
Informatik - AS19

Exercise 5: Floating Point Calculations &
Basic Functions
Handout: 14. Okt. 2019 06:00

Due: 21. Okt. 2019 18:00

Task 1: Floating-Point Number Representation
Open Task

This task is a text based task. You do not need to write any program/C++ �le: the answer
should be written in main.md (and might include code fragments if questions ask for
them).

Task
We examine the normalized binary representation of �oating point numbers (

). Your system has a precision  and an exponent range of .

1. Express this setting in the lecture notation .

2. Convert the following decimal numbers to the normalized binary
representation. For each number, choose the appropriate exponent  and
round to the nearest value if you cannot represent the exact value.

3. For each number of (2), convert the binary representation back to their
decimal form, and determine the absolute rounding error of the conversion.

4. Calculate  in the binary representation. What
do you observe?

Note: To round a �oating point number use binary arithmetic rounding similar to
decimal arithmetic rounding, i.e. round up for a  and down for a . For example, if
we round to �ve signi�cant digits:

 is rounded down because the sixth signi�cant digit is a  and

β = 2 p = 4 e ∈ [−3; 3]

F ∗ (β, p, emin, emax)

e

3.141610
2.71810
710
0.1110

2.71810 + 3.141610 + 0.1110

1 0

11.0010112 0

Exercise 5: Floating Point Calculations & Basic... https://expert.ethz.ch/print/ifme1/AS19/XgRNvf...

1 of 4 2019-10-15 10:45



therefore is truncated to .
 is rounded up because the sixth signi�cant digit is a  and

therefore is .

Task 2: Point on Parabola ?
Open Task

Task
Consider a parabola  de�ned as , with

.

Write a program that determines if a point  lies on parabola  or not. The
input is provided by two decimal numbers in the sequence . The program must
output yes, if the point lies on the parabola, otherwise no. Use datatype double for
all variables and numbers used in the calculation of .

You will notice that a straight forward approach (comparing for equality) does not
work, i.e., for some points that clearly should be on parabola  such an approach
returns result no.

Hint: Look at the di�erence between the exact values of the function and the values
that your program calculates. Change the program so that it works properly for all
points that the submission system uses as test input without hard-coding the points.

Note: Outputing both yes and no will get you past the automatic grading, but doing
so counts as hard-coded solution and results in zero points.

Task 3: Rounding
Open Task

Task
1. Implement the following rounding function that rounds a 64-bit �oating point

number (type double) to the nearest 32-bit integer (type int). You may
assume that the type double complies with the IEEE standard 754. The
function is only required to work correctly if the nearest integer is in the value
range of the type int, otherwise, the return value of the function is
unde�ned.
Note: Usage of library rounding functions (standard or others) is not
allowed.

11.0012
11.0011012 1

11.0012 + 0.0012 = 11.0102

(P) y = g(x)
g(x) = 0.9 ⋅ x2 + 1.3 ⋅ x − 0.7

(x, y) (P)
x, y

g(x)

g

Exercise 5: Floating Point Calculations & Basic... https://expert.ethz.ch/print/ifme1/AS19/XgRNvf...

2 of 4 2019-10-15 10:45



// PRE:  x is roundable to a number in the value range of type @int@
// POST: return value is the integer nearest to x, or the one further 
//       away from 0 if x lies right in between two integers.
int round(double x);

2. Write a program which inputs a number of type double from the user, then
rounds this number using your function from (1), and then outputs the
rounded number.

Task 4: Binary Expansion
Open Task

Task
Write a program that performs the binary expansion for a given decimal input
number , where . Use the algorithm presented in the lecture. The
program must output the �rst  digits of the number in the format:

. Always print all  digits, even the trailing zeros. Do not
normalize or round the number. You can structure your program into functions to
avoid code repetition. Do not forget to annotate functions with pre- and post
conditions.

Task 5: Fixing Functions
Open Task

This task is a text based task. You do not need to write any program/C++ �le: the answer
should be written in main.md (and might include code fragments if questions ask for
them).

Task:
What are the problems (if any) with the following functions? Fix them and �nd
appropriate pre- and postconditions.

1. function is_even:

bool is_even(unsigned int i) {
if (i % 2 == 0) return true;

}

2. function invert:

x 0 ≤ x < 2
16

b0. b1b2b3. . . b15 16

Exercise 5: Floating Point Calculations & Basic... https://expert.ethz.ch/print/ifme1/AS19/XgRNvf...

3 of 4 2019-10-15 10:45



double invert(double x) {
double result;
if (x != 0) {

        result = 1 / x;
    }

return result;
}

Hint: The C++ compiler does not protect you from certain types of errors.
Therefore, even if you run a program in Code Expert, it is not guaranteed that the
behaviour you observe is the “real” one. We have prepared a program tracing
handout that shows how to execute a program with a pen and paper and which
conditions indicate bugs in the executed program not caught by the C++ compiler.

Exercise 5: Floating Point Calculations & Basic... https://expert.ethz.ch/print/ifme1/AS19/XgRNvf...

4 of 4 2019-10-15 10:45


