
Felix Friedrich, Malte Schwerho�

Computer Science
Course at D-MATH/D-PHYS at ETH Zurich
Autumn 2019



1. Introduction
Computer Science: De�nition and History, Algorithms, Turing Machine,
Higher Level Programming Languages, Tools, The �rst C++Program and its
Syntactic and Semantic Ingredients

13



What is Computer Science?

The science of systematic processing of informations,. . .
. . . particularly the automatic processing using digital computers.

(Wikipedia, according to “Duden Informatik”)

14



What is Computer Science?

The science of systematic processing of informations,. . .

. . . particularly the automatic processing using digital computers.
(Wikipedia, according to “Duden Informatik”)

14



What is Computer Science?

The science of systematic processing of informations,. . .
. . . particularly the automatic processing using digital computers.

(Wikipedia, according to “Duden Informatik”)

14



Computer Science vs. Computers

Computer science is not about machines, in the same way that as-
tronomy is not about telescopes.

Mike Fellows, US Computer Scientist (1991)

15



Computer Science vs. Computers

Computer science is also concerned with the development of fast
computers and networks. . .

. . . but not as an end in itself but for the systematic processing of
informations.

16



Computer Science vs. Computers

Computer science is also concerned with the development of fast
computers and networks. . .
. . . but not as an end in itself but for the systematic processing of
informations.

16



Computer Science 6= Computer Literacy

Computer literacy: user knowledge
Handling a computer
Working with computer programs for text processing, email,
presentations . . .

17



Computer Science 6= Computer Literacy

Computer Science Fundamental knowledge
How does a computer work?
How do you write a computer program?

17



Back from the past: This course

Systematic problem solving with algorithms and the programming
language C++.
Hence: not only

but also programming course.

18



Algorithm: Fundamental in Computer Science

Algorithm:
Instructions to solve a problem step by step

Execution does not require any intelligence, but precision (even
computers can do it)
according to Muhammed al-Chwarizmi,
author of an arabic
computation textbook (about 825)

“Dixit algorizmi. . . ” (Latin translation)

19



Algorithm: Fundamental in Computer Science

Algorithm:
Instructions to solve a problem step by step
Execution does not require any intelligence, but precision (even
computers can do it)

according to Muhammed al-Chwarizmi,
author of an arabic
computation textbook (about 825)

“Dixit algorizmi. . . ” (Latin translation)

19



Algorithm: Fundamental in Computer Science

Algorithm:
Instructions to solve a problem step by step
Execution does not require any intelligence, but precision (even
computers can do it)
according to Muhammed al-Chwarizmi,
author of an arabic
computation textbook (about 825)

“Dixit algorizmi. . . ” (Latin translation)
19



Oldest Nontrivial Algorithm
Euclidean algorithm (from the elements from Euklid, 3. century B.C.)

a b

a b a b a b

Input: integers a > 0, b > 0
Output: gcd of a und b

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Result: a.

20



Oldest Nontrivial Algorithm
Euclidean algorithm (from the elements from Euklid, 3. century B.C.)

a b a b

a b a b

Input: integers a > 0, b > 0
Output: gcd of a und b

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Result: a.

20



Oldest Nontrivial Algorithm
Euclidean algorithm (from the elements from Euklid, 3. century B.C.)

a b a b a b

a b

Input: integers a > 0, b > 0
Output: gcd of a und b

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Result: a.

20



Oldest Nontrivial Algorithm
Euclidean algorithm (from the elements from Euklid, 3. century B.C.)

a b a b a b a b

Input: integers a > 0, b > 0
Output: gcd of a und b

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Result: a.

20



Oldest Nontrivial Algorithm
Euclidean algorithm (from the elements from Euklid, 3. century B.C.)

a b a b a b a b

Input: integers a > 0, b > 0
Output: gcd of a und b

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Result: a.

