
15. Recursion 2

Building a Calculator, Formal Grammars, Extended Backus Naur
Form (EBNF), Parsing Expressions

493

Motivation: Calculator

Example

Input: 3 + 5
Output: 8

binary Operators +, -, *, / and numbers

floating point arithmetic
precedences and associativities like in C++
parentheses
unary operator -

494

Motivation: Calculator

Example

Input: 3 / 5
Output: 0.6

binary Operators +, -, *, / and numbers
floating point arithmetic

precedences and associativities like in C++
parentheses
unary operator -

494

Motivation: Calculator

Example

Input: 3 + 5 * 20
Output: 103

binary Operators +, -, *, / and numbers
floating point arithmetic
precedences and associativities like in C++

parentheses
unary operator -

494

Motivation: Calculator

Example

Input: (3 + 5) * 20
Output: 160

binary Operators +, -, *, / and numbers
floating point arithmetic
precedences and associativities like in C++
parentheses

unary operator -

494

Motivation: Calculator

Example

Input: -(3 + 5) + 20
Output: 12

binary Operators +, -, *, / and numbers
floating point arithmetic
precedences and associativities like in C++
parentheses
unary operator -

494

Naive Attempt (without Parentheses)
double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’∗’)
lval ∗= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";

495

Seems to work. . .
double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’∗’)
lval ∗= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";

Input 1 * 2 * 3 * 4 =
Result 24

495

Oops, Multiplication first. . .
double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’∗’)
lval ∗= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";

Input 2 + 3 * 3 =
Result 15

495

Analyzing the Problem

Example

Input:

13 + ...

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Input:

13 + 4 ∗ ...

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Input:

13 + 4 ∗ (15− ...

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Input:

13 + 4 ∗ (15− 7 ∗ ...

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Input:

13 + 4 ∗ (15− 7∗ 3) =

Needs to be stored such that
evaluation can be performed

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Result:

13 + 4∗(15− 21)

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Result:

13+4 ∗ (−6)

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Result:

13 + (−24)

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Result:

−11

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

Example

This lecture

is pretty much recursive.

496

Analyzing the Problem

Example

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

Example

This lecture is

pretty much recursive.

496

Analyzing the Problem

Example

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

Example

This lecture is pretty

much recursive.

496

Analyzing the Problem

Example

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

Example

This lecture is pretty much

recursive.

496

Analyzing the Problem

Example

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

Example

This lecture is pretty much recursive.

496

Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming
symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).

497

Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming
symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).

497

Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming
symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).

497

Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming
symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).

497

Formal Grammars

Alphabet: finite set of symbols
Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)

498

Formal Grammars

Alphabet: finite set of symbols
Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)

498

Formal Grammars

Alphabet: finite set of symbols
Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)

498

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number

, (?)

? * ?, ? / ?, ...
? - ?, ? + ?, ...

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number

, (?)
? * ?, ? / ?, ...
? - ?, ? + ?, ...

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)

? * ?, ? / ?, ...
? - ?, ? + ?, ...

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)

? * ?, ? / ?, ...
? - ?, ? + ?, ...

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
? * ?, ? / ?, ...

? - ?, ? + ?, ...

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
? * ?, ? / ?, ...
? - ?, ? + ?, ...

500

Expressions Multiplication/Division

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
? * ?, ? / ?, ...
? - ?, ? + ?, ...

Factor

500

Expressions Multiplication/Division

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor,
Factor / Factor , ...
? - ?, ? + ?, ...

Factor

500

Expressions Addition/Subtraction

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor,
Factor / Factor , ...
? - ?, ? + ?, ...

Factor

Term

500

Expressions Addition/Subtraction

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor, Factor
Factor / Factor , ...
? - ?, ? + ?, ...

Factor

Term

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor, Factor
Factor / Factor , ...
Term + Term,
Term - Term, ...

Factor

Term

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor, Factor
Factor / Factor , ...
Term + Term,
Term - Term, ...

Factor

Term

Expression

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor, Factor
Factor / Factor , ...
Term + Term, Term
Term - Term, ...

Factor

Term

Expression

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (Expression)
-Number, -(Expression)
Factor * Factor, Factor
Factor / Factor , ...
Term + Term, Term
Term - Term, ...

Factor

Term

Expression

500

The EBNF for Expressions

A factor is

a number,
an expression in parentheses or
a negated factor.

factor = number
| "(" expression ")"
| "−" factor.

alternative

terminal symbol

non-terminal symbol

501

The EBNF for Expressions

A factor is

a number,
an expression in parentheses or
a negated factor.

factor = number
| "(" expression ")"
| "−" factor.

alternative

terminal symbol

non-terminal symbol

501

The EBNF for Expressions

A factor is

a number,
an expression in parentheses or
a negated factor.

factor = number
| "(" expression ")"
| "−" factor.

alternative

terminal symbol

non-terminal symbol

501

The EBNF for Expressions

A factor is

a number,
an expression in parentheses or
a negated factor.

factor = number
| "(" expression ")"
| "−" factor.

alternative

terminal symbol

non-terminal symbol

501

The EBNF for Expressions

A factor is

a number,
an expression in parentheses or
a negated factor.

factor = number
| "(" expression ")"
| "−" factor.

alternative

terminal symbol

non-terminal symbol

501

The EBNF for Expressions

A term is

factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "∗" factor | "/" factor }.

optional repetition

502

The EBNF for Expressions

A term is

factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "∗" factor | "/" factor }.

optional repetition

502

The EBNF for Expressions

A term is

factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "∗" factor | "/" factor }.

optional repetition

502

The EBNF for Expressions

A term is

factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "∗" factor | "/" factor }.

optional repetition

502

The EBNF for Expressions

A term is

factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "∗" factor | "/" factor }.

optional repetition

502

The EBNF for Expressions

factor = number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.

503

Numbers

An integer comprises at least one digit, followed by an arbitrary
number of digits.

number = d i g i t { d i g i t }.
d i g i t = ’0’ | ’1’ | ’2’ | ... |’9’.

504

Numbers

An integer comprises at least one digit, followed by an arbitrary
number of digits.

number = d i g i t { d i g i t }.
d i g i t = ’0’ | ’1’ | ’2’ | ... |’9’.

504

Numbers

An integer comprises at least one digit, followed by an arbitrary
number of digits.

number = d i g i t { d i g i t }.
d i g i t = ’0’ | ’1’ | ’2’ | ... |’9’.

504

Parsing

Parsing: Check if a string is valid according to the EBNF.

Parser: A program for parsing.
Useful: From the EBNF we can (nearly) automatically generate a
parser

505

Parsing

Parsing: Check if a string is valid according to the EBNF.
Parser: A program for parsing.

Useful: From the EBNF we can (nearly) automatically generate a
parser

505

Parsing

Parsing: Check if a string is valid according to the EBNF.
Parser: A program for parsing.
Useful: From the EBNF we can (nearly) automatically generate a
parser

505

Construct a Parser

Rules become functions
Alternatives and options become if–statements.
Nonterminial symbols on the right hand side become function calls
Optional repetitions become while–statements

506

Rules (except number)

factor = number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.

507

Functions (Parser)
Expression is read from an input stream.

// POST: returns true if and only if is = factor ...
// and in this case extracts factor from is
bool factor (std::istream& is);

// POST: returns true if and only if is = term ...,
// and in this case extracts all factors from is
bool term (std::istream& is);

// POST: returns true if and only if is = expression ...,
// and in this case extracts all terms from is
bool expression (std::istream& is);

508

Functions (Parser with Evaluation)
Expression is read from an input stream.

// POST: extracts a factor from is
// and returns its value
double factor (std::istream& is);

// POST: extracts a term from is
// and returns its value
double term (std::istream& is);

// POST: extracts an expression from is
// and returns its value
double expression (std::istream& is);

509

One Character Lookahead. . .

. . . to find the right alternative.
// POST: leading whitespace characters are extracted
// from input, and the first non−whitespace character
// input returned (0 if there input no such character)
char lookahead (std:: istream& input)
{
input >> std :: ws; // skip whitespaces
if (input.eof ())
return 0; // end of stream

else
return input.peek(); // next character in input

}

510

Cherry-Picking

. . . to extract the desired character.
// POST: if ch matches the next lookahead then consume it and return true
// otherwise return false
bool consume (std :: istream& input, char c)
{

if (lookahead (input) == c) {
input >> c;
return true;

} else
return false ;

}

511

Evaluating Factors

double factor (std :: istream& input)
{
double value;
if (consume (input, ’(’)) {
value = expression (input); // "(" expression
consume (input, ’) ’); // ")"

} else if (consume (input, ’−’))
value = −factor (input); // − factor

else
value = number(input); // number

return value;
}

factor = "(" expression ")"
| "−" factor
| number.

