
19. Classes
Overloading Functions and Operators, Encapsulation, Classes, Member
Functions, Constructors

539

Overloading Functions

Functions can be addressed by name in a scope
It is even possible to declare and to de�ned several functions with the
same name
the “correct” version is chosen according to the signature of the
function.

540

Function Overloading
A function is de�ned by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that �ts “best” for a function
call (we do not go into details)

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2); // compiler chooses f4
std::cout << pow (3,3); // compiler chooses f3

541

Operator Overloading

Operators are special functions and can be overloaded
Name of the operator op:

operatorop

we already know that, for example, operator+ exists for di�erent types

542

Adding rational Numbers – Before

// POST: return value is the sum of a and b
rational add (rational a, rational b)
{

rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}
...
const rational t = add (r, s);

543

Adding rational Numbers – After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}
...
const rational t = r + s;

in�x notation

544

Other Binary Operators for Rational Numbers

// POST: return value is difference of a and b
rational operator- (rational a, rational b);

// POST: return value is the product of a and b
rational operator* (rational a, rational b);

// POST: return value is the quotient of a and b
// PRE: b != 0
rational operator/ (rational a, rational b);

545

Unary Minus

has the same symbol as the binary minus but only one argument:

// POST: return value is -a
rational operator- (rational a)
{

a.n = -a.n;
return a;

}

546

Comparison Operators

are not built in for structs, but can be de�ned

// POST: returns true iff a == b
bool operator== (rational a, rational b)
{

return a.n * b.d == a.d * b.n;
}

2
3

= 4
6

X

547

Arithmetic Assignment

We want to write
rational r;
r.n = 1; r.d = 2; // 1/2

rational s;
s.n = 1; s.d = 3; // 1/3

r += s;
std::cout << r.n << "/" << r.d; // 5/6

548

Operator+= First Trial

rational operator+= (rational a, rational b)
{

a.n = a.n * b.d + a.d * b.n;
a.d *= b.d;
return a;

}

does not work. Why?

The expression r += s has the desired value, but because the arguments are
R-values (call by value!) it does not have the desired e�ect of modifying r.

The result of r += s is, against the convention of C++ no L-value.

549

Operator +=

rational& operator+= (rational& a, rational b)
{

a.n = a.n * b.d + a.d * b.n;
a.d *= b.d;
return a;

}

this works

The L-value a is increased by the value of b and returned as L-value

r += s; now has the desired e�ect.

550

In/Output Operators

can also be overloaded.
Before:

std::cout << "Sum is " << t.n << "/" << t.d << "\n";

After (desired):

std::cout << "Sum is " << t << "\n";

551

In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out, rational r)
{

return out << r.n << "/" << r.d;
}

writes r to the output stream
and returns the stream as L-value.

552

Input

// PRE: in starts with a rational number of the form "n/d"
// POST: r has been read from in
std::istream& operator>> (std::istream& in, rational& r){

char c; // separating character ’/’
return in >> r.n >> c >> r.d;

}

reads r from the input stream
and returns the stream as L-value.

553

Goal Attained!

// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;

std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";

operator >>

operator +

operator<<
554

A new Type with Functionality. . .

struct rational {
int n;
int d; // INV: d != 0

};

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}
... 555

. . . should be in a Library!

rational.h
De�nition of a struct rational
Function declarations

rational.cpp

arithmetic operators (operator+, operator+=, ...)
relational operators (operator==, operator>, ...)
in/output (operator >>, operator <<, ...)

556

Thought Experiment

The three core missions of ETH:
research
education
technology transfer

We found a startup: RAT PACKr!
Selling the rational library to customers
ongoing development according to customer’s demands

557

The Customer is Happy

. . . and programs busily using rational.
output as double-value (3

5 → 0.6)

// POST: double approximation of r
double to_double (rational r)
{

double result = r.n;
return result / r.d;

}

558

The Customer Wants More

“Can we have rational numbers with an extended value range?”
Sure, no problem, e.g.:

struct rational {
int n;
int d;

};
⇒

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

559

New Version of RAT PACKr

It sucks, nothing works any more!
What is the problem?

−3
5 is sometimes 0.6, this cannot be true!

That is your fault. Your conversion to double is
the problem, our library is correct.

Up to now it worked, therefore the new version
is to blame!

560

Liability Discussion

// POST: double approximation of r
double to_double (rational r){

double result = r.n;
return result / r.d;

}

correct using. . .

struct rational {
int n;
int d;

};

. . . not correct using

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

r.is_positive and result.is_positive do
not appear.

561

We are to Blame!!

Customer sees and uses our representation of rational numbers
(initially r.n, r.d)
When we change it (r.n, r.d, r.is_positive), the customer’s
programs do not work anymore.
No customer is willing to adapt the programs when the version of the
library changes.

⇒ RAT PACKr is history. . .

562

Idea of Encapsulation (Information Hiding)

A type is uniquely de�ned by its value range and its functionality
The representation should not be visible.
⇒ The customer is not provided with representation but with
functionality!

str.length(),
v.push_back(1),. . .

563

Classes

provide the concept for encapsulation in C++
are a variant of structs
are provided in many object oriented programming languages

564

Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

only di�erence
struct: by default nothing is hidden
class : by default everything is hidden

is used instead of struct if anything at all shall
be “hidden”

565

Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

Application Code

rational r;
r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private

Good news: r.d = 0 cannot happen any
more by accident.

Bad news: the customer cannot do any-
thing any more . . .

. . . and we can’t, either.
(no operator+,. . .)

