during
runtime, i.e. dynamically?

594

new for Arrays

new T[expr]

underlying type

new-Operator type int, value n

E�ect: new contiguous chunk of memory n elements of type T is
allocated

This chunk of memory is called an array (of length n)

595

new for Arrays

new T[expr]

underlying type

new-Operator type int, value n

E�ect: new contiguous chunk of memory n elements of type T is
allocated

This chunk of memory is called an array (of length n)

595

new for Arrays

new T[expr]

underlying type

new-Operator type int, value n

E�ect: new contiguous chunk of memory n elements of type T is
allocated

This chunk of memory is called an array (of length n)

595

new for Arrays

p = new T[expr]

underlying type

new-Operator type int, value n

Value: the starting address of the memory chunk
p

Type: A pointer T* (more soon)

596

new for Arrays

p = new T[expr]

underlying type

new-Operator type int, value n

Value: the starting address of the memory chunk
p

Type: A pointer T* (more soon)

596

Outlook: new and delete

new T[expr]

So far: memory (local variables, function arguments) “lives” only inside
a function call

But now: memory chunk inside vector must not “die” before the vector
itself
Memory allocated with new is not automatically deallocated (= released)
Every new must have a matching delete that releases the memory
explicitly→ in two weeks

597

Outlook: new and delete

new T[expr]

So far: memory (local variables, function arguments) “lives” only inside
a function call
But now: memory chunk inside vector must not “die” before the vector
itself

Memory allocated with new is not automatically deallocated (= released)
Every new must have a matching delete that releases the memory
explicitly→ in two weeks

597

Outlook: new and delete

new T[expr]

So far: memory (local variables, function arguments) “lives” only inside
a function call
But now: memory chunk inside vector must not “die” before the vector
itself
Memory allocated with new is not automatically deallocated (= released)

Every new must have a matching delete that releases the memory
explicitly→ in two weeks

597

Outlook: new and delete

new T[expr]

So far: memory (local variables, function arguments) “lives” only inside
a function call
But now: memory chunk inside vector must not “die” before the vector
itself
Memory allocated with new is not automatically deallocated (= released)
Every new must have a matching delete that releases the memory
explicitly→ in two weeks

597

new (Without Arrays)

new T(...)

underlying type

new-Operator constructor arguments

E�ect: memory for a new object of type T is allocated . . .
. . . and initialized by means of the matching constructor
Value: address of the new T object, Type: Pointer T*
Also true here: object “lives” until deleted explicitly (usefulness will
become clearer later)

598

new (Without Arrays)

new T(...)

underlying type

new-Operator constructor arguments

E�ect: memory for a new object of type T is allocated . . .

. . . and initialized by means of the matching constructor
Value: address of the new T object, Type: Pointer T*
Also true here: object “lives” until deleted explicitly (usefulness will
become clearer later)

598

new (Without Arrays)

new T(...)

underlying type

new-Operator constructor arguments

E�ect: memory for a new object of type T is allocated . . .
. . . and initialized by means of the matching constructor

Value: address of the new T object, Type: Pointer T*
Also true here: object “lives” until deleted explicitly (usefulness will
become clearer later)

598

new (Without Arrays)

new T(...)

underlying type

new-Operator constructor arguments

E�ect: memory for a new object of type T is allocated . . .
. . . and initialized by means of the matching constructor
Value: address of the new T object, Type: Pointer T*

Also true here: object “lives” until deleted explicitly (usefulness will
become clearer later)

598

new (Without Arrays)

new T(...)

underlying type

new-Operator constructor arguments

E�ect: memory for a new object of type T is allocated . . .
. . . and initialized by means of the matching constructor
Value: address of the new T object, Type: Pointer T*
Also true here: object “lives” until deleted explicitly (usefulness will
become clearer later)

598

Pointer Types

T* Pointer type for base type T

An expression of type T* is called pointer (to T)

int* p; // Pointer to an int
std::string* q; // Pointer to a std::string

599

Pointer Types

T* Pointer type for base type T

An expression of type T* is called pointer (to T)

int* p; // Pointer to an int
std::string* q; // Pointer to a std::string

599

Pointer Types

T* Pointer type for base type T

A T* must actually point to a T

int* p = ...;
std::string* q = p; // compiler error!

