
Informatik - AS19

Exercise 12: Iterators and Containers
Handout: 2. Dez. 2019 06:00

Due: 9. Dez. 2019 18:00

Task 1: Lexicographic comparison
Open Task

Task
Words in, e.g., a dictionary or an index are sorted lexicographically as given by the
alphabet.

Task: Implement a lexicographic comparison function for strings using the
alphabetical ordering provided by the ASCII code.

A string a is lexicographically smaller than a string b, if

the �rst character of a in that both a and b di�er is smaller than the
corresponding character of b (e.g., bicycle < bike because the �rst
di�erent characters are c < k).
the string a forms the start of b, but is shorter (e.g., web < website).

1. Write a function that compares two strings. The function must return true if
the �rst string is smaller than the second with respect to lexicographic order.
The function must, using using Iterator = std::string::iterator;
have the following signature:

// PRE: [first1,last1) and [first2,last2) are valid ranges
// POST: returns true if string at [first1,last1) is lexicographically
// smaller than string at [first2,last2)
bool lexicographic_compare(Iterator first1, Iterator last1,
 Iterator first2, Iterator last2)

2. Write a program using this function to compare two strings given as standard
input, and output the lexicographic minimum of the two. If the two strings are
identical, the program should instead print EQUAL.

Note: Using string comparison functions from the standard library is not allowed.
Note that the == operator on strings is implemented by std::string, and thus

Exercise 12: Iterators and Containers - Print Vie... https://expert.ethz.ch/print/ifme1/AS19/czs3Ph...

1 iš 5 2019-12-03 11:10

counts as a library function.

In the template code, we provide function print which demonstrates how to print a
string (or part of it) using iterators.

Input
Two words, separated by whitespace.

Example:

bike bicycle

Output
The minimum of the two input strings, with respect to the lexicographical order, or
EQUAL if both strings are equal.

Example:

bicycle

Task 2: Dynamic Queue
Open Task

Task
Your objective is to implement your own queue class with integer values as a
dynamic data structure.

A queue provides the two basic operations: enqueue and dequeue. The operation
enqueue adds a new element to the back of the queue. The operation dequeue
removes the �rst element from the queue:

A common way to implement a queue is using a linked list, as the one that was
shown in the lecture. In order to be able to both enqueue and dequeue, we need to
access respectively the �rst and last elements of the list.

Exercise 12: Iterators and Containers - Print Vie... https://expert.ethz.ch/print/ifme1/AS19/czs3Ph...

2 iš 5 2019-12-03 11:10

Procedure: The queue declaration is already provided. Your task is to �ll the
missing de�nitions for the required functions, marked by comments // TODO in
queue.cpp. Function annotations (pre- and postconditions), found along
declarations in the header queue.h, explain what each function is supposed to do.
You may (and probably will have to) add auxiliary non-member functions in
queue.cpp in order to implement some of the functions.

A class invariant helps to detect implementation problems early. For this queue, we
have the following class invariant: Either both pointers first and last are set to
nullptr or both are not set to nullptr. Check the invariant at suitable places, e.g.,
after modi�cations of the queue data members.

Subtasks:

1. Implement the default constructor of class Queue.

2. Implement private member function is_valid, which should assert the class
invariant.

3. Implement the queue operations: member functions enqueue, dequeue and
is_empty.

4. Implement the member function print_reverse to print the content of a
queue to an output stream in reverse order. To output the queue content
(output operator), use the following format: bracket open ([) , zero or more
integer numbers separated by spaces, bracket close (]). E.g., the empty queue
must be output like this: [], the queue containing elements 13, 7, and 42
(from �rst to last): [42 7 13].

The function print_reverse must be implemented through an auxiliary
function traversing the queue recursively, from a Node pointer given as
argument. In particular, the implementation of print_reverse must not
use loop structures. We provide implementation of function print printing
the content of a queue in regular order as a reference.

5. Optional: Think of ways to implement print and print_reverse with loops
instead of recursion (do not change your submission). In particular, try to �nd
a way to implement print_reverse that does not make use of unbounded
auxiliary storage.

Testing: The test input consists of a list of function calls in text representation. The
template includes the parser for this text representation to avoid a lengthy
speci�cation. You do not have to implement it, but you may want to take a look at it
to understand how it works. Also you can use it to do test your queue manually.

The main function creates a queue that is initially empty, and on which member
functions are later called. The following EBNF de�nes the input:

Exercise 12: Iterators and Containers - Print Vie... https://expert.ethz.ch/print/ifme1/AS19/czs3Ph...

3 iš 5 2019-12-03 11:10

 queue_ops = queue_op { queue_op } "end" .
 queue_op = enqueue | is_empty | dequeue | print | print_reverse

 // enqueues element
 enqueue = "enqueue" integer .

 // returns whether queue is empty
 is_empty = "is_empty" .

 // dequeues element
 dequeue = "dequeue" .

 // prints queue contents in reverse
 print_reverse = "print_reverse" .

 integer = C++ integer value

Task 3: Decomposing a Set into Intervals
Open Task

Task
Any �nite set of integers can be uniquely decomposed as a union of disjoint
maximal integer intervals, e.g as the union of non-overlapping intervals which are as
large as possible. For example, the set decomposes as

. Note that or
 are not valid decompositions, as and

 are not maximal interval subsets of , and intervals may not repeat.

Write a program that inputs a set of integers, as the (possibly repeating) sequence
of its members, and outputs the interval decomposition of the set in ascending
order of boundaries.

Reminder: ordered sets can be represented in C++ using the std::set<...>
container, in which elements are added using the insert method. Iteration (using
iterators) in ordered sets takes place in increasing order.

Hint: You may �rst de�ne a function that, from two std::set iterators first and
last, �nds the largest integer interval starting from first and ending before last,
and returns an iterator just after this interval.

Input

X = {1, 2, 3, 5, 6, 8}
X = [1, 3] ∪ [5, 6] ∪ [8, 8] X = [1, 2] ∪ [3, 3] ∪ [5, 6] ∪ [8, 8]
X = [1, 3] ∪ [5, 6] ∪ [5, 6] ∪ [8, 8] [1, 2]
[3, 3] X

Exercise 12: Iterators and Containers - Print Vie... https://expert.ethz.ch/print/ifme1/AS19/czs3Ph...

4 iš 5 2019-12-03 11:10

A set of non-negative integer, given as the sequence of its members followed by a
negative integer. The sequence can be in any order and may feature repetitions.

Example:

3 5 8 6 5 3 2 1 -1

Output
The interval decomposition of the input set, with interval given in increasing order
of boundaries. The interval decomposition must be given as a parenthesized
sequence of intervals, with intervals separated by the character U. Intervals
themselves must be given by their lower and upper bound, separated by a comma
and parenthesized by brackets, with the lower bound coming �rst.

Example:

([1,3]U[5,6]U[8,8])

Exercise 12: Iterators and Containers - Print Vie... https://expert.ethz.ch/print/ifme1/AS19/czs3Ph...

5 iš 5 2019-12-03 11:10

