Felix Friedrich, Malte Schwerhoff

Computer Science
Course at D-MATH/D-PHYS at ETH Zurich

Autumn 2019

1. Introduction

Computer Science: Definition and History, Algorithms, Turing Machine,
Higher Level Programming Languages, Tools, The first C++Program and its
Syntactic and Semantic Ingredients

What is Computer Science?

m The science of systematic processing of informations,. ..
m ...particularly the automatic processing using digital computers.
(Wikipedia, according to “Duden Informatik”)

Computer Science vs. Computers

Computer science is not about machines, in the same way that as-
tronomy is not about telescopes.

Mike Fellows, US Computer Scientist (1991)

i
o

http://larc.unt.edu/ian/research/cseducation/fellows1991.pdf

http://larc.unt.edu/ian/research/cseducation/fellows1991.pdf

Computer Science vs. Computers

m Computer science is also concerned with the development of fast
computers and networks...

m ...but notas an end in itself but for the systematic processing of
informations.

Computer Science # Computer Literacy

Computer literacy: user knowledge
m Handling a computer

m Working with computer programs for text processing, email,
presentations ...

Computer Science Fundamental knowledge
m How does a computer work?
m How do you write a computer program?

Back from the past: This course

m Systematic problem solving with algorithms and the programming
language C+-+.

m Hence: not only
but also programming course.

Algorithm: Fundamental in Computer Science

Algorithm:

m Instructions to solve a problem step by step

m Execution does not require any intelligence, but precision (even
computers can do it)

m according to Muhammed al-Chwarizmi,
author of an arabic
computation textbook (about 825)

“Dixit algorizmi...” (Latin translation)

N
©

http://de.wikipedia.org/wiki/Algorithmus

http://de.wikipedia.org/wiki/Algorithmus

Oldest Nontrivial Algorithm

Euclidean algorithm (from the elements from Euklid, 3. century B.C.)

m Input: integersa >0,b> 0

m Output: gcd of a und b
While b # 0
If « > bthen
a+a—2>b
else:
b<b—a
Result: a.

ab ab ab ab

20

Algorithms: 3 Levels of Abstractions

1. Core idea (abstract):
the essence of any algorithm (“Eureka moment”)

2. Pseudo code (semi-detailed):
made for humans (education, correctness and efficiency discussions,
proofs

3. Implementation (very detailed):
made for humans & computers (read- & executable, specific
programming language, various implementations possible)

Euclid: Core idea and pseudo code shown, implementation yet missing

21

Euklid in the Box

Speicher
0 1 2 3 4 5 6 7 8
?
[8] [9] L=07 SR ;nl'é L—R || springe || R—L || springe b
oL SR stop pzu 69 — [8] zu 0 — [9] zu 0
. 7 \.
~" ~"
Programmcode Daten
Daten
— While b # 0
Links Rechts If a > b then
aa—>b
else:
b 4 b« b—a
Ergebnis: a.

Register

Computers — Concept

A bright idea: universal Turing machine (Alan Turing, 1936)

Folge von Symbolen auf Ein- und Ausgabeband

| | | | I l \ I T T T T
Programmcode (x) Eingabe Ausgabe
1 1 1 1 1 1 1 1 1 1 1 1 1
Lese- /
Schreibkopf
Festprogramm-
Computer

Kontrolleinheit

Interner Zustand «Symbol liberschreiben»
«Nach links»

«Nach rechts»

«Symbol lesen»

http://en.wikipedia.org/wiki/Alan_Turing

http://en.wikipedia.org/wiki/Alan_Turing

Computer - Implementation

m 71 - Konrad Zuse (1938)
m ENIAC - John Von Neumann (1945)

Von Neumann Architektur

Prozessor - CPU Konrad Zuse
{ Rechenwerk | | Steuerwerk |
i ALU Pl i
BUS
Speicher Ein-/Ausgabe

John von Neumann

[N

ht®p://www.hs.uni-hamburg.de/DE/GNT/hh/biogr/zuse.htm
http://commons.wikimedia.org/wiki/File:John_von_Neumann. jpg

http://www.hs.uni-hamburg.de/DE/GNT/hh/biogr/zuse.htm
http://commons.wikimedia.org/wiki/File:John_von_Neumann.jpg

Computer

Ingredients of a Von Neumann Architecture

m Memory (RAM) for programs and data

m Processor (CPU) to process programs and data
m /O components to communicate with the world

25

Memory for data and program

m Sequence of bits from {0, 1}.

m Program state: value of all bits.

m Aggregation of bits to memory cells (often: 8 Bits = 1 Byte)
m Every memory cell has an address.

m Random access: access time to the memory cell is (nearly) independent
of its address.