20



Algorithms: 3 Levels of Abstractions

1. Core idea (abstract):
the essence of any algorithm (“Eureka moment”)

2. Pseudo code (semi-detailed):
made for humans (education, correctness and e�ciency discussions,
proofs

3. Implementation (very detailed):
made for humans & computers (read- & executable, speci�c
programming language, various implementations possible)

Euclid: Core idea and pseudo code shown, implementation yet missing

21



Algorithms: 3 Levels of Abstractions

1. Core idea (abstract):
the essence of any algorithm (“Eureka moment”)

2. Pseudo code (semi-detailed):
made for humans (education, correctness and e�ciency discussions,
proofs

3. Implementation (very detailed):
made for humans & computers (read- & executable, speci�c
programming language, various implementations possible)

Euclid: Core idea and pseudo code shown, implementation yet missing

21



Algorithms: 3 Levels of Abstractions

1. Core idea (abstract):
the essence of any algorithm (“Eureka moment”)

2. Pseudo code (semi-detailed):
made for humans (education, correctness and e�ciency discussions,
proofs

3. Implementation (very detailed):
made for humans & computers (read- & executable, speci�c
programming language, various implementations possible)

Euclid: Core idea and pseudo code shown, implementation yet missing

21



Algorithms: 3 Levels of Abstractions

1. Core idea (abstract):
the essence of any algorithm (“Eureka moment”)

2. Pseudo code (semi-detailed):
made for humans (education, correctness and e�ciency discussions,
proofs

3. Implementation (very detailed):
made for humans & computers (read- & executable, speci�c
programming language, various implementations possible)

Euclid: Core idea and pseudo code shown, implementation yet missing

21



Euklid in the Box

0 1 2 3 4 5 6 7 8 9

Speicher

Links Rechts

Register 22



Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe
zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8 9

Speicher

Programmcode

Links Rechts

Register 22



Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe
zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Programmcode Daten

Links Rechts

Register 22



Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe
zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Programmcode Daten

Links Rechts

Register

Daten

22



Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe
zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Links

b

Rechts

a

Register

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Ergebnis: a.

22



Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe
zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Links

b

Rechts

a

Register

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Ergebnis: a.

22



Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe
zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Links

b

Rechts

a

Register

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Ergebnis: a.

22



Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe
zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Links

b

Rechts

a

Register

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Ergebnis: a.

22



Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe
zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Links

b

Rechts

a

Register

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Ergebnis: a.

22



Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe
zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Links Rechts

Register

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Ergebnis: a.

22



Computers – Concept

A bright idea: universal Turing machine (Alan Turing, 1936)

Alan Turing
23



Computer – Implementation

Z1 – Konrad Zuse (1938)
ENIAC – John Von Neumann (1945)

Konrad Zuse

John von Neumann
24



Memory for data and program

Sequence of bits from {0, 1}.
Program state: value of all bits.
Aggregation of bits to memory cells (often: 8 Bits = 1 Byte)

26



Memory for data and program

Every memory cell has an address.
Random access: access time to the memory cell is (nearly) independent
of its address.

26



Programming

With a programming language we issue commands to a computer such
that it does exactly what we want.
The sequence of instructions is the
(computer) program

The Harvard Computers, human computers, ca.1890
27



Computing speed

In the time, on average, that the sound takes to travel from from my mouth
to you ...

30 m

a contemporary desktop PC can process more than 100 millions
instructions 1

1Uniprocessor computer at 1 GHz.
28



Computing speed

In the time, on average, that the sound takes to travel from from my mouth
to you ...

30 m

a contemporary desktop PC can process more than 100

millions
instructions 1

1Uniprocessor computer at 1 GHz.
28



Computing speed

In the time, on average, that the sound takes to travel from from my mouth
to you ...

30 m =̂ more than 100.000.000 instructions

a contemporary desktop PC can process more than 100 millions
instructions 1

1Uniprocessor computer at 1 GHz.
28



Why programming?

Do I study computer science or what ...

There are programs for everything ...
I am not interested in programming ...
because computer science is a mandatory subject here, unfortunately...
. . .

29



Why programming?

Do I study computer science or what ...
There are programs for everything ...

I am not interested in programming ...
because computer science is a mandatory subject here, unfortunately...
. . .

29



Why programming?

Do I study computer science or what ...
There are programs for everything ...
I am not interested in programming ...

because computer science is a mandatory subject here, unfortunately...
. . .

29



Why programming?

Do I study computer science or what ...
There are programs for everything ...
I am not interested in programming ...
because computer science is a mandatory subject here, unfortunately...

. . .

29



Why programming?

Do I study computer science or what ...
There are programs for everything ...
I am not interested in programming ...
because computer science is a mandatory subject here, unfortunately...
. . .

29



Mathematics used to be the lingua franca of the natural sciences
on all universities. Today this is computer science.

Lino Guzzella, president of ETH Zurich 2015-2018, NZZ Online, 1.9.2017

((BTW: Lino Guzzella is not a computer scientist, he is a mechanical engineer and prof. for thermotronics )

30



This is why programming!

