
Informatik - AS19

Exercise 14: Inheritance & Polymorphism
Handout: 16. Dez. 2019 06:00

Due: 23. Dez. 2019 18:00

Task 1: Polymorphic Functions
Open Task

This task is a text based task. You do not need to write any program/C++ �le: the answer
should be written in main.md (and might include code fragments if questions ask for
them).

Task
Given is the following class hierarchy:

#include <iostream>
#include <string>

class A {
public:

std::string name;
 A(std::string _name) : name(_name) {}

virtual void say_hello() { std::cout << "A says hi to " << name <<
void say_bye() { std::cout << "A says bye to " << name << "\n"

};

class B : public A {
public:
 B(std::string _name) : A(_name) {}

void say_hello() { std::cout << "B greets " << name << "\n"; }
};

class C : public A {
public:
 C(std::string _name) : A(_name) {}

void say_bye() { std::cout << "C say goodbye to " << name <<
};

Exercise 14: Inheritance & Polymorphism - Print... https://expert.ethz.ch/print/ifme1/AS19/of3J2aX...

1 iš 3 2019-12-17 13:30

For each of the following functions, specify for each call whether it is polymorphic,
i.e., the dynamic type determines the function to be called, or not.

1. void f() {
A x("Jane");

 x.say_hello(); // call 1
B y("John");

 y.say_hello(); // call 2
 x = y;
 x.say_hello(); // call 3
}

2. void g() {
 A* x = new A("Jane");
 (*x).say_hello(); // call 1
 B* y = new B("John");
 (*y).say_hello(); // call 2
 x = y;
 (*x).say_hello(); // call 3
}

3. void h() {
 A* x = new A("Jane");
 (*x).say_bye(); // call 1
 C* y = new C("John");
 (*y).say_bye(); // call 2
 x = y;
 (*x).say_bye(); // call 3
}

Task 2: House Painting
Open Task

Task
Mr. Brush is hired to paint a house facade. To make an o�er, he needs to know the
area that requires painting. He looks at the house facade and sees that it can be
approximated by using di�erent shapes: Triangle (given by width and height),
Rectangle (given by width and height) and Circle (given by radius). Holes in shapes
can be accounted for by subtracting the non-paintable areas, e.g. a door or a
window.

Exercise 14: Inheritance & Polymorphism - Print... https://expert.ethz.ch/print/ifme1/AS19/of3J2aX...

2 iš 3 2019-12-17 13:30

Help Mr. Brush by implementing the three required shapes: Rectangle, Triangle,
and Circle. Each shape is implemented with its own class that inherits from class
Shape and overrides the virtual member function get_area that returns the area
de�ned by the shape.

Steps:

1. Complete declarations of class Rectangle, Triangle and Circle in �le
house_shapes.h.

2. Implement their member functions in �le house_shapes.cpp.

Testing: The test input is a list of shape objects provided in a textual representation.
The template includes a parser for the test input to avoid a lengthy speci�cation.
You do not have to implement it, but you may want to take a look at it to
understand how it works. Also you can use it to test your implementation manually.

Example: + rectangle 4 3 - circle 1.5 end is a rectangular facade with a
hole. The following EBNF de�nes the input:

House facade description EBNF:

 facade = area { area } .
 area = op { triangle | rectangle | circle }
 op = "+" | "-" // add (+) or subtract (-) area
 triangle = "triangle" double double // width height
 rectangle = "rectangle" double double // width height
 circle = "circle" double // radius
 double = C++ double value

Exercise 14: Inheritance & Polymorphism - Print... https://expert.ethz.ch/print/ifme1/AS19/of3J2aX...

3 iš 3 2019-12-17 13:30