600

Pointer Types

Value of a pointer to T is the address of an object of type T

int* p = ...;
std::cout << p; // e.g. 0x7ffd89d5f7cc

int (e.g. 5) addr
addr

(e.g. 0x7ffd89d5f7cc)
p

601

Pointer Types

Value of a pointer to T is the address of an object of type T

int* p = ...;
std::cout << p; // e.g. 0x7ffd89d5f7cc

int (e.g. 5) addr
addr

(e.g. 0x7ffd89d5f7cc)
p

601

Pointer Types

Value of a pointer to T is the address of an object of type T

int* p = ...;
std::cout << p; // e.g. 0x7ffd89d5f7cc

int (e.g. 5) addr
addr

(e.g. 0x7ffd89d5f7cc)
p

601

Address Operator

Question: How to obtain an object’s address?

1. Directly, when creating a new object via new

2. For existing objects: via the address operator &

&expr expr: l-value of type T

Value of the expression: the address of object (l-value) expr
Type of the expression: A pointer T* (of type T)

602

Address Operator

Question: How to obtain an object’s address?

1. Directly, when creating a new object via new

2. For existing objects: via the address operator &

&expr expr: l-value of type T

Value of the expression: the address of object (l-value) expr
Type of the expression: A pointer T* (of type T)

602

Address Operator

Question: How to obtain an object’s address?

1. Directly, when creating a new object via new

2. For existing objects: via the address operator &

&expr expr: l-value of type T

Value of the expression: the address of object (l-value) expr

Type of the expression: A pointer T* (of type T)

602

Address Operator

Question: How to obtain an object’s address?

1. Directly, when creating a new object via new

2. For existing objects: via the address operator &

&expr expr: l-value of type T

Value of the expression: the address of object (l-value) expr
Type of the expression: A pointer T* (of type T)

602

Address Operator

int i = 5; // i initialised with 5
int* p = &i;

5

addr
i

&i = addr

p

Next question: How to “follow” a pointer?

603

Address Operator

int i = 5; // i initialised with 5
int* p = &i; // p initialised with address of i

5

addr
i

&i = addr

p

Next question: How to “follow” a pointer?

603

Address Operator

int i = 5; // i initialised with 5
int* p = &i; // p initialised with address of i

5

addr
i

&i = addr

p

Next question: How to “follow” a pointer?

603

Dereference Operator

Answer: by using the dereference operator *

*expr expr: r-value of type T *

Value of the expression: the value of the object located at the address
denoted by expr
Type of the expression: T

604

Dereference Operator

Answer: by using the dereference operator *

*expr expr: r-value of type T *

Value of the expression: the value of the object located at the address
denoted by expr

Type of the expression: T

604

Dereference Operator

Answer: by using the dereference operator *

*expr expr: r-value of type T *

Value of the expression: the value of the object located at the address
denoted by expr
Type of the expression: T

604

Dereference Operator

int i = 5;
int* p = &i; // p = address of i
int j = *p;

5

addr
i

&i = addr

p

*p = 5

j

605

Dereference Operator

int i = 5;
int* p = &i; // p = address of i
int j = *p; // j = 5

5

addr
i

&i = addr

p

*p = 5

j

605

Address and Dereference Operator

pointer (R-value)

object (L-value)

& *

606

Mnenmonic Trick

The declaration
T* p; // p is of the type “pointer to T”

can be read as
T *p; // *p is of type T

607

Mnenmonic Trick

The declaration
T* p; // p is of the type “pointer to T”

can be read as
T *p; // *p is of type T

607

Null-Pointer

Special pointer value that signals that no object is pointed to
represented b the literal nullptr (convertible to T*)
int* p = nullptr;

Cannot be dereferenced (runtime error)
Exists to avoid undefined behaviour
int* p; // Accessing p is undefined behaviour
int* q = nullptr; // q explicitly points nowhere

608

Pointer Arithmetic: Pointer plus int

T* p = new T[n]; // p points to first array element

p

p+3 p+n

Question: How to point to rear elements?