Any understanding of modern technology requires knowledge about the
fundamental operating principles of a computer.
Programming (with the computer as a tool) is evolving a cultural
technique like reading and writing (using the tools paper and pencil)

Programming is the interface between engineering and computer
science – the interdisciplinary area is growing constantly.
Programming is fun (and is useful)!

31



This is why programming!

Any understanding of modern technology requires knowledge about the
fundamental operating principles of a computer.
Programming (with the computer as a tool) is evolving a cultural
technique like reading and writing (using the tools paper and pencil)
Programming is the interface between engineering and computer
science – the interdisciplinary area is growing constantly.

Programming is fun (and is useful)!

31



This is why programming!

Any understanding of modern technology requires knowledge about the
fundamental operating principles of a computer.
Programming (with the computer as a tool) is evolving a cultural
technique like reading and writing (using the tools paper and pencil)
Programming is the interface between engineering and computer
science – the interdisciplinary area is growing constantly.
Programming is fun (and is useful)!

31



Programming Languages

The language that the computer can understand (machine language) is
very primitive.
Simple operations have to be subdivided into (extremely) many single
steps
The machine language varies between computers.

32



Higher Programming Languages

can be represented as program text that
can be understood by humans
is independent of the computer model
→ Abstraction!

33



Why C++?

Other popular programming languages: Java, C#, Python, Javascript, Swift,
Kotlin, Go, ... . . .

General consensus:
„The” programming language for systems programming: C
C has a fundamental weakness: missing (type) safety

34



Why C++?

Other popular programming languages: Java, C#, Python, Javascript, Swift,
Kotlin, Go, ... . . .

General consensus:
„The” programming language for systems programming: C
C has a fundamental weakness: missing (type) safety

34



Why C++?

Over the years, C++’s greatest strength and its greatest weakness
has been its C-Compatibility – B. Stroustrup

35



Syntax and Semantics

Like our language, programs have to be formed according to certain
rules.

Syntax: Connection rules for elementary symbols (characters)
Semantics: interpretation rules for connected symbols.

Corresponding rules for a computer program are simpler but also more
strict because computers are relatively stupid.

36



Syntax and Semantics

Like our language, programs have to be formed according to certain
rules.

Syntax: Connection rules for elementary symbols (characters)
Semantics: interpretation rules for connected symbols.

Corresponding rules for a computer program are simpler but also more
strict because computers are relatively stupid.

36



Deutsch vs. C++

Deutsch

Alleen sind nicht gefährlich, Rasen ist gefährlich!
(Wikipedia: Mehrdeutigkeit)

C++

// computation
int b = a * a; // b = a2

b = b * b; // b = a4

37



Syntax and Semantics of C++

Syntax:
When is a text a C++ program?
I.e. is it grammatically correct?
→ Can be checked by a computer

Semantics:
What does a program mean?
Which algorithm does a program implement?
→ Requires human understanding

39



Programming Tools

Editor: Program to modify, edit and store C++program texts
Compiler: program to translate a program text into machine language

Computer: machine to execute machine language programs
Operating System: program to organize all procedures such as �le
handling, editor-, compiler- and program execution.

41



Programming Tools

Editor: Program to modify, edit and store C++program texts
Compiler: program to translate a program text into machine language
Computer: machine to execute machine language programs
Operating System: program to organize all procedures such as �le
handling, editor-, compiler- and program execution.

41



The �rst C++ program

// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

} 43



Most important ingredients. . . Statements

// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

Do something (read in a)!

43



Most important ingredients. . . Expressions

// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

Compute a value (a2)!

43



“Accessories:” Comments
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

} 45



“Accessories:” Comments
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

comments

45



Comments and Layout

The compiler does not care...

#include <iostream>
int main(){std::cout << "Compute a^8 for a =? ";
int a; std::cin >> a; int b = a * a; b = b * b;
std::cout << a << "^8 = " << b*b << "\n";return 0;}

... but we do!

47



Comments and Layout

The compiler does not care...

#include <iostream>
int main(){std::cout << "Compute a^8 for a =? ";
int a; std::cin >> a; int b = a * a; b = b * b;
std::cout << a << "^8 = " << b*b << "\n";return 0;}

... but we do!

47



“Accessories:” Include and Main Function
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

} 48



“Accessories:” Include and Main Function
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

include directive

48



“Accessories:” Include and Main Function
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

declaration of the main function

48



Statements: Do something!

int main() {
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

51



Statements: Do something!

int main() {
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

expression statements

51



Statements: Do something!

int main() {
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}
return statement

51



Statements – E�ects
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

e�ect: output of the string Compute ...

E�ect: input of a number stored in a
E�ect: saving the computed value of a · a into b

E�ect: saving the computed value of b · b into b

E�ect: output of the value of a and the computed value of b · bE�ect: return the value 0
55



Statements – Variable De�nitions

int main() {
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

declaration statement
type
names

57



Variables

represent (varying) values
have

name
type
value
address

int a; de�nes a variable with

name: a

type: int

value: (initially) unde�ned

Address: determined by
compiler

61



Variables

represent (varying) values
have

name
type
value
address

int a; de�nes a variable with

name: a

type: int

value: (initially) unde�ned

Address: determined by
compiler

61



Expressions: compute a value!

Expressions

represent Computations

are either primary (b)
or composed (b*b). . .
. . . from di�erent expressions, using operators
have a type and a value

Analogy: building blocks

63



Expressions: compute a value!

Expressions

represent Computations
are either primary (b)

or composed (b*b). . .
. . . from di�erent expressions, using operators
have a type and a value

Analogy: building blocks

63



Expressions: compute a value!

Expressions

represent Computations
are either primary (b)
or composed (b*b). . .

. . . from di�erent expressions, using operators
have a type and a value

Analogy: building blocks

63



Expressions: compute a value!

Expressions

represent Computations
are either primary (b)
or composed (b*b). . .
. . . from di�erent expressions, using operators

have a type and a value

Analogy: building blocks

63



Expressions: compute a value!

Expressions

represent Computations
are either primary (b)
or composed (b*b). . .
. . . from di�erent expressions, using operators
have a type and a value

Analogy: building blocks

63



Expressions: compute a value!

Expressions

represent Computations
are either primary (b)
or composed (b*b). . .
. . . from di�erent expressions, using operators
have a type and a value

Analogy: building blocks

63



Expressions

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";

return 0;

64



Expressions

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";

return 0;

variable name, primary expression (+ name and address)

variable name, primary expression (+ name and address)

literal, primary expression
64



Expressions Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";

return 0;

composite expression

composite expression

64



Expressions Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";

return 0;

Two times composed expression

Four times composed expression
64



Literals

represent constant values
have a �xed type and value
are "syntactical values"

0 has type int, value 0.
1.2e5 has type double, value 1.2 · 105.

67



L-Values and R-Values

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";
return 0;

68



L-Values and R-Values

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";
return 0;

L-value (expression + address)

L-value (expression + address)

R-Value (expression that is not an L-value)
68



L-Values and R-Values

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";
return 0;

R-Value

R-Value

68



L-Values and R-Values

L-Wert (“Left of the assignment operator”)

Expression with address
Value is the content at the memory location according to the type of
the expression.

L-Value can change its value (e.g. via assignment)

Example: variable name

69



L-Values and R-Values

L-Wert (“Left of the assignment operator”)

Expression with address
Value is the content at the memory location according to the type of
the expression.
L-Value can change its value (e.g. via assignment)

Example: variable name

69



L-Values and R-Values

R-Wert (“Right of the assignment operator”)

Expression that is no L-value

Any L-Value can be used as R-Value (but not the other way round)
An R-Value cannot change its value

Example: literal 0

70



L-Values and R-Values

R-Wert (“Right of the assignment operator”)

Expression that is no L-value
Any L-Value can be used as R-Value (but not the other way round)

An R-Value cannot change its value

Example: literal 0

70



L-Values and R-Values

R-Wert (“Right of the assignment operator”)

Expression that is no L-value
Any L-Value can be used as R-Value (but not the other way round)
Every E-Bike can be used as normal bike, but not the other way
round

An R-Value cannot change its value

Example: literal 0

70



L-Values and R-Values

R-Wert (“Right of the assignment operator”)

Expression that is no L-value
Any L-Value can be used as R-Value (but not the other way round)
An R-Value cannot change its value

Example: literal 0

70



Operators and Operands Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

71



Operators and Operands Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

left operand (output stream)
right operand (string)output operator

71



Operators and Operands Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

left operand (input stream)

right operand (variable name)
input operator

71



Operators and Operands Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

assignment operator

multiplication operator 71


	Introduction
	Computer Science
	Computers
	Programming
	C++
	Comments
	Include and main Function
	Statements
	Declarations
	Variables
	Expressions
	L-Values and R-Values
	Operators


