
Felix Friedrich, Malte Schwerho�

Computer Science
Course at D-MATH/D-PHYS at ETH Zurich
Autumn 2019

1. Introduction
Computer Science: De�nition and History, Algorithms, Turing Machine,
Higher Level Programming Languages, Tools, The �rst C++Program and its
Syntactic and Semantic Ingredients

13

What is Computer Science?

The science of systematic processing of informations,. . .
. . . particularly the automatic processing using digital computers.

(Wikipedia, according to “Duden Informatik”)

14

Computer Science vs. Computers

Computer science is not about machines, in the same way that as-
tronomy is not about telescopes.

Mike Fellows, US Computer Scientist (1991)

ht
tp

:/
/l

ar
c.

un
t.

ed
u/

ia
n/

re
se

ar
ch

/c
se

du
ca

ti
on

/f
el

lo
ws

19
91

.p
df

15

http://larc.unt.edu/ian/research/cseducation/fellows1991.pdf

Computer Science vs. Computers

Computer science is also concerned with the development of fast
computers and networks. . .
. . . but not as an end in itself but for the systematic processing of
informations.

16

Computer Science 6= Computer Literacy

Computer literacy: user knowledge
Handling a computer
Working with computer programs for text processing, email,
presentations . . .

Computer Science Fundamental knowledge
How does a computer work?
How do you write a computer program?

17

Back from the past: This course

Systematic problem solving with algorithms and the programming
language C++.
Hence: not only

but also programming course.

18

Algorithm: Fundamental in Computer Science

Algorithm:
Instructions to solve a problem step by step
Execution does not require any intelligence, but precision (even
computers can do it)
according to Muhammed al-Chwarizmi,
author of an arabic
computation textbook (about 825)

“Dixit algorizmi. . . ” (Latin translation)

ht
tp

:/
/d

e.
wi

ki
pe

di
a.

or
g/

wi
ki

/A
lg

or
it

hm
us

19

http://de.wikipedia.org/wiki/Algorithmus

Oldest Nontrivial Algorithm
Euclidean algorithm (from the elements from Euklid, 3. century B.C.)

a b a b a b a b

Input: integers a > 0, b > 0
Output: gcd of a und b

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Result: a.

20

Algorithms: 3 Levels of Abstractions

1. Core idea (abstract):
the essence of any algorithm (“Eureka moment”)

2. Pseudo code (semi-detailed):
made for humans (education, correctness and e�ciency discussions,
proofs

3. Implementation (very detailed):
made for humans & computers (read- & executable, speci�c
programming language, various implementations possible)

Euclid: Core idea and pseudo code shown, implementation yet missing

21

Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe
zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Programmcode Daten

Links

b

Rechts

a

Register

Daten
While b 6= 0

If a > b then
a← a− b

else:
b← b− a

Ergebnis: a.

22

Computers – Concept

A bright idea: universal Turing machine (Alan Turing, 1936)

Alan Turing

ht
tp

:/
/e

n.
wi

ki
pe

di
a.

or
g/

wi
ki

/A
la

n_
Tu

ri
ng

23

http://en.wikipedia.org/wiki/Alan_Turing

Computer – Implementation

Z1 – Konrad Zuse (1938)
ENIAC – John Von Neumann (1945)

Konrad Zuse

John von Neumann

ht
tp

:/
/w

ww
.h

s.
un

i-
ha

mb
ur

g.
de

/D
E/

GN
T/

hh
/b

io
gr

/z
us

e.
ht

m
ht

tp
:/

/c
om

mo
ns

.w
ik

im
ed

ia
.o

rg
/w

ik
i/

Fi
le

:J
oh

n_
vo

n_
Ne

um
an

n.
jp

g

24

http://www.hs.uni-hamburg.de/DE/GNT/hh/biogr/zuse.htm
http://commons.wikimedia.org/wiki/File:John_von_Neumann.jpg

Computer

Ingredients of a Von Neumann Architecture
Memory (RAM) for programs and data
Processor (CPU) to process programs and data
I/O components to communicate with the world

25

Memory for data and program

Sequence of bits from {0, 1}.
Program state: value of all bits.
Aggregation of bits to memory cells (often: 8 Bits = 1 Byte)
Every memory cell has an address.
Random access: access time to the memory cell is (nearly) independent
of its address.