→ via Pointer arithmetic:

p yields the value of the first array element, *p its value
*(p + i) yields the value of the ith array element, for 0 ≤ i < n
*p is equivalent to *(p + 0)

609

Pointer Arithmetic: Pointer plus int

T* p = new T[n]; // p points to first array element

p

p+3 p+n

Question: How to point to rear elements?→ via Pointer arithmetic:

p yields the value of the first array element, *p its value
*(p + i) yields the value of the ith array element, for 0 ≤ i < n
*p is equivalent to *(p + 0)

609

Pointer Arithmetic: Pointer plus int

T* p = new T[n]; // p points to first array element

p

p+3 p+n

Question: How to point to rear elements?→ via Pointer arithmetic:
p yields the value of the first array element, *p its value

*(p + i) yields the value of the ith array element, for 0 ≤ i < n
*p is equivalent to *(p + 0)

609

Pointer Arithmetic: Pointer plus int

T* p = new T[n]; // p points to first array element

p p+3 p+n

Question: How to point to rear elements?→ via Pointer arithmetic:
p yields the value of the first array element, *p its value
*(p + i) yields the value of the ith array element, for 0 ≤ i < n

*p is equivalent to *(p + 0)

609

Pointer Arithmetic: Pointer plus int

T* p = new T[n]; // p points to first array element

p

p+3 p+n

Question: How to point to rear elements?→ via Pointer arithmetic:
p yields the value of the first array element, *p its value
*(p + i) yields the value of the ith array element, for 0 ≤ i < n
*p is equivalent to *(p + 0)

609

Pointer Arithmetic: Pointer plus int

int* p0 = new int[7]{1,2,3,4,5,6,7}; // p0 points to 1st element
int* p3 = p0 + 3;
*(p3 + 2) = 600;
std::cout << *(p0 + 5);

1 2 3 4 5 6 7

p0

p3

600

+ 2

+ 5

610

Pointer Arithmetic: Pointer plus int

int* p0 = new int[7]{1,2,3,4,5,6,7}; // p0 points to 1st element
int* p3 = p0 + 3; // p3 points to 4th element
*(p3 + 2) = 600;
std::cout << *(p0 + 5);

1 2 3 4 5 6 7

p0

p3

600

+ 2

+ 5

610

Pointer Arithmetic: Pointer plus int

int* p0 = new int[7]{1,2,3,4,5,6,7}; // p0 points to 1st element
int* p3 = p0 + 3; // p3 points to 4th element
*(p3 + 2) = 600; // set value of 6th element to 600
std::cout << *(p0 + 5);

1 2 3 4 5 6 7

p0

p3

600

+ 2

+ 5

610

Pointer Arithmetic: Pointer plus int

int* p0 = new int[7]{1,2,3,4,5,6,7}; // p0 points to 1st element
int* p3 = p0 + 3; // p3 points to 4th element
*(p3 + 2) = 600; // set value of 6th element to 600
std::cout << *(p0 + 5); // output 6th element’s value (i.e. 600)

1 2 3 4 5 6 7

p0

p3

600

+ 2

+ 5

610

Sequential Pointer Iteration
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

p

+ 3

ititit ititit ititit itit

for (char* it = p;
it != p + 3;
++it) {

std::cout << *it << ’ ’;
}

615

Sequential Pointer Iteration
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

p

+ 3

ititit ititit ititit itit

for (char* it = p;
it != p + 3;
++it) {

std::cout << *it << ’ ’;
}

615

Sequential Pointer Iteration
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

p

+ 3

it

itit ititit ititit itit

for (char* it = p;
it != p + 3;
++it) {

std::cout << *it << ’ ’;
}

it points to first element

615

Sequential Pointer Iteration
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

it

it

it ititit ititit itit

for (char* it = p;
it != p + 3;
++it) {

std::cout << *it << ’ ’;
}

Abort if end reached 615

Sequential Pointer Iteration
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

p

+ 3

itit

it

ititit ititit itit

for (char* it = p;
it != p + 3;
++it) {

std::cout << *it << ’ ’;
}

Output current element: ’x’ 615

Sequential Pointer Iteration
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

