
15. Recursion 2

Building a Calculator, Formal Grammars, Extended Backus Naur
Form (EBNF), Parsing Expressions
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Motivation: Calculator

Example

Input: 3 + 5
Output: 8

binary Operators +, -, *, / and numbers

floating point arithmetic
precedences and associativities like in C++
parentheses
unary operator -
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Motivation: Calculator

Example

Input: 3 / 5
Output: 0.6

binary Operators +, -, *, / and numbers
floating point arithmetic

precedences and associativities like in C++
parentheses
unary operator -

494



Motivation: Calculator

Example

Input: 3 + 5 * 20
Output: 103

binary Operators +, -, *, / and numbers
floating point arithmetic
precedences and associativities like in C++

parentheses
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Motivation: Calculator

Example

Input: (3 + 5) * 20
Output: 160

binary Operators +, -, *, / and numbers
floating point arithmetic
precedences and associativities like in C++
parentheses

unary operator -
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Motivation: Calculator

Example

Input: -(3 + 5) + 20
Output: 12

binary Operators +, -, *, / and numbers
floating point arithmetic
precedences and associativities like in C++
parentheses
unary operator -
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Naive Attempt (without Parentheses)
double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’∗’)
lval ∗= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";
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Seems to work. . .
double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’∗’)
lval ∗= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";

Input 1 * 2 * 3 * 4 =
Result 24
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Oops, Multiplication first. . .
double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’∗’)
lval ∗= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";

Input 2 + 3 * 3 =
Result 15
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Analyzing the Problem

Example

Input:

13 + ...

Example

This

lecture is pretty much recursive.
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Input:
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Analyzing the Problem

Example

Input:

13 + 4 ∗ (15− 7 ∗ ...

Example

This

lecture is pretty much recursive.
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Analyzing the Problem

Example

Input:

13 + 4 ∗ (15− 7∗ 3) =

Needs to be stored such that
evaluation can be performed

Example

This

lecture is pretty much recursive.
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Analyzing the Problem

Example

Result:

13 + 4∗(15− 21)

Example

This

lecture is pretty much recursive.
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Analyzing the Problem

Example

Result:

13+4 ∗ (−6)

Example

This

lecture is pretty much recursive.
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Analyzing the Problem

Example

Result:

13 + (−24)

Example

This

lecture is pretty much recursive.

496



Analyzing the Problem

Example

Result:

−11

Example

This

lecture is pretty much recursive.
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Analyzing the Problem

Example

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

Example

This

lecture is pretty much recursive.
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Analyzing the Problem

Example

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

Example

This lecture is pretty much recursive.
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Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming
symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).
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Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming
symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).
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Formal Grammars

Alphabet: finite set of symbols
Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)
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Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number

, ( ? )

? * ?, ? / ?, ...
? - ?, ? + ?, ...
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Expressions Multiplication/Division

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , ( ? )
-Number, -( ? )
? * ?, ? / ?, ...
? - ?, ? + ?, ...

Factor
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Expressions Multiplication/Division

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , ( ? )
-Number, -( ? )
Factor * Factor,
Factor / Factor , ...
? - ?, ? + ?, ...

Factor
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Expressions Addition/Subtraction

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , ( ? )
-Number, -( ? )
Factor * Factor,
Factor / Factor , ...
? - ?, ? + ?, ...

Factor

Term
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Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?
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Factor / Factor , ...
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Term - Term, ...

Factor

Term

500



Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?
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Factor

Term
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-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , ( ? )
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Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , ( Expression )
-Number, -( Expression )
Factor * Factor, Factor
Factor / Factor , ...
Term + Term, Term
Term - Term, ...

Factor

Term

Expression
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The EBNF for Expressions

A factor is

a number,
an expression in parentheses or
a negated factor.

factor = number
| "(" expression ")"
| "−" factor.

alternative

terminal symbol

non-terminal symbol
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The EBNF for Expressions
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a number,
an expression in parentheses or
a negated factor.
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The EBNF for Expressions

A term is

factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "∗" factor | "/" factor }.

optional repetition
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The EBNF for Expressions

A term is

factor,
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optional repetition
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The EBNF for Expressions

factor = number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.
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Numbers

An integer comprises at least one digit, followed by an arbitrary
number of digits.

number = d i g i t { d i g i t }.
d i g i t = ’0’ | ’1’ | ’2’ | ... |’9’.
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Numbers

An integer comprises at least one digit, followed by an arbitrary
number of digits.

number = d i g i t { d i g i t }.
d i g i t = ’0’ | ’1’ | ’2’ | ... |’9’.
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Parsing

Parsing: Check if a string is valid according to the EBNF.

