
Informatik - AS19

Exercise 11: Classes & Pointers
Handout: 25. Nov. 2019 06:00

Due: 2. Dez. 2019 18:00

Task 1: Understanding struct & classes
Open Task

This task is a text based task. You do not need to write any program/C++ �le: the answer
should be written in main.md (and might include code fragments if questions ask for
them).

Task
Consider the following de�nitions:

1. struct A {
int a;
double b;
int c;

};

A str = {1, 1.5, 2};
std::vector<int> vec = {1, 1, 3};
int& a = vec[0];

For each of the provided expressions state their C++ type and value:

1. str.a * str.b
2. str.b == vec[1]
3. str.a * str.b / str.c
4. vec[str.a] / str.c
5. a / 2 - str.b

2. class B {
public:
 B(): vec(128) {

for (int i = 0; i < 128; ++i) {

Exercise 11: Classes & Pointers - Print View - E... https://expert.ethz.ch/print/ifme1/AS19/dm7Lx...

1 iš 10 2019-11-26 12:06

 vec[i] = 0;
 }
 }

// PRE: ...
// POST: ...
void add(const char c) {

 ++vec[c];
 }

// PRE: ...
// POST: ...
int get(const char c) const {

return vec[c];
 }

private:
std::vector<int> vec;

};

Determine PRE- and POST-conditions for the methods add and get.

Task 2: Averager
Open Task

Task
Write a class Averager that computes averages of given values of type double.

Initially, an instance of class Averager does not contain any value. The class
Averager must provide the following functionality:

// POST: Adds a value to the current average calculation.
void add_value(double value);

// POST: Returns the average of all added values,
// or zero, if no value has been added.
double get_average();

// POST: Removes all values from the current average calculation.
void reset();

The declaration and implementation of class Averager must be split between

Exercise 11: Classes & Pointers - Print View - E... https://expert.ethz.ch/print/ifme1/AS19/dm7Lx...

2 iš 10 2019-11-26 12:06

header �le (averager.h, containing declaration) and implementation �le
(averager.cpp, containing implementation).

Task 3a: Understanding Pointers: - Lookup
Open Task

Task Description
Complete the de�nition of function lookup by editing the �le lookup.cpp
according to its speci�ed pre- and post conditions.

We provide a test program using the implemented function to perform lookup on a
vector.

Input
Vector length l.

l vector elements.

lookup index i.

Example:

3 9 8 7 1

means a 3-element vector [9, 8, 7] and the lookup index 1.

Output
The value of the element at the lookup index.

Example: for the input given above, this value is 8.

Task 3b: Understanding Pointers - Add
Open Task

Task Description
Complete the de�nition of function add by editing the �le add.cpp according to its
speci�ed pre- and post conditions.

Exercise 11: Classes & Pointers - Print View - E... https://expert.ethz.ch/print/ifme1/AS19/dm7Lx...

3 iš 10 2019-11-26 12:06

We provide a test program using the implemented function to add two values given
by the user.

Input
Numbers a, b.

Example:

21 35

Output
The sum of a and b.

Example: for the input given above, this value is 56.

Task 3c: Understanding Pointers - Num_Elem
Open Task

Task Description
Complete the de�nition of function num_elem by editing the �le num_elem.cpp
according to its speci�ed pre- and post conditions.

We provide a test program using the implemented function to �nd the number of
elements in a speci�ed interval of a vector.

Input
Vector length.

Start index a.

End index b.

Example:

10 3 10

means a 10-element vector and the interval between index 3 and 10.

Output

Exercise 11: Classes & Pointers - Print View - E... https://expert.ethz.ch/print/ifme1/AS19/dm7Lx...

4 iš 10 2019-11-26 12:06

The number of elements in the interval [a,b).

Example: for the input given above, this value is 7.

Task 3d: Understanding Pointers - First_Char
Open Task

Task Description
Complete the de�nition of function first_char by editing the �le
first_char.cpp according to its speci�ed pre- and post conditions.

We provide a test program using the implemented function to �nd the index of the
�rst character in a string.

Input
String s (no whitespaces).

Character c.

Example:

jabberwock b

Output
The index of the �rst occurence of character c in s, or "Not found.", if c is not
present in s.

Example: for the input given above, this index is 2.

Task 4: Quick Sort
Open Task

Task
Write a program that implements a naive sorting algorithm that sort the contents of
an integer array in ascending order. The algorithm to be used is described in steps
below; do not use a di�erent algorithm. There is no need to write particularly
e�cient code. Implement the algorithm in quicksort.cpp.

Exercise 11: Classes & Pointers - Print View - E... https://expert.ethz.ch/print/ifme1/AS19/dm7Lx...

5 iš 10 2019-11-26 12:06

Speci�c rules for this task:

1. The goal of this exercise is to exercise the usage of pointers: Instead of using a
vector to manage the values to be sorted, you have to explicitly allocate the
necessary memory yourself and to traverse the memory block using ranges.

2. In particular, usage of vectors is forbidden.
3. Dereferencing pointers with operator [], or performing pointer

addition/substraction (due to the equation *(a+i) = a[i]) is forbidden as
well, with the only exception of function input. Note that pointer
incrementation/decrementation is allowed, and is the expected method to
traverse memory ranges.

4. Usage of library sorting function is of course not allowed.

Algorithm

The algorithm which you are going to implement is called quicksort. It takes a range
of values on its input and picks a pivot among these values. Then, it partitions the
range: it swaps the elements within the range so that all elements less than pivot
are on its "left side", and all elements greater on equal than the pivot are on its
"right side". Then, it repeats the entire procedure to the "left" and "right" sides
separately, picking new pivots for them and so on. The way to choose a pivot is
arbitrary: in this task, you should pick the �rst element of the range.

For example, for range

[4, 6, 1, 8, 3, 2]

we pick the pivot at 4:

[__4__, 6, 1, 8, 3, 2]

the result of the partition is

[2, 1, 3, __4__, 8, 6].

Then, we repeat the algorithm for ranges [2, 1, 3] and [8, 6].

Ranges of a memory block are given as interval . points to the
�rst element of the range and points just behind the last element of the range.
E.g., for a chunk of memory of size N beginning at pointer ptr, int* begin = ptr
and int* end = ptr + N.

The code in function main allows you to run the program in four di�erent modes
which you can use for testing. It accepts input of form

mode arguments

where mode is a character descibing the mode of execution:

[begin, end) begin

end

Exercise 11: Classes & Pointers - Print View - E... https://expert.ethz.ch/print/ifme1/AS19/dm7Lx...

6 iš 10 2019-11-26 12:06

i - test input / output.
s - test swap.
p - test partition.
q - run quicksort (�nal test).

and arguments are a sequence of relevant arguments.

More details will follow in the next section.

The task

Your task consists of the following parts:

1. Write a function void input(std::istream& is, int*& begin, int*&
end) that reads a sequence of integer values from stream is, and stores
them in a freshly allocated memory range. The bounds of the range must be
stored in begin and end at the end of the function execution.

The sequence of integer values is given in the following format:

1. an unsigned integer giving the length of the sequence.
2. successive (signed) integer values giving the content of the sequence

2. Write a function void output(std::ostream& os,const int*
begin,const int* end) that displays the values in range from begin to
end, in order, separated by single spaces. You can test it (and input) with the
function test_input_output(). It inputs a sequence and outputs it
immediately. It is run when the �rst input character is i, for example

i 6 4 6 1 8 3 2

The expected output is:

4 6 1 8 3 2

3. Write a function void swap(int* a,int* b) that exchanges the content of
location a and b. You can test it with the function test_swap(). It declares
two integers variables with chosen values, swaps them, then outputs their
content. It is run when the �rst input character is s, for example

s 1 2

Where numbers to be swapped are given. The expected output is:

2 1

Where the numbers have been swapped.

N

N

Exercise 11: Classes & Pointers - Print View - E... https://expert.ethz.ch/print/ifme1/AS19/dm7Lx...

7 iš 10 2019-11-26 12:06

4. Write a function int* pivot(int* begin,int* end) that re-orders the
content of a non-empty range such that:

1. The element initially at begin (called the pivot) is at the returned
location res.

2. All elements strictly lower than the pivot are moved to a location before
res

3. All elements greater or equal than the pivot are moved to a location
after res

For this task, this must be done by repeatedly:

1. picking any leftover non-pivot element (like the one located at
begin+1),

2. swapping with either the pivot or the last element of the range,
depending on whether the element is lower than the pivot or not, so
that the chosen element is now at a correct position,

3. then shrinking the range to exclude the now well-placed chosen
element until only the pivot is left in the range. In other words, the
method is to eject elements on the expected side of the range until the
range is reduced to the pivot.

In our example (markers | represent the range):

[|__4__, 6, 1, 8, 3, 2|]

[|__4__, 2, 1, 8, 3|, 6]

[2, |__4__, 1, 8, 3|, 6]

[2, 1, |__4__, 8, 3|, 6]

[2, 1, |__4__, 3|, 8, 6]

[2, 1, 3, |__4__|, 8, 6]

You can test this function with the function test_pivot(). It inputs a
sequence, calls the pivoting function once and outputs the result. It is run
when the �rst input character is p, for example

p 6 4 6 1 8 3 2

The expected output is:

4
2 1 3 4 8

where the �rst line contains the value of the pivot and the second line shows
the partitioned range.

[begin; end)

Exercise 11: Classes & Pointers - Print View - E... https://expert.ethz.ch/print/ifme1/AS19/dm7Lx...

8 iš 10 2019-11-26 12:06

5. Write a recursive function void quicksort(int* begin,int* end) that
sorts a range by pivoting, then recursively sorting the halves on each side of
the pivot result. Make sure to correctly handle empty ranges, as well as to
ensures that the range size decreases on each recursive call, as otherwise
your function may not terminate.

6. Use the function test_quicksort() to test your implementation. The �nal
test mode uses the functions input, quicksort and output to input a
sequence of integer values, sort it and output the sorted sequence. It is run
when the �rst input character is q, for example

q 6 4 6 1 8 3 2

The expected output is:

1 2 3 4 6 8

Full example

The following picture shows an execution of quicksort which picks the last element
of the range as a pivot.

Exercise 11: Classes & Pointers - Print View - E... https://expert.ethz.ch/print/ifme1/AS19/dm7Lx...

9 iš 10 2019-11-26 12:06

3 7 8 5 2 1 9 5 4

3 7 8 5 2 1 9 5 4

3 78 5 2 1 95 4

3 78 5 2 19 54

3 78 5 21 9 54

3 78521 9 54

3 78521 9 54

3 21

321

785 9 5

7 85 95

7 85 95

89

8 9

5 5

1 2 3 4 5 5 7 8 9

Exercise 11: Classes & Pointers - Print View - E... https://expert.ethz.ch/print/ifme1/AS19/dm7Lx...

10 iš 10 2019-11-26 12:06