p

+ 3

ititit

it

itit ititit itit

for (char* it = p;
it != p + 3;
++it) {

std::cout << *it << ’ ’; // x
}

Advance pointer element-wise 615

Sequential Pointer Iteration
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

p

+ 3

ititit it

it

it ititit itit

for (char* it = p;
it != p + 3;
++it) {

std::cout << *it << ’ ’; // x
}

615

Sequential Pointer Iteration
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

p

+ 3

ititit itit

it

ititit itit

for (char* it = p;
it != p + 3;
++it) {

std::cout << *it << ’ ’; // x y
}

615

Sequential Pointer Iteration
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

p

+ 3

ititit ititit

it

itit itit

for (char* it = p;
it != p + 3;
++it) {

std::cout << *it << ’ ’; // x y
}

615

Sequential Pointer Iteration
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

p

+ 3

ititit ititit it

it

it itit

for (char* it = p;
it != p + 3;
++it) {

std::cout << *it << ’ ’; // x y
}

615

Sequential Pointer Iteration
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

p

+ 3

ititit ititit itit

it

itit

for (char* it = p;
it != p + 3;
++it) {

std::cout << *it << ’ ’; // x y z
}

615

Sequential Pointer Iteration
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

p

+ 3

ititit ititit ititit

it

it

for (char* it = p;
it != p + 3;
++it) {

std::cout << *it << ’ ’; // x y z
}

615

Sequential Pointer Iteration
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

ititit ititit ititit it

it

for (char* it = p;
it != p + 3;
++it) {

std::cout << *it << ’ ’; // x y z
}

615

Random Access to Arrays
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

The expression *(p + i)
can also be written as p[i]

E.g. p[1] == *(p + 1) == ’y’

616

Random Access to Arrays
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

The expression *(p + i)
can also be written as p[i]
E.g. p[1] == *(p + 1) == ’y’

616

Random Access to Arrays

iteration over an array via indices and random access:
char* p = new char[3]{’x’, ’y’, ’z’};

for (int i = 0; i < 3; ++i)
std::cout << p[i] << ’ ’;

But: this is less e�cient than the previously shown sequential access via
pointer iteration

617

Random Access to Arrays

iteration over an array via indices and random access:
char* p = new char[3]{’x’, ’y’, ’z’};

for (int i = 0; i < 3; ++i)
std::cout << p[i] << ’ ’;

But: this is less e�cient than the previously shown sequential access via
pointer iteration

617

Random Access to Arrays

T* p = new T[n];

size s
of a T

Access p[i], i.e. *(p + i), “costs” computation p + i · s
Iteration via random access (p[0], p[1], . . .) costs one addition and one
multiplication per access
Iteration via sequentiall access (++p, ++p, . . .) costs only one addition per
access
Sequential access is thus to be preferred for iterations

618

Random Access to Arrays

T* p = new T[n];

size s
of a T

Access p[i], i.e. *(p + i), “costs” computation p + i · s

Iteration via random access (p[0], p[1], . . .) costs one addition and one
multiplication per access
Iteration via sequentiall access (++p, ++p, . . .) costs only one addition per
access
Sequential access is thus to be preferred for iterations

618

Random Access to Arrays

T* p = new T[n];

size s
of a T

Access p[i], i.e. *(p + i), “costs” computation p + i · s
Iteration via random access (p[0], p[1], . . .) costs one addition and one
multiplication per access

Iteration via sequentiall access (++p, ++p, . . .) costs only one addition per
access
Sequential access is thus to be preferred for iterations

618

Random Access to Arrays

T* p = new T[n];

size s
of a T

Access p[i], i.e. *(p + i), “costs” computation p + i · s
Iteration via random access (p[0], p[1], . . .) costs one addition and one
multiplication per access
Iteration via sequentiall access (++p, ++p, . . .) costs only one addition per
access

Sequential access is thus to be preferred for iterations

618

Random Access to Arrays

T* p = new T[n];

size s
of a T

Access p[i], i.e. *(p + i), “costs” computation p + i · s
Iteration via random access (p[0], p[1], . . .) costs one addition and one
multiplication per access
Iteration via sequentiall access (++p, ++p, . . .) costs only one addition per
access
Sequential access is thus to be preferred for iterations

618

Reading a book . . .with random access

Random Access
open book on page 1
close book
open book on pages 2-3
close book
open book on pages 4-5
close book
....

Sequential Access
open book on page 1
turn the page
turn the page
turn the page
turn the page
turn the page
...

619

Reading a book . . .with sequential access

Random Access
open book on page 1
close book
open book on pages 2-3
close book
open book on pages 4-5
close book
....

Sequential Access
open book on page 1
turn the page
turn the page
turn the page
turn the page
turn the page
...

619

Arrays in Functions

C++covention: arrays (or a segment of it) are passed using two pointers
begin end

begin: Pointer to the first element
end: Pointer past the last element
[begin, end) Designates the elements of the segment of the array
[begin, end) is empty if begin == end
[begin, end) must be a valid range, i.e. a (pot. empty) array segment

621

Arrays in Functions

C++covention: arrays (or a segment of it) are passed using two pointers
begin end

begin: Pointer to the first element
end: Pointer past the last element

[begin, end) Designates the elements of the segment of the array
[begin, end) is empty if begin == end
[begin, end) must be a valid range, i.e. a (pot. empty) array segment

621

Arrays in Functions

C++covention: arrays (or a segment of it) are passed using two pointers
begin end

begin: Pointer to the first element
end: Pointer past the last element
[begin, end) Designates the elements of the segment of the array

[begin, end) is empty if begin == end
[begin, end) must be a valid range, i.e. a (pot. empty) array segment

621

Arrays in Functions

C++covention: arrays (or a segment of it) are passed using two pointers
begin end

begin: Pointer to the first element
end: Pointer past the last element
[begin, end) Designates the elements of the segment of the array
[begin, end) is empty if begin == end
[begin, end) must be a valid range, i.e. a (pot. empty) array segment

621

Arrays in (mutating) Functions: fill

// PRE: [begin, end) is a valid range
// POST: Every element within [begin, end) was set to value
void fill(int* begin, int* end, int value) {

for (int* p = begin; p != end; ++p)
*p = value;

}

int* p = new int[5];
fill(p, p+5, 1); // Array at p becomes {1, 1, 1, 1, 1}

622

Arrays in (mutating) Functions: fill

// PRE: [begin, end) is a valid range
// POST: Every element within [begin, end) was set to value
void fill(int* begin, int* end, int value) {

for (int* p = begin; p != end; ++p)
*p = value;

}

int* p = new int[5];
fill(p, p+5, 1); // Array at p becomes {1, 1, 1, 1, 1}

622

Functions with/without E�ect

Pointers can (like references) be used for functions with e�ect. Example:
fill

But many functions don’t have an e�ect, they only read the data
⇒ Use of const
So far, for example:
const int zero = 0;
const int& nil = zero;

623

Functions with/without E�ect

Pointers can (like references) be used for functions with e�ect. Example:
fill
But many functions don’t have an e�ect, they only read the data
⇒ Use of const

So far, for example:
const int zero = 0;
const int& nil = zero;

623

Functions with/without E�ect

Pointers can (like references) be used for functions with e�ect. Example:
fill
But many functions don’t have an e�ect, they only read the data
⇒ Use of const
So far, for example:
const int zero = 0;
const int& nil = zero;

623

Positioning of Const

const T is equivalent to T const (and can be written like this):

const int zero = ... ⇐⇒ int const zero = ...
const int& nil = ... ⇐⇒ int const& nil = ...

Both keyword orders are used in praxis

624

Positioning of Const

const T is equivalent to T const (and can be written like this):

const int zero = ... ⇐⇒ int const zero = ...
const int& nil = ... ⇐⇒ int const& nil = ...