Parser: A program for parsing.
Useful: From the EBNF we can (nearly) automatically generate a
parser
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Construct a Parser

Rules become functions
Alternatives and options become if–statements.
Nonterminial symbols on the right hand side become function calls
Optional repetitions become while–statements
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Rules (except number)

factor = number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.
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Functions (Parser)
Expression is read from an input stream.

// POST: returns true if and only if is = factor ...
// and in this case extracts factor from is
bool factor (std::istream& is);

// POST: returns true if and only if is = term ...,
// and in this case extracts all factors from is
bool term (std::istream& is);

// POST: returns true if and only if is = expression ...,
// and in this case extracts all terms from is
bool expression (std::istream& is);
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Functions (Parser with Evaluation)
Expression is read from an input stream.

// POST: extracts a factor from is
// and returns its value
double factor (std::istream& is);

// POST: extracts a term from is
// and returns its value
double term (std::istream& is);

// POST: extracts an expression from is
// and returns its value
double expression (std::istream& is);
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One Character Lookahead. . .

. . . to find the right alternative.
// POST: leading whitespace characters are extracted
// from input, and the first non−whitespace character
// input returned (0 if there input no such character)
char lookahead (std:: istream& input)
{
input >> std :: ws; // skip whitespaces
if (input.eof ())
return 0; // end of stream

else
return input.peek(); // next character in input

}
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Cherry-Picking

. . . to extract the desired character.
// POST: if ch matches the next lookahead then consume it and return true
// otherwise return false
bool consume (std :: istream& input, char c)
{

if (lookahead (input) == c) {
input >> c;
return true;

} else
return false ;

}
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Evaluating Factors

double factor (std :: istream& input)
{
double value;
if (consume (input, ’( ’ )) {
value = expression (input); // "(" expression
consume (input, ’) ’ ); // ")"

} else if (consume (input, ’−’))
value = −factor (input); // − factor

else
value = number(input); // number

return value;
}

factor = "(" expression ")"
| "−" factor
| number.
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Evaluating Terms

double term (std:: istream& input)
{
double value = factor (input); // factor
while (true) {

if (consume (input, ’∗’ ))
value ∗= factor (input); // "∗" factor

else if (consume (input, ’/’ ))
value /= factor (input); // "/" factor

else
return value;

}
}

term = factor { "∗" factor | "/" factor }.
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Evaluating Expressions

double expression (std :: istream& input)
{
double value = term (input); // term
while (true) {

if (consume (input, ’+’))
value += term (input); // "+" term

else if (consume (input, ’−’))
value −= term (input); // "−" term

else
return value;

}
}

expression = term { "+" term |"−" term }.
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Digits ...

// POST: returns the digit that could be consumed from a stream
// (0 if no digit available)
// digit = ’0’ | ’1’ | ... | ’9’.
char digit(std::istream& input){

char ch = input.peek(); // one symbol lookahead
if (input.eof()) return 0; // nothing available on the stream
if (ch >= ’0’ && ch <= ’9’){

input >> ch; // consume
return ch;

}
return 0;

}
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... and Numbers

// POST: returns an unsigned integer consumed from the stream
// number = digit {digit}.
unsigned int number (std::istream& input){

input >> std::skipws;// skip whitespaces before the first digit
char ch = digit(input);
input >> std::noskipws; // no whitespaces allowed within a number
unsigned int num = 0;
while(ch > 0){ // skip remaining digits

num = num ∗ 10 + ch − ’0’;
ch = digit(input);

}
return num;

}

516



Recursion!

number

factor

term

expression
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EBNF — and it works!
EBNF (calculator.cpp, Evaluation from left to right):

factor = number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.

std::stringstream input ("1−2−3");
std::cout << expression (input) << "\n"; // −4
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16. Structs

Rational Numbers, Struct Definition, Function- and Operator
Overloading
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Calculating with Rational Numbers

Rational numbers (Q) are of the form
n

d
with n and d in Z

C++does not provide a built-in type for rational numbers

Goal

We build a C++-type for rational numbers ourselves!
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Vision

// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;
std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";
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A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable

member variable

struct defines a new type
formal range of values: cartesian product of the value ranges of
existing types
real range of values: rational ( int× int.
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Accessing Member Variables
struct rational {

int n;
int d; // INV: d != 0

};

rational add (rational a, rational b){
rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}

rn
rd

:=
an
ad

+
bn
bd

=
an · bd + ad · bn

ad · bd
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Input

// Input r
rational r;
std::cout << "Rational number r:\n";
std::cout << " numerator =? ";
std::cin >> r.n;
std::cout << " denominator =? ";
std::cin >> r.d;

// Input s the same way
rational s;
...
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Vision comes within Reach ...

// computation
const rational t = add (r, s);

// output
std::cout << "Sum is " << t.n << "/" << t.d << ".\n";

526



Struct Defintions: Examples

struct rational_vector_3 {
rational x;
rational y;
rational z;

};

underlying types can be fundamental or user defined
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Struct Definitions: Examples

struct extended_int {
// represents value if is_positive==true
// and −value otherwise
unsigned int value;
bool is_positive;

};

the underlying types can be different
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Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member variables are uninitialized
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Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member-wise initialization:
t.n = 1, t.d = 5
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Structs: Initialization and Assignment
rational s;
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rational v = add (u,t);
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536



Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member-wise copy

536



Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t); member-wise copy
536



Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and != , not so for structs! Why?

member-wise comparison does not make sense in general...

...otherwise we had, for example,
2

3
6= 4

6
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User Defined Operators

Instead of

rational t = add(r, s);

we would rather like to write

rational t = r + s;

This can be done with Operator Overloading.
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Function Overloading
A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call

std::cout << sq (3);
std::cout << sq (1.414);
std::cout << pow (2);
std::cout << pow (3,3);
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Operator Overloading

Operators are special functions and can be overloaded
Name of the operator op:

operatorop
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Adding rational Numbers – Before

// POST: return value is the sum of a and b
rational add (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = add (r, s);
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Adding rational Numbers – After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = r + s;
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Adding rational Numbers – After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = r + s;

infix notation
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Adding rational Numbers – After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = operator+ (r, s);

equivalent but less handy: functional notation
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Unary Minus

Only one argument:

// POST: return value is −a
rational operator− (rational a)
{

a.n = −a.n;
return a;

}
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Comparison Operators

can be defined such that they do the right thing:

// POST: returns true iff a == b
bool operator== (rational a, rational b)
{

return a.n ∗ b.d == a.d ∗ b.n;
}

2

3
=

4

6
X

548



Comparison Operators

can be defined such that they do the right thing:

// POST: returns true iff a == b
bool operator== (rational a, rational b)
{

return a.n ∗ b.d == a.d ∗ b.n;
}

2

3
=

4

6
X

548



Comparison Operators

can be defined such that they do the right thing:

// POST: returns true iff a == b
bool operator== (rational a, rational b)
{

return a.n ∗ b.d == a.d ∗ b.n;
}
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Arithmetic Assignment

We want to write

rational r;
r.n = 1; r.d = 2; // 1/2

rational s;
s.n = 1; s.d = 3; // 1/3

r += s;
std::cout << r.n << "/" << r.d; // 5/6

549



Operator +=

rational& operator+= (rational& a, rational b)
{

a.n = a.n ∗ b.d + a.d ∗ b.n;
a.d ∗= b.d;
return a;

}

The L-value a is increased by the value of b and returned as
L-value
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Operator +=

rational& operator+= (rational& a, rational b)
{

a.n = a.n ∗ b.d + a.d ∗ b.n;
a.d ∗= b.d;
return a;

}

The L-value a is increased by the value of b and returned as
L-value
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In/Output Operators

can also be overloaded.

Before:

std::cout << "Sum is "
<< t.n << "/" << t.d << "\n";

After (desired):

std::cout << "Sum is "
<< t << "\n";
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In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out,

rational r)
{

return out << r.n << "/" << r.d;
}

writes r to the output stream
and returns the stream as L-value.
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In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out,

rational r)
{

return out << r.n << "/" << r.d;
}

writes r to the output stream
and returns the stream as L-value.
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Input

// PRE: in starts with a rational number
// of the form "n/d"
// POST: r has been read from in
std::istream& operator>> (std::istream& in,

rational& r){
char c; // separating character ’/’
return in >> r.n >> c >> r.d;

}

reads r from the input stream
and returns the stream as L-value.
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Goal Attained!
// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;

std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";

operator >>

operator +

operator<<
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Goal Attained!
// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;

std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";
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