26

Processor

The processor (CPU)
executes instructions in machine language
has an own "fast" memory (registers)
can read from and write to main memory
features a set of simplest operations = instructions (e.g. adding to
register values)

27

Programming

With a programming language we issue commands to a computer such
that it does exactly what we want.
The sequence of instructions is the
(computer) program

The Harvard Computers, human computers, ca.1890

ht
tp

:/
/e

n.
wi

ki
pe

di
a.

or
g/

wi
ki

/H
ar

va
rd

_C
om

pu
te

rs

28

http://en.wikipedia.org/wiki/Harvard_Computers

Computing speed

In the time, on average, that the sound takes to travel from from my mouth
to you ...

30 m =̂ more than 100.000.000 instructions

a contemporary desktop PC can process more than 100 millions
instructions 1

1Uniprocessor computer at 1 GHz.
29

Why programming?

Do I study computer science or what ...
There are programs for everything ...
I am not interested in programming ...
because computer science is a mandatory subject here, unfortunately...
. . .

30

Mathematics used to be the lingua franca of the natural sciences
on all universities. Today this is computer science.

Lino Guzzella, president of ETH Zurich 2015-2018, NZZ Online, 1.9.2017

((BTW: Lino Guzzella is not a computer scientist, he is a mechanical engineer and prof. for thermotronics)

31

This is why programming!

Any understanding of modern technology requires knowledge about the
fundamental operating principles of a computer.
Programming (with the computer as a tool) is evolving a cultural
technique like reading and writing (using the tools paper and pencil)
Programming is the interface between engineering and computer
science – the interdisciplinary area is growing constantly.
Programming is fun (and is useful)!

32

Programming Languages

The language that the computer can understand (machine language) is
very primitive.
Simple operations have to be subdivided into (extremely) many single
steps
The machine language varies between computers.

33

Higher Programming Languages

can be represented as program text that
can be understood by humans
is independent of the computer model
→ Abstraction!

34

Programming langauges – classi�cation

Di�erentiation into
Compiled vs. interpreted languages

C++, C#, Java, Go, Pascal, Modula, Oberon
vs.
Python, Javascript, Matlab

Higher programming languages vs. Assembler
Multi-purpose programming languages vs. single purpose programming
languages
Procedural, object oriented, functional and logical languages.

35

Why C++?

Other popular programming languages: Java, C#, Python, Javascript, Swift,
Kotlin, Go,

General consensus:
„The” programming language for systems programming: C
C has a fundamental weakness: missing (type) safety

36

Why C++?

Over the years, C++’s greatest strength and its greatest weakness
has been its C-Compatibility – B. Stroustrup

B.
St
ro
us
tr
up
,D
es
ig
n
an
d
Ev
ol
ut
io
n
of
C+
+,
Ka
p.
4.
5

37

Why C++?

C++equips C with the power of the abstraction of a higher
programming language
In this course: C++ introduced as high level language, not as better C
Approach: traditionally procedural→ object-oriented.

38

Syntax and Semantics

Like our language, programs have to be formed according to certain
rules.

Syntax: Connection rules for elementary symbols (characters)
Semantics: interpretation rules for connected symbols.

Corresponding rules for a computer program are simpler but also more
strict because computers are relatively stupid.

39

Deutsch vs. C++

Deutsch

Alleen sind nicht gefährlich, Rasen ist gefährlich!
(Wikipedia: Mehrdeutigkeit)

C++

// computation
int b = a * a; // b = a2

b = b * b; // b = a4

40

C++: Kinds of errors illustrated with German sentences

Das Auto fuhr zu schnell.

DasAuto fuh r zu sxhnell.

Rot das Auto ist.

Man emp�ehlt dem Dozenten
nicht zu widersprechen

Sie ist nicht gross und rothaarig.

Die Auto ist rot.

Das Fahrrad galoppiert schnell.

Manche Tiere riechen gut.

Syntaktisch und semantisch korrekt.

Syntaxfehler: Wortbildung.

Syntaxfehler: Satzstellung.

Syntaxfehler: Satzzeichen fehlen .

Syntaktisch korrekt aber mehrdeutig. [kein Analogon]

Syntaktisch korrekt, doch semantisch fehlerhaft: Falscher Artikel.
[Typfehler]

Syntaktisch und grammatikalisch korrekt! Semantisch fehlerhaft.
[Laufzeitfehler]

Syntaktisch und semantisch korrekt. Semantisch mehrdeutig. [kein
Analogon]

41

Syntax and Semantics of C++

Syntax:
When is a text a C++ program?
I.e. is it grammatically correct?
→ Can be checked by a computer

Semantics:
What does a program mean?
Which algorithm does a program implement?
→ Requires human understanding

42

Syntax and semantics of C++

The ISO/IEC Standard 14822 (1998, 2011, 2014, ...)
is the “law” of C++
de�nes the grammar and meaning of C++programs
since 2011, continuously extended with features for advanced
programming

43

Programming Tools

Editor: Program to modify, edit and store C++program texts
Compiler: program to translate a program text into machine language
Computer: machine to execute machine language programs
Operating System: program to organize all procedures such as �le
handling, editor-, compiler- and program execution.

44

Language constructs with an example

Comments/layout
Include directive
the main function
Values e�ects
Types and functionality
literals
variables

constants
identi�ers, names
expressions
L- and R- values
operators
statements

45

The �rst C++ program

// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

Statements: Do something (read in a)!

Expressions: Compute a value (a2)!

46

Behavior of a Program

At compile time:
program accepted by the compiler (syntactically correct)
Compiler error

During runtime:
correct result
incorrect result
program crashes
program does not terminate (endless loop)

47

“Accessories:” Comments
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

comments

48

Comments and Layout

Comments
are contained in every good program.
document what and how a program does something and how it should
be used,
are ignored by the compiler
Syntax: “double slash” // until the line ends.

The compiler ignores additionally
Empty lines, spaces,
Indendations that should re�ect the program logic

49

Comments and Layout

The compiler does not care...

#include <iostream>
int main(){std::cout << "Compute a^8 for a =? ";
int a; std::cin >> a; int b = a * a; b = b * b;
std::cout << a << "^8 = " << b*b << "\n";return 0;}

... but we do!

50

“Accessories:” Include and Main Function
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

include directive
declaration of the main function

51

Include Directives

C++ consists of
the core language
standard library

in-/output (header iostream)
mathematical functions (cmath)
...

#include <iostream>
makes in- and output available

52

The main Function

the main-function
is provided in any C++ program
is called by the operating system
like a mathematical function ...

arguments
return value

... but with an additional e�ect

Read a number and output the 8th power.

53

Statements: Do something!

int main() {
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

expression statements

return statement

54

Statements

building blocks of a C++ program
are executed (sequentially)
end with a semicolon
Any statement has an e�ect (potentially)

55

Expression Statements

have the following form:
expr;

where expr is an expression
E�ect is the e�ect of expr, the value of expr is ignored.

b = b*b;

56

Return Statements

do only occur in functions and are of the form
return expr;

where expr is an expression
specify the return value of a function

return 0;

57

Statements – E�ects
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

e�ect: output of the string Compute ...

E�ect: input of a number stored in a
E�ect: saving the computed value of a · a into b

E�ect: saving the computed value of b · b into b

E�ect: output of the value of a and the computed value of b · bE�ect: return the value 0
58

Values and E�ects

determine what a program does,
are purely semantical concepts:

Symbol 0 means Value 0 ∈ Z
std::cin >> a; means e�ect "read in a number"

depend on the program state (memory content, inputs)

59

Statements – Variable De�nitions

int main() {
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

declaration statement
type
names

60

Declaration Statements

introduce new names in the program,
consist of declaration and semicolon Example: int a;
can initialize variables Example: int b = a * a;

61

Types and Functionality

int:
C++ integer type
corresponds to (Z, +,×) in math

In C++ each type has a name and
a domain (e.g. integers)
functionality (e.g. addition/multiplication)

62

Fundamental Types

C++ comprises fundamental types for
integers (int)
natural numbers (unsigned int)
real numbers (float, double)
boolean values (bool)
...

63

Variables

represent (varying) values
have

name
type
value
address

are "visible" in the program
context

int a; de�nes a variable with

name: a

type: int

value: (initially) unde�ned

Address: determined by
compiler

64

Identi�ers and Names

(Variable-)names are identi�ers

allowed: A,...,Z; a,...,z; 0,...,9;_
First symbol needs to be a character.

There are more names:

std::cin (Quali�ed identi�er)

65

Expressions: compute a value!

Expressions

represent Computations
are either primary (b)
or composed (b*b). . .
. . . from di�erent expressions, using operators
have a type and a value

Analogy: building blocks

66

Expressions Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";

return 0;

composite expression

Two times composed expression

Four times composed expression
67

Expressions

represent computations
are primary or composite (by other expressions and operations)
a * a
composed of
variable name, operator symbol,variable name
variable name: primary expression
can be put into parantheses
a * a is equivalent to (a * a)

68

Expressions

have type, value und e�ect (potentially).

a * a

type: int (type of the operands)

Value: product of a and a

E�ect: none.

b = b * b

type: int (Typ der Operanden)

Value: product of b and b

e�ect: assignment of the product
value to b

The type of an expression is �xed but the value and e�ect are only
determined by the evaluation of the expression

69

Literals

represent constant values
have a �xed type and value
are "syntactical values"

0 has type int, value 0.
1.2e5 has type double, value 1.2 · 105.

70

L-Values and R-Values

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";
return 0;

L-value (expression + address)

L-value (expression + address)

R-Value (expression that is not an L-value)

R-Value

R-Value

71

L-Values and R-Values

L-Wert (“Left of the assignment operator”)

Expression with address
Value is the content at the memory location according to the type of
the expression.
L-Value can change its value (e.g. via assignment)

Example: variable name

72

L-Values and R-Values

R-Wert (“Right of the assignment operator”)

Expression that is no L-value
Any L-Value can be used as R-Value (but not the other way round)
An R-Value cannot change its value

Example: literal 0

73

Operators and Operands Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

left operand (output stream)
right operand (string)output operator

left operand (input stream)

right operand (variable name)
input operator

assignment operator

multiplication operator 74

Operators

Operators
combine expressions (operands) into new composed expressions
specify for the operands and the result the types and if the have to be L-
or R-values.
have an arity

75

Multiplication Operator *

expects two R-values of the same type as operands (arity 2)
"returns the product as R-value of the same type", that means formally:

The composite expression is an R-value; its value is the product of the
value of the two operands

Examples: a * a and b * b

76

Assignment Operator =

Left operand is L-value,
Right operand is R-value of the same type.
Assigns to the left operand the value of the right operand and returns
the left operand as L-value

Examples b = b * b and a = b

Attention, Trap!

The operator = corresponds to the assignment operator of mathematics (:=),
not to the comparison operator (=).

77

Input Operator »

left operand is L-Value (input stream)
right operand is L-Value
assigns to the right operand the next value read from the input stream,
removing it from the input stream and returns the input stream as
L-value Example std::cin >> a (mostly keyboard input)
Input stream is being changed and must thus be an L-Value.

78

Output Operator «

left operand is L-Value (output stream)
right operand is R-Value
outputs the value of the right operand, appends it to the output stream
and returns the output stream as L-Value Example: std::cout << a
(mostly console output)
The output stream is being changed and must thus be an L-Value.

79

Output Operator «

Why returning the output stream?
allows bundling of output

std::cout << a << "^8 = " << b * b << "\n"

is parenthesized as follows

((((std::cout << a) << "^8 = ") << b * b) << "\n")

std::cout << a is the left hand operand of the next << and is thus an
L-Value that is no variable name

80

	Introduction
	Computer Science
	Computers
	Programming
	C++
	Comments
	Include and main Function
	Statements
	Declarations
	Variables
	Expressions
	L-Values and R-Values
	Operators