Both keyword orders are used in praxis

624

Const and Pointers

Read the declaration from right to left

int const p; p is a constant integer

int const* p; p is a pointer to a constant integer

int* const p; p is a constant pointer to an integer

int const* const p; p is a constant pointer to a constant integer

625

Const and Pointers

Read the declaration from right to left

int const p; p is a constant integer

int const* p; p is a pointer to a constant integer

int* const p; p is a constant pointer to an integer

int const* const p; p is a constant pointer to a constant integer

625

Const and Pointers

Read the declaration from right to left

int const p; p is a constant integer

int const* p; p is a pointer to a constant integer

int* const p; p is a constant pointer to an integer

int const* const p; p is a constant pointer to a constant integer

625

Const and Pointers

Read the declaration from right to left

int const p; p is a constant integer

int const* p; p is a pointer to a constant integer

int* const p; p is a constant pointer to an integer

int const* const p; p is a constant pointer to a constant integer

625

Non-mutating Functions: print

// PRE: [begin, end) is a valid range
// POST: The values in [begin, end) were printed
void print(

int const* const begin,
const int* const end) {

for (int const* p = begin; p != end; ++p)
std::cout << *p << ’ ’;

}

626

Non-mutating Functions: print

// PRE: [begin, end) is a valid range
// POST: The values in [begin, end) were printed
void print(

int const* const begin,
const int* const end) {

for (int const* p = begin; p != end; ++p)
std::cout << *p << ’ ’;

}

Const pointer to const int
Likewise (but di�erent keyword order)

626

Non-mutating Functions: print

// PRE: [begin, end) is a valid range
// POST: The values in [begin, end) were printed
void print(

int const* const begin,
const int* const end) {

for (int const* p = begin; p != end; ++p)
std::cout << *p << ’ ’;

}

Const pointer to const int
Likewise (but di�erent keyword order)

Pointer, not const, to const int
626

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size

new T[n] allocates a T -array of size n

T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more e�cient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

629

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n

T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more e�cient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

629

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n

T* p = new T[n]: pointer p points to the first array element

Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more e�cient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

629

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n

T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements

Sequentially iterating over arrays via pointers is more e�cient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

629

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n

T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more e�cient than random
access

new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

629

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n

T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more e�cient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it

Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

629

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n

T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more e�cient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves

Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

629

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n

T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more e�cient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)

Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

629

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n

T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more e�cient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

629

Array-based Vector

Vectors . . . that somehow rings a bell

Now we know how to allocate memory
chunks of arbitrary size . . .
. . . we can implement a vector, based on
such a chunk of memory
avec – an array-based vector of int
elements

630

Array-based Vector

Vectors . . . that somehow rings a bell
Now we know how to allocate memory
chunks of arbitrary size . . .

. . . we can implement a vector, based on
such a chunk of memory
avec – an array-based vector of int
elements

630

Array-based Vector

Vectors . . . that somehow rings a bell
Now we know how to allocate memory
chunks of arbitrary size . . .
. . . we can implement a vector, based on
such a chunk of memory

avec – an array-based vector of int
elements

630

Array-based Vector

Vectors . . . that somehow rings a bell
Now we know how to allocate memory
chunks of arbitrary size . . .
. . . we can implement a vector, based on
such a chunk of memory
avec – an array-based vector of int
elements

630

Array-based Vector avec: Class Signature

class avec {
// Private (internal) state:
int* elements;
unsigned int count;

public: // Public interface:
avec(unsigned int size);
unsigned int size() const;
int& operator[](int i);
void print(std::ostream& sink) const;

}

Pointer to first element

631

Array-based Vector avec: Class Signature

class avec {
// Private (internal) state:
int* elements; // Pointer to first element
unsigned int count;

public: // Public interface:
avec(unsigned int size);
unsigned int size() const;
int& operator[](int i);
void print(std::ostream& sink) const;

}

Number of elements

631

Array-based Vector avec: Class Signature

class avec {
// Private (internal) state:
int* elements; // Pointer to first element
unsigned int count; // Number of elements

public: // Public interface:
avec(unsigned int size);
unsigned int size() const;
int& operator[](int i);
void print(std::ostream& sink) const;

}

Constructor

631

Array-based Vector avec: Class Signature

class avec {
// Private (internal) state:
int* elements; // Pointer to first element
unsigned int count; // Number of elements

public: // Public interface:
avec(unsigned int size); // Constructor
unsigned int size() const;
int& operator[](int i);
void print(std::ostream& sink) const;