01001101 00101110

Addresse : 17 Addresse : 18

Processor

The processor (CPU)

m executes instructions in machine language
m has an own "fast" memory (registers)

m can read from and write to main memory

m features a set of simplest operations = instructions (e.g. adding to
register values)

27

Programming

m With a programming language we issue commands to a computer such
that it does exactly what we want.

m The sequence of instructions is the
(computer) program

The Harvard Computers, human computers, ca.1890

N
@®

http://en.wikipedia.org/wiki/Harvard_Computers

http://en.wikipedia.org/wiki/Harvard_Computers

Computing speed

In the time, on average, that the sound takes to travel from from my mouth
to you ...

30 m = more than 100.000.000 instructions

v

a contemporary desktop PC can process more than 100 millions
instructions

TUniprocessor computer at 1 GHz.

Why programming?

m Do | study computer science or what ...

m There are programs for everything ...

®m | am not interested in programming ...

m because computer science is a mandatory subject here, unfortunately...
I

30

Mathematics used to be the lingua franca of the natural sciences
on all universities. Today this is computer science.

Lino Guzzella, president of ETH Zurich 2015-2018, NZZ Online, 1.9.2017

((BTW: Lino Guzzella is not a computer scientist, he is a mechanical engineer and prof. for thermotronics @)

31

This is why programming!

m Any understanding of modern technology requires knowledge about the
fundamental operating principles of a computer.

m Programming (with the computer as a tool) is evolving a cultural
technique like reading and writing (using the tools paper and pencil)

m Programming is the interface between engineering and computer
science - the interdisciplinary area is growing constantly.

m Programming is fun (and is useful)!

32

Programming Languages

m The language that the computer can understand (machine language) is
very primitive.

m Simple operations have to be subdivided into (extremely) many single
steps

m The machine language varies between computers.

33

Higher Programming Languages

can be represented as program text that

m can be understood by humans

m is independent of the computer model
— Abstraction!

34

Programming langauges - classification

Differentiation into
m Compiled vs. interpreted languages
m C++, CH, Java, Go, Pascal, Modula, Oberon

VS,
Python, Javascript, Matlab

m Higher programming languages vs. Assembler

m Multi-purpose programming languages vs. single purpose programming
languages

m Procedural, object oriented, functional and logical languages.

35

Why C++7?

Other popular programming languages: Java, C#, Python, Javascript, Swift,
Kotlin, Go,

General consensus:
m ,The” programming language for systems programming: C
m C has a fundamental weakness: missing (type) safety

36

Why C++7?

Over the years, C++'s greatest strength and its greatest weakness
has been its C-Compatibility - B. Stroustrup

Why C++7?

m C++equips C with the power of the abstraction of a higher
programming language

m In this course: C++ introduced as high level language, not as better C

m Approach: traditionally procedural — object-oriented.

38

Syntax and Semantics

m Like our language, programs have to be formed according to certain
rules.

m Syntax: Connection rules for elementary symbols (characters)
m Semantics: interpretation rules for connected symbols.

m Corresponding rules for a computer program are simpler but also more
strict because computers are relatively stupid.

39

Deutsch vs. C++

Deutsch
Alleen sind nicht gefahrlich, Rasen ist gefahrlich!
(Wikipedia: Mehrdeutigkeit)

C++

// computation
int b =a * a; // b=a’
b =Db * b; // b=a’

40

C++: Kinds of errors illustrated with German sentences

Das Auto fuhr zu schnell.
DasAuto fuh r zu sxhnell.
Rot das Auto ist.

Man empfiehlt dem Dozenten
nicht zu widersprechen

Sie ist nicht gross und rothaarig.

Die Auto ist rot.
Das Fahrrad galoppiert schnell.

Manche Tiere riechen gut.

Syntaxfehler: Wortbildung.

Syntaxfehler: Satzstellung.

Syntaxfehler: Satzzeichen fehlen .

0

Syntax and Semantics of C++

Syntax:

m When is a text a C++ program?
m le. is it grammatically correct?

m — Can be checked by a computer

Semantics:

m What does a program mean?

m Which algorithm does a program implement?
m — Requires human understanding

42

Syntax and semantics of C++

The ISO/IEC Standard 14822 (1998, 2011, 2014, ...)
m is the “law” of C++
m defines the grammar and meaning of C++programs

m since 2011, continuously extended with features for advanced
programming

43

Programming Tools

m Editor: Program to modify, edit and store C+-+program texts
m Compiler: program to translate a program text into machine language
m Computer: machine to execute machine language programs

m Operating System: program to organize all procedures such as file
handling, editor-, compiler- and program execution.

4t

Language constructs with an example

m Comments/layout m constants

m Include directive m identifiers, names
m the main function m expressions

m Values effects m - and R- values
m Types and functionality m operators

m literals m statements

m variables

45

The first C++ program

// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {
// input
std::cout << "Compute a8 for a =7 ";
int a;
std::cin >> a; ——— Statements: Do something (read in a)!
// computation
int b = a *x a; // b = a”2 ¢——— Expressions: Compute a value (a?)!
b =Db * b; // b =a4
// output b * b, i.e., a”8
std::cout << a << ""8 = " << b * b << "\n";
return O;

46

Behavior of a Program

At compile time:
m program accepted by the compiler (syntactically correct)
m Compiler error

During runtime:

m correct result

m incorrect result

m program crashes

m program does not terminate (endless loop)

47

“Accessories:” Comments

// Program: power8.cpp

// Raise a number to the eighth power.

#include <iostream>

int main() {
// input ¢
std::cout << "Compute a8 for a =7 ";
int a;
std::cin >> a;
// computation
int b=a *xa; // b=a"2

comments

b =Db * b; // b=a4

// output b * b, i.e., a”8

std::cout << a << "8 = " << b * b << "\n";
return O;

Comments and Layout

Comments
m are contained in every good program.

m document what and how a program does something and how it should
be used,

m are ignored by the compiler

m Syntax: “double slash” // until the line ends.
The compiler ignores additionally

m Empty lines, spaces,

m Indendations that should reflect the program logic

49

Comments and Layout

The compiler does not care...

#include <iostream>

int main(){std::cout << "Compute a8 for a =7 ";
int a; std::cin >> a; int b = a * a; b =b * b;
std::cout << a << ""8 = " << b¥b << "\n";return 0;}

... but we do!

50

“Accessories:” Include and Main Function

// Program: power8.cpp
// Raise a number to the eighth power.

#include <iostream> <———— include directive

int main() € declaration of the main function
// input
std::cout << "Compute a8 for a =7 ";
int a;

std::cin >> a;
// computation
int b=a *xa; // b=a"2

b =Db * b; // b =a4

// output b * b, i.e., a”8

std::cout << a << "8 = " << b * b << "\n";
return O;

} 51

Include Directives

C++ consists of
m the core language
m standard library
m in-/output (header iostream)

m mathematical functions (cmath)
m .

#include <iostream>
m makes in- and output available

52

The main Function

the main-function

m is provided in any C++ program
m is called by the operating system
m like a mathematical function ...

® arguments
m return value

® .. but with an additional effect

®m Read a number and output the 8th power.

53

Statements: Do something!

int main() {
// input

std::cout << "Compute a”8 for a =7 ";
int a;

std::cin >> a;<¢ expression statements
// computation
int b=a *xa; // b=

b =D>b * b;

// output b * b, i.e., a”8

std::cout << a << "8 = " << b * b << "\n";
return 0;< return statement

Statements

m building blocks of a C++ program

m are executed (sequentially)

m end with a semicolon

m Any statement has an effect (potentially)

55

Expression Statements

m have the following form:
expr;
where expr is an expression
m Effect is the effect of expr, the value of expr is ignored.

b = bxb;

56

Return Statements

m do only occur in functions and are of the form
return expr;

where expr is an expression
m specify the return value of a function

return O;

57

Statements - Effects

int main() { effect: output of the string Compute ...
// input
std::cout << "Compute a”8 for a =7 ";4—__5_5______’//
int a;

std::cin >> aj;¢—— Effect: input of a number stored in a
// computation Effect: saving the computed value of a - a into b

int b =a * a;¢// b = a"2
b=D>b * b; // b =a4

Effect: saving the computed value of - b into b
// output b * b, i.e., a”8

std::cout << a << "8 = " << b * b << "\n";
return O;+—~\\ \

Effect: return the value 0 Effect: output of the value of @ and the compu

58

Values and Effects

m determine what a program does,
m are purely semantical concepts:

m Symbol 0 means Value 0 € Z
B std::cin >> a; means effect "read in a number"

m depend on the program state (memory content, inputs)

59

Statements - Variable Definitions

int main() {
// input
std::cout << "Compute a”8 for a =7 ";
/—-> a;< declaration statement
type std::cin >> a;
names // computation

L—-)b=a*a; / b =a"2

b =b * b; // b =2a4

// output b * b, i.e., a”8

std::cout << a << "8 = " << b * b << "\n";
return O;

60

Declaration Statements

m introduce new names in the program,
m consist of declaration and semicolon Example: int a;
m can initialize variables Example: int b = a * a;

61

Types and Functionality

int:
m C+-+ integer type
m corresponds to (Z, +, x) in math

In C++ each type has a name and
m a domain (e.g. integers)
m functionality (e.g. addition/multiplication)

62

Fundamental Types

C++ comprises fundamental types for
m integers (int)

natural numbers (unsigned int)
real numbers (float, double)
boolean values (bool)

63

Variables

| eI (varying) values int a; defines a variable with

m have
® name: a
= name
= type m type: int
m value N
mladdress m value: (initially) undefined

m Address: determined by

m are "visible" in the program -

context

Identifiers and Names

(Variable-)names are identifiers

m allowed: A,...Z; a,..,2, 0,..,9;_

m First symbol needs to be a character.
There are more names:

m std::cin (Qualified identifier)

65

Expressions: compute a value!

Expressions

m represent Computations

m are either primary (b)

m or composed (bxb)...

m ...from different expressions, using operators
m have a type and a value

Analogy: building blocks

66

Expressions

// input composite expression

|std::cout << "Compute a"8 for a =7 "b

int a;
std::cin >> a;

// computation
int b =a *a; // b=a"2
Two times composed expression

std::cout << ag< "78 =" <<<< ".\ n";

return prour times composed expression

Building Blocks

67

Expressions

m represent computations
m are primary or composite (by other expressions and operations)
a * a

composed of
variable name, operator symbolyvariable name

variable name: primary expression

m can be put into parantheses
a * alisequivalentto (a * a)

68

Expressions

have type, value und effect (potentially).
b=bx*xb
a * a

m type: int (type of the operands) m type: int (Typ der Operanden)

m Value: product of aand a - Vellve: prodl e eif b aingl o

m effect: assignment of the product

] t: none.
Eiffec value to b

The type of an expression is fixed but the value and effect are only
determined by the evaluation of the expression

69

Literals

m represent constant values
m have a fixed type and value
m are "syntactical values"

m 0 has type int, value 0.
m 1.2e5 has type double, value 1.2 - 10°.

70

L-Values and R-Values

// input R-Value
std::cout <<|"Compute a"8 for a =7 "k
int a;

std::cin >> EI(— L-value (expression + address)

L-value (expression 4 address)

// cgmputation

int bl=a * a; // b= a"2

b=[b*xb, //b=a4
! R-Value
// output b * b, i.e., a”8 [
std::cout << a<< ""8 = " << [b * [p| << ".\ n";

return %
R-Value (expression that is not an L-value)

7

L-Values and R-Values

L-Wert (“Left of the assignment operator”)

m Expression with address

m Value is the content at the memory location according to the type of
the expression.

m [-Value can change its value (e.g. via assignment)

Example: variable name

72

L-Values and R-Values

R-Wert (“Right of the assignment operator”)

m Expression that is no L-value
m Any L-Value can be used as R-Value (but not the other way round)

m An R-Value cannot change its value

Example: literal 0

73

Operators and Operands Building Blocks

left operand (output stream)
output operator right operand (string)
ifiput <£/— 4£//’—
std Tcout "Compute a”8 for a™=? ";

int a;

std;:cin >
\ richt operand (variable name)

// computatit INPUt operator
int b =z left operand (input stream)

b =D>b * b; // b =a4

//%1 a_lssignment operator ~g

std::cout << a << "8 = " << b * b << "\n";

return O; Lo)
& multiplication operator

74

Operators

Operators
m combine expressions (operands) into new composed expressions

m specify for the operands and the result the types and if the have to be L-
or R-values.

m have an arity

75

Multiplication Operator *

m expects two R-values of the same type as operands (arity 2)
m "returns the product as R-value of the same type", that means formally:

m The composite expression is an R-value; its value is the product of the
value of the two operands

Examples:a * aandb * b

76

Assignment Operator =

m Left operand is L-value,
m Right operand is R-value of the same type.

m Assigns to the left operand the value of the right operand and returns
the left operand as L-value

Examplesb = b * banda = b

Attention, Trap!

The operator = corresponds to the assignment operator of mathematics (:=),
not to the comparison operator (=).

77

Input Operator »

m left operand is L-Value (input stream)
m right operand is L-Value

m assigns to the right operand the next value read from the input stream,
removing it from the input stream and returns the input stream as
[-value Example std::cin >> a (mostly keyboard input)

m Input stream is being changed and must thus be an L-Value.

78

Output Operator «

m left operand is L-Value (output stream)

m right operand is R-Value

m outputs the value of the right operand, appends it to the output stream
and returns the output stream as L-Value Example: std: :cout << a
(mostly console output)

m The output stream is being changed and must thus be an L-Value.

79

Output Operator «

Why returning the output stream?
m allows bundling of output

std::cout << a << ""8 = " << b * b << "\n"
is parenthesized as follows

((((Std::cout << a) <« ""8 = ") << b * b) << u\nu)

m std::cout << aisthe left hand operand of the next << and is thus an
L-Value that is no variable name

80

	Introduction
	Computer Science
	Computers
	Programming
	C++
	Comments
	Include and main Function
	Statements
	Declarations
	Variables
	Expressions
	L-Values and R-Values
	Operators