566

Member Functions: Declaration

class rational {
public:

// POST: return value is the numerator of this instance
int numerator () const {

return n;
}
// POST: return value is the denominator of this instance
int denominator () const {

return d;
}

private:
int n;
int d; // INV: d!= 0

};

pu
bl
ic
ar
ea

member function

member functions have ac-
cess to private data

the scope of members in a class
is the whole class, independent
of the declaration order

567

Member Functions: Call

// Definition des Typs
class rational {

...
};
...
// Variable des Typs
rational r;

int n = r.numerator(); // Zaehler
int d = r.denominator(); // Nenner

member access

568

Member Functions: De�nition

// POST: returns numerator of this instance
int numerator () const
{

return n;
}

A member function is called for an expression of the class. in the function,
this is the name of this implicit argument. this itself is a pointer to it.

const refers to the instance this, i.e., it promises that the value associated with
the implicit argument cannot be changed

n is the shortcut in the member function for this->n (precise explanation of
“->” next week)

569

const and Member Functions

class rational {
public:

int numerator () const
{ return n; }
void set_numerator (int N)
{ n = N;}

...
}

rational x;
x.set_numerator(10); // ok;
const rational y = x;
int n = y.numerator(); // ok;
y.set_numerator(10); // error;

The const at a member function is to promise that an instance cannot be
changed via this function.
const items can only call const member functions.

570

Comparison
Roughly like this it were ...

class rational {
int n;
...

public:
int numerator () const
{

return this->n;
}

};

rational r;
...
std::cout << r.numerator();

... without member functions

struct bruch {
int n;
...

};

int numerator (const bruch& dieser)
{

return dieser.n;
}

bruch r;
..
std::cout << numerator(r);

571

Member-De�nition: In-Class vs. Out-of-Class

class rational {
int n;
...

public:
int numerator () const
{

return n;
}
....

};

No separation between
declaration and de�nition (bad for
libraries)

class rational {
int n;
...

public:
int numerator () const;
...

};

int rational::numerator () const
{

return n;
}

This also works.
572

Constructors

are special member functions of a class that are named like the class
can be overloaded like functions, i.e. can occur multiple times with
varying signature
are called like a function when a variable is declared. The compiler
chooses the “closest” matching function.
if there is no matching constructor, the compiler emits an error message.

573

Initialisation? Constructors!

class rational
{
public:

rational (int num, int den)
: n (num), d (den)

{
assert (den != 0);

}
...
};
...
rational r (2,3); // r = 2/3

Initialization of the
member variables

function body.

574

Constructors: Call

directly

rational r (1,2); \small // initialisiert r mit 1/2

indirectly (copy)

rational r = rational (1,2);

575

Initialisation “rational = int”?

class rational
{
public:

rational (int num)
: n (num), d (1)

{}
...
};
...
rational r (2); // explicit initialization with 2
rational s = 2; // implicit conversion

empty function body

576

The Default Constructor

class rational
{
public:

...
rational ()

: n (0), d (1)
{}

...
};
...
rational r; // r = 0

empty list of arguments

⇒ There are no uninitiatlized variables of type rational any more!

577

Alterantively: Deleting a Default Constructor

class rational
{
public:

...
rational () = delete;

...
};
...
rational r; // error: use of deleted function ’rational::rational()

⇒ There are no uninitiatlized variables of type rational any more!

578

User De�ned Conversions

are de�ned via constructors with exactly one argument

rational (int num)
: n (num), d (1)

{}

rational r = 2; // implizite Konversion

User de�ned conversion from int to
rational. values of type int can now be
converted to rational.

579

The Default Constructor

is automatically called for declarations of the form
rational r;
is the unique constructor with empty argmument list (if existing)
must exist, if rational r; is meant to compile
if in a struct there are no constructors at all, the default constructor is
automatically generated

580

RAT PACKr Reloaded . . .

Customer’s program now looks like this:

// POST: double approximation of r
double to_double (const rational r)
{

double result = r.numerator();
return result / r.denominator();

}

We can adapt the member functions together with the representation X

581

RAT PACKr Reloaded . . .
be
fo
re

class rational {
...
private:

int n;
int d;

};

int numerator () const
{

return n;
}

af
te
r

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const{
if (is_positive)

return n;
else {

int result = n;
return -result;

}
}

582

RAT PACKr Reloaded ?

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const
{

if (is_positive)
return n;

else {
int result = n;
return -result;

}
}

value range of nominator and denominator like before
possible over�ow in addition

583

Encapsulation still Incompleete

Customer’s point of view (rational.h):

class rational {
public:

// POST: returns numerator of *this
int numerator () const;
...

private:
// none of my business

};

We determined denominator and nominator type to be int
Solution: encapsulate not only data but alsoe types.

584

Fix: “our” type rational::integer

Customer’s point of view (rational.h):

public:
using integer = long int; // might change
// POST: returns numerator of *this
integer numerator () const;

We provide an additional type!
Determine only Functionality, e.g:

implicit conversion int→ rational::integer
function double to_double (rational::integer)

585

RAT PACKr Revolutions

Finally, a customer program that remains stable

// POST: double approximation of r
double to_double (const rational r)
{

rational::integer n = r.numerator();
rational::integer d = r.denominator();
return to_double (n) / to_double (d);

}

586

Separate Declaration and De�nition

class rational {
public:

rational (int num, int denum);
using integer = long int;
integer numerator () const;
...

private:
...

};
rational::rational (int num, int den):

n (num), d (den) {}
rational::integer rational::numerator () const
{

return n;
}

rational.h

rational.cpp
class name :: member name

587

	Classes
	Overloading Functions
	Operator Overloading
	Arithmetic Operators
	Comparison Operators
	In/Output Operators
	Thought Experiment
	Encapsulation
	Member Functions
	Constructors
	Type aliases within classes