}

Size of vector

631

Array-based Vector avec: Class Signature

class avec {
// Private (internal) state:
int* elements; // Pointer to first element
unsigned int count; // Number of elements

public: // Public interface:
avec(unsigned int size); // Constructor
unsigned int size() const; // Size of vector
int& operator[](int i);
void print(std::ostream& sink) const;

}

Access an element

631

Array-based Vector avec: Class Signature

class avec {
// Private (internal) state:
int* elements; // Pointer to first element
unsigned int count; // Number of elements

public: // Public interface:
avec(unsigned int size); // Constructor
unsigned int size() const; // Size of vector
int& operator[](int i); // Access an element
void print(std::ostream& sink) const;

}

Output elements 631

Array-based Vector avec: Class Signature

class avec {
// Private (internal) state:
int* elements; // Pointer to first element
unsigned int count; // Number of elements

public: // Public interface:
avec(unsigned int size); // Constructor
unsigned int size() const; // Size of vector
int& operator[](int i); // Access an element
void print(std::ostream& sink) const; // Output elems.

}

631

Constructor avec::avec()

avec::avec(unsigned int size)
: count(size) {

elements = new int[size];
}

Save size

Side remark: vector is not initialised with a default value

632

Constructor avec::avec()

avec::avec(unsigned int size)
: count(size) {

elements = new int[size];
}

Allocate memory

Side remark: vector is not initialised with a default value

632

Constructor avec::avec()

avec::avec(unsigned int size)
: count(size) {

elements = new int[size];
}

Side remark: vector is not initialised with a default value

632

Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
elements = new int[size];

}

elements is a member variable of our avec instance

That instance can be accessed via the pointer this
elements is a shorthand for (*this).elements
Equivalent, but shorter: this->elements
Mnemonic trick: “Follow the pointer to the member variable”

633

Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
elements = new int[size];

}

elements is a member variable of our avec instance
That instance can be accessed via the pointer this

elements is a shorthand for (*this).elements
Equivalent, but shorter: this->elements
Mnemonic trick: “Follow the pointer to the member variable”

633

Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
(*this).elements = new int[size];

}

elements is a member variable of our avec instance
That instance can be accessed via the pointer this
elements is a shorthand for (*this).elements

Equivalent, but shorter: this->elements
Mnemonic trick: “Follow the pointer to the member variable”

633

Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
this->elements = new int[size];

}

elements is a member variable of our avec instance
That instance can be accessed via the pointer this
elements is a shorthand for (*this).elements
Equivalent, but shorter: this->elements

Mnemonic trick: “Follow the pointer to the member variable”

633

Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
this->elements = new int[size];

}

elements is a member variable of our avec instance
That instance can be accessed via the pointer this
elements is a shorthand for (*this).elements
Equivalent, but shorter: this->elements
Mnemonic trick: “Follow the pointer to the member variable”

633

Function avec::size()

int avec::size() const {
return this->count;

}

Doesn’t modify the vector

Usage example:
avec v = avec(7);
assert(v.size() == 7); // ok

634

Function avec::size()

int avec::size() const {
return this->count;

}

Return size
Usage example:
avec v = avec(7);
assert(v.size() == 7); // ok

634

Function avec::operator[]

int& avec::operator[](int i) {
return this->elements[i];

}

Return ith element

Element access with index check:
int& avec::at(int i) const {

assert(0 <= i && i < this->count);

return this->elements[i];
}

635

Function avec::operator[]

int& avec::operator[](int i) {
return this->elements[i];

}

Element access with index check:
int& avec::at(int i) const {

assert(0 <= i && i < this->count);

return this->elements[i];
}

635

Function avec::operator[]

int& avec::operator[](int i) {
return this->elements[i];

}

Usage example:
avec v = avec(7);
std::cout << v[6]; // Outputs a "random" value
v[6] = 0;
std::cout << v[6]; // Outputs 0

636

Function avec::print()

Output elements using sequential access:
void avec::print(std::ostream& sink) const {

for (int* p = this->elements;
p != this->elements + this->count;
++p)

{
sink << *p << ’ ’;

}
}

Pointer to first element

Advance pointer element-wise

639

Function avec::print()

Output elements using sequential access:
void avec::print(std::ostream& sink) const {

for (int* p = this->elements;
p != this->elements + this->count;
++p)

{
sink << *p << ’ ’;

}
}

Advance pointer element-wise

Abort iteration if
past last element

639

Function avec::print()

Output elements using sequential access:
void avec::print(std::ostream& sink) const {

for (int* p = this->elements;
p != this->elements + this->count;
++p)

{
sink << *p << ’ ’;

}
}

Advance pointer element-wise

639

Function avec::print()

Output elements using sequential access:
void avec::print(std::ostream& sink) const {

for (int* p = this->elements;
p != this->elements + this->count;
++p)

{
sink << *p << ’ ’;

}
}

Advance pointer element-wise

Output current element

639

Function avec::print()

Finally: overload output operator:
operator<<(sink,

vec) {
vec.print(sink);
return ;

}

std::ostream& operator<<(std::ostream& sink,
const avec& vec) {

vec.print(sink);
return sink;

}

Observations:

Constant reference to vec, since unchanged
But not to sink: Outputing elements equals change
sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’

640

Function avec::print()

Finally: overload output operator:
std::ostream& operator<<(std::ostream& sink,

const avec& vec) {
vec.print(sink);
return sink;

}

Observations:

Constant reference to vec, since unchanged
But not to sink: Outputing elements equals change
sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’

640

Function avec::print()

Finally: overload output operator:
std::ostream& operator<<(std::ostream& sink,

const avec& vec) {
vec.print(sink);
return sink;

}

Observations:
Constant reference to vec, since unchanged

But not to sink: Outputing elements equals change
sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’

640

Function avec::print()

Finally: overload output operator:
std::ostream& operator<<(std::ostream& sink,

const avec& vec) {
vec.print(sink);
return sink;

}

Observations:
Constant reference to vec, since unchanged
But not to sink: Outputing elements equals change

sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’

640

Function avec::print()

Finally: overload output operator:
std::ostream& operator<<(std::ostream& sink,

const avec& vec) {
vec.print(sink);
return sink;

}

Observations:
Constant reference to vec, since unchanged
But not to sink: Outputing elements equals change
sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’

640

Further Functions?

class avec {
...
void push_front(int e) // Prepend e to vector
void push_back(int e) // Append e to vector
void remove(unsigned int i) // Cut out ith element
...

}

Commonalities: such operations need to change the vector’s size

641

Further Functions?

class avec {
...
void push_front(int e) // Prepend e to vector
void push_back(int e) // Append e to vector
void remove(unsigned int i) // Cut out ith element
...

}

Commonalities: such operations need to change the vector’s size

641

Resizing arrays

An allocated block of memory (e.g. new int[3]) cannot be resized later on

642

Resizing arrays

An allocated block of memory (e.g. new int[3]) cannot be resized later on

2 1 7

642

Resizing arrays

An allocated block of memory (e.g. new int[3]) cannot be resized later on

2 1 7
Possibility:

Allocate more memory than initially necessary

Fill from inside out, with pointers to first and last element

642

Resizing arrays

An allocated block of memory (e.g. new int[3]) cannot be resized later on

2 1 7

first last
Possibility:

Allocate more memory than initially necessary
Fill from inside out, with pointers to first and last element

642

Resizing arrays

3 0 3 2 1 7 4 9 9 8

first last

But eventually, all slots will be in use

Then unavoidable: Allocate larger memory block and copy data over

643

Resizing arrays

3 0 3 2 1 7 4 9 9 8

first last

But eventually, all slots will be in use
Then unavoidable: Allocate larger memory block and copy data over

643

Resizing arrays

3 0 3 2 1 7 9 9 84

first last

Deleting elements requires shifting (by copying) all preceding or following
elements

3 0 3 2 1 7 9 9 8

first last

Similar: inserting at arbitrary position

644

Resizing arrays

3 0 3 2 1 7 9 9 84

first last

Deleting elements requires shifting (by copying) all preceding or following
elements

3 0 3 2 1 7 9 9 8

first last

Similar: inserting at arbitrary position

644

Resizing arrays

3 0 3 2 1 7 9 9 84

first last

Deleting elements requires shifting (by copying) all preceding or following
elements

3 0 3 2 1 7 9 9 8

first last

Similar: inserting at arbitrary position

644

