
Informatik - AS19

Exercise 13: Memory Management with
Classes
Handout: 9. Dez. 2019 06:00

Due: 16. Dez. 2019 18:00

Task 1: Operator delete
Open Task

This task is a text based task. You do not need to write any program/C++ �le: the answer
should be written in main.md (and might include code fragments if questions ask for
them).

Task
All the following code fragments use operator delete and delete[] to deallocate
memory, but not appropriately. This can either lead to an error or to a memory leak.
Find the mistake in each code fragment, explain whether it results in a memory leak
or an error, and in the case of an error, point out the location at which it occurs.

1. class A {
public:
 A(unsigned int sz) {
 ptr = new int[sz];
 }
 ~A() {

delete ptr;
 }

/* copy constructor, assigmnent operator, public methods. */
 ...
private:

int* ptr;
};

2. struct llnode {
int value;

 llnode* next;

Exercise 13: Memory Management with Classes ... https://expert.ethz.ch/print/ifme1/AS19/B3uFeg...

1 iš 6 2019-12-10 10:55

};

void recursive_delete_linked_list(llnode* n) {
if (n != nullptr) {

delete n;
 recursive_delete_linked_list(n->next);
 }
}

3. class A {
public:
 A() {
 c = new Cell;
 c->subcell = new int(0);
 }
 ~A() {

delete c;
 }

/* copy constructor, assignment operator, public methods */
 ...
private:

struct Cell {
int* subcell;

 };
 Cell* c;
};

4. void do_something(int* p) {
/* Do something */

 ...
}
void f() {

int v;
int* w = &v;

 do_something(w);
delete w;

}

5. class Vec {
public:
 Vec(unsigned int sz) {

array = new int[sz];
 }

Exercise 13: Memory Management with Classes ... https://expert.ethz.ch/print/ifme1/AS19/B3uFeg...

2 iš 6 2019-12-10 10:55

 ~Vec() {
delete[] array;

 }
int& operator[](int l) {

return array[l];
 }

/* copy constructor, assignment operator, other public methods */
 ...
private:

int* array;
};

void f() {
Vec v(5);
delete[] &v[0];

}

Task 2: Array-based Vector, Rule of Three
Open Task

Task
You are provided a partial implementation of an array-based vector class avec.
Declarations are given in �le avec.h, member functions that are already
implemented are in �le avec_locked.cpp. Your task is to implement the copy
constructor, assignment operator and destructor for class avec, in �le avec.cpp.
Note that the vectors store values of type tracked and not int as in the lecture,
but you can treat them in the same fashion; the tracked values are used behind
the scenes for checking your solution.

Steps:

1. Implement the copy constructor for class avec so that it creates a copy of the
internal array.

2. Implement the assignment operator so that it creates a copy of the provided
avec and destroys the vector that is currently assigned to the left-hand-side
of the assignment (e.g., by swapping its current contents to a local copy, as
described in the lecture).

3. Implement the destructor so that it deallocates the internal array.

Memory tracking: The internal elements of class avec are objects of class tracked
(see �le tracker.h). Such objects encapsulate a single integer location which is

Exercise 13: Memory Management with Classes ... https://expert.ethz.ch/print/ifme1/AS19/B3uFeg...

3 iš 6 2019-12-10 10:55

tracked by an internal memory manager. This is used internally to catch as many
memory/deallocation errors as possible upon occurrence.

Testing: Tests are already provided in �le main.cpp. If you want to carry out
further testing yourself, you may do so within function your_own_tests(), which
is called by main() when encountering an unknown test identi�er. You can edit this
function in �le avec.cpp.

Task 3: Smart Pointers
Open Task

Task
The objective of this problem is to implement a reference-count smart pointer, with
functionality similar to that of a std::shared_ptr. Smart pointers implement the
same functionality as regular pointers, but additionally they automatically take care
of deallocating the object they point to when it is no longer needed. Reference-
count smart pointers achieve this by allocating and maintaining a counter in
memory together with the actual pointed-to object, which represents the number of
smart pointers currently referencing the object. Any time a new smart pointer to an
object is created or one is destroyed, this counter has to be incremented or
decremented, respectively. When the last smart pointer to an object is destroyed,
the counter will be decremented to and the smart pointer will know that the
object is no longer referenced; it can then deallocate the object.

The following example illustrates the process:

Smart a, b, c;
a = Smart(new tracked);
// The smart pointer 'a' now points to the new
// tracked object with a reference count of 1.
c = Smart(new tracked);
// Another smart pointer 'c' now points to the
// second new tracked object with count 1.
b = a;
// 'a' and 'b' now both point to the first object,
// their shared counter is incremented to 2.
c = Smart();
// A null smart pointer is assigned to 'c'; the
// smart pointer previously stored in 'c' is destroyed
// and its counter is decremented. Since the count
// is now zero, the second tracked object is deallocated.
return;

0

Exercise 13: Memory Management with Classes ... https://expert.ethz.ch/print/ifme1/AS19/B3uFeg...

4 iš 6 2019-12-10 10:55

// At the end of the function, the smart
// pointers 'a' and 'b' are both destroyed, their
// counter is decremented twice, and the first
// tracked object is deallocated.

Locations: The declarations of the smart pointer class (Smart) and member
functions is provided in �le smart.h. The implementation of member functions
should be done in �le smart.cpp. Smart pointers encapsulate pointers to objects of
class tracked, which is declared in �le smart.h.

Structure: In class Smart, member variable ptr represents the pointer (potentially
shared by several object of class Smart) to the underlying pointed-to object.
Member variable count represents the (shared) location containing the number of
objects of class Smart currently holding the pointed-to object. Alternatively, both
pointers may be nullptr, which corresponds to the notion of a null smart pointer.
A null smart pointer does not manage any memory.

Objects pointed by smart pointers belong to class tracked, which is a linked list
node where the next pointer is represented using a smart pointer. In particular,
tests will use this structure to build linked lists with shared nodes, and check at the
end that everything was correctly deallocated. To that end, every object of class
tracked is tracked behind the scenes.

Steps:

1. Implement the default constructor for class Smart. The default constructor
should create a null smart pointer.

2. Implement the constructor Smart(tracked* t). If t==nullptr, this should
return a null smart pointer, otherwise, this should create a smart pointer to t
with a reference count of . You may assume that t points to memory newly
allocated by new that is not already being managed by another smart pointer.

3. Implement the copy constructor Smart(const Smart& src) that returns a
new smart pointer to the memory pointed to by src and increments the
shared reference counter.

4. Implement the assignment operator Smart& operator=(const Smart&
src) that creates a copy of the provided smart pointer (incrementing its
reference counter) and decrements the counter of the smart pointer of the
left hand side of the assignment (and potentially deallocates the memory it
points to).

5. Implement the destructor ~Smart(). For non-null pointers, it should
decrement the reference counter and deallocate the pointed-to object if the
resulting count is zero.

Optional: Figure out the situations in which smart pointers are not suitable for

1

Exercise 13: Memory Management with Classes ... https://expert.ethz.ch/print/ifme1/AS19/B3uFeg...

5 iš 6 2019-12-10 10:55

memory management, in the sense that they may lead to memory leaks. You may
look at the tests which leak memory for inspiration.

Exercise 13: Memory Management with Classes ... https://expert.ethz.ch/print/ifme1/AS19/B3uFeg...

6 iš 6 2019-12-10 10:55