512

Evaluating Terms

double term (std:: istream& input)
{
double value = factor (input); // factor
while (true) {

if (consume (input, ’∗’))
value ∗= factor (input); // "∗" factor

else if (consume (input, ’/’))
value /= factor (input); // "/" factor

else
return value;

}
}

term = factor { "∗" factor | "/" factor }.
513

Evaluating Expressions

double expression (std :: istream& input)
{
double value = term (input); // term
while (true) {

if (consume (input, ’+’))
value += term (input); // "+" term

else if (consume (input, ’−’))
value −= term (input); // "−" term

else
return value;

}
}

expression = term { "+" term |"−" term }.
514

Digits ...

// POST: returns the digit that could be consumed from a stream
// (0 if no digit available)
// digit = ’0’ | ’1’ | ... | ’9’.
char digit(std::istream& input){

char ch = input.peek(); // one symbol lookahead
if (input.eof()) return 0; // nothing available on the stream
if (ch >= ’0’ && ch <= ’9’){

input >> ch; // consume
return ch;

}
return 0;

}

515

... and Numbers

// POST: returns an unsigned integer consumed from the stream
// number = digit {digit}.
unsigned int number (std::istream& input){

input >> std::skipws;// skip whitespaces before the first digit
char ch = digit(input);
input >> std::noskipws; // no whitespaces allowed within a number
unsigned int num = 0;
while(ch > 0){ // skip remaining digits

num = num ∗ 10 + ch − ’0’;
ch = digit(input);

}
return num;

}

516

Recursion!

number

factor

term

expression

517

Recursion!

number

factor

term

expression

517

Recursion!

number

factor

term

expression

517

Recursion!

number

factor

term

expression

517

Recursion!

number

factor

term

expression

517

EBNF — and it works!
EBNF (calculator.cpp, Evaluation from left to right):

factor = number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.

std::stringstream input ("1−2−3");
std::cout << expression (input) << "\n"; // −4

518

16. Structs

Rational Numbers, Struct Definition, Function- and Operator
Overloading

519

Calculating with Rational Numbers

Rational numbers (Q) are of the form
n

d
with n and d in Z

C++does not provide a built-in type for rational numbers

Goal

We build a C++-type for rational numbers ourselves!

520

Calculating with Rational Numbers

Rational numbers (Q) are of the form
n

d
with n and d in Z

C++does not provide a built-in type for rational numbers

Goal

We build a C++-type for rational numbers ourselves!

520

Vision

// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;
std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";

521

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable

member variable

struct defines a new type
formal range of values: cartesian product of the value ranges of
existing types
real range of values: rational (int× int.

522

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable (numerator)

member variable (denominator)

struct defines a new type
formal range of values: cartesian product of the value ranges of
existing types
real range of values: rational (int× int.

522

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable

member variable

struct defines a new type

formal range of values: cartesian product of the value ranges of
existing types
real range of values: rational (int× int.

522

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable

member variable

struct defines a new type
formal range of values: cartesian product of the value ranges of
existing types

real range of values: rational (int× int.

522

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable

member variable

struct defines a new type
formal range of values: cartesian product of the value ranges of
existing types
real range of values: rational (int× int.

522

Accessing Member Variables
struct rational {

int n;
int d; // INV: d != 0

};

rational add (rational a, rational b){
rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}

rn
rd

:=
an
ad

+
bn
bd

=
an · bd + ad · bn

ad · bd
523

Input

// Input r
rational r;
std::cout << "Rational number r:\n";
std::cout << " numerator =? ";
std::cin >> r.n;
std::cout << " denominator =? ";
std::cin >> r.d;

// Input s the same way
rational s;
...

525

Vision comes within Reach ...

// computation
const rational t = add (r, s);

// output
std::cout << "Sum is " << t.n << "/" << t.d << ".\n";

526

Struct Defintions: Examples

struct rational_vector_3 {
rational x;
rational y;
rational z;

};

underlying types can be fundamental or user defined

528

Struct Definitions: Examples

struct extended_int {
// represents value if is_positive==true
// and −value otherwise
unsigned int value;
bool is_positive;

};

the underlying types can be different

529

Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member variables are uninitialized

536

Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member-wise initialization:
t.n = 1, t.d = 5

536

Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member-wise copy

536

Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member-wise copy

536

Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t); member-wise copy
536

Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and != , not so for structs! Why?

member-wise comparison does not make sense in general...

...otherwise we had, for example,
2

3
6= 4

6

537

Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and != , not so for structs! Why?

member-wise comparison does not make sense in general...

...otherwise we had, for example,
2

3
6= 4

6

537

Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and != , not so for structs! