
Informatik - AS19

Exercise 9: Recursion and EBNF
Handout: 11. Nov. 2019 06:00

Due: 18. Nov. 2019 18:00

Task 1: Trains
Open Task

Task
The following EBNF de�nes a language for the description of train formations for
railways:

train = "[" (open | compositions) "]".
open = loco cars.
loco = "*" | "*" loco.
cars = "-" | "-" cars.
compositions = composition { composition }.
composition = "<" open loco ">".

Write a program that validates whether a string constitutes a valid train formation
according to the given EBNF. The input is a string S, and the output is must be either
valid if S is a valid train formation, otherwise invalid.

Rules: We consider solutions as incorrect, if they:

1. Do not use recursion.
2. Output valid and invalid at the same time.

Note: This program can be implemented analogously to the expression parser seen
in the lecture. The most signi�cant di�erence is that the expression parser from the
lecture computed the result of an expression while here you should test for validity
of an expression.

Map each production rule to a function, and use functions lookahead and consume
from the lecture to implement alternatives. We provide these two functions in the
template.

Additionally, we provide a template function train. Finish its implementation and
add other functions corresponding to the remaining productions.

Exercise 9: Recursion and EBNF - Print View - ... https://expert.ethz.ch/print/ifme1/AS19/fxypkk...

1 iš 4 2019-11-12 09:54

Input
A character string. Examples:

[<*-*><***-----******>]

[<**>]

Output
valid if the input constitues a valid train formation, invalid otherwise.

Respective results for the input examples:

valid

invalid

Task 2: Money
Open Task

Task
In how many ways can you own CHF 1? Despite its somewhat philosophical
appearance, the question is a mathematical one. Given some amount of money, in
how many ways can you partition it using the available denominations (bank notes
and coins)? Today's denominations in CHF are 0.05, 0.10, 0.20, 0.50, 1, 2, 5 (coins),
10, 20, 50, 100, 200, 1000 (banknotes). The amount of CHF 0.20, for example, can be
owned in four ways (to get integers, let's switch to centimes): (20), (10,10), (10,5,5),
(5,5,5,5). The amount of CHF 0.04 can be owned in no way, while there is exactly one
way to own CHF 0.00 (you cannot have 4 centimes in your wallet, but you can have
no money at all in your wallet).

Task: Solve the problem for a given input amount, by writing the following function
(all values to be understood as centimes):

// PRE: 0 <= end <= v.size(), and
// 0 < denominations[0] < denominations[1] < .. denominators[end-1]
// describes a (potentially empty)
// sequence of denominations
// POST: return value is the number of ways to partition amount

Exercise 9: Recursion and EBNF - Print View - ... https://expert.ethz.ch/print/ifme1/AS19/fxypkk...

2 iš 4 2019-11-12 09:54

// using denominations from denominations[0], ..., denominations[end-1]
unsigned int partitions (unsigned int amount,

const std::vector<unsigned int> & denominations,
unsigned int end)

Rule: Use recursion to solve this problem, non-recursive solutions are
considered incorrect.

To allow you to focus on implementing the recursive function partitions, we
provide you with the template code that implements all functionality except the said
function, which should be implemented in �le partitions.cpp. The input is the
amount in centimes as unsigned int and the expected output is the number of
ways that amount can be owned as unsigned int.

Task 3: pre�x to in�x notation
Open Task

Task
Pre�x notation is a way to write expressions so that an operator appears before its
operands. For example, in pre�x notation the expression + a b means the sum of a
and b, written as a + b in the more usual in�x notation. Similarly, * + a b - c /
d e in pre�x notation corresponds to (a + b) * (c - d / e) in in�x
notation.

An interesting property of pre�x notation is that there is no ambiguity as to the
order in which operators are applied. In particular, parentheses are never required.

Write a program that read an expression from input and convert it to in�x notation,
using as few parentheses as possible. The allowed operators are +, -, * and / with
their usual precedences and associativity (which are the same as in C++). The
constants can be either integer or variables.

Note that it is allowed -- and it must be done when this eliminates parentheses -- to
re-order the application of operators when such re-ordering is valid in general. For
example, both pre�x expressions + a - b c (a + (b - c) in in�x notation
with explicit parentheses) and + a b - c ((a + b) - c) should be converted
to a + b - c.

However, the order of constants should not be changed, neither should any form of
expression simpli�cation be performed. In particular, + a b should not be
converted to b + a. Similarly, + 0 0 should not be simpli�ed to 0.

Hint: as the number of di�erent concrete cases is big (see the tests), it is
recommended to write functions that treat operators and relative precedences as

Exercise 9: Recursion and EBNF - Print View - ... https://expert.ethz.ch/print/ifme1/AS19/fxypkk...

3 iš 4 2019-11-12 09:54

uniformly as possible. For this, you may use the following remark: a sub-expression
 need to be parenthesized i� it is an expression shaped as with being

an operator of unsu�cient precedence to appear without parentheses at 's
location. For example, in the expression a * (b + c), b + c need to be
parenthesized because + does not have high enough precedence to occur as the
right sub-expression of *. However, * or / would have high enough precedence.

Note: you can use functions lookahead and consume from the lecture to parse the
input.

Input
An expression in pre�x notation. Such expressions are given as a sequence of
operators among +, -, *, / and constants, separated by whitespaces. Constants can
either be non-negative integers given without leading zeroes, or variable names.
Variable names are non-empty sequence of alphabetic characters ('a'-'z',
'A'-'Z').

Example:

* + a b - c / d e

Output
The same expression, in in�x notation, with as few parentheses as possible. There
should be exactly one whitespace between each operator/parenthesis/constants.

Example:

(a + b) * (c - d / e)

e e1 Op e2 Op

e

Exercise 9: Recursion and EBNF - Print View - ... https://expert.ethz.ch/print/ifme1/AS19/fxypkk...

4 iš 4 2019-11-12 09:54

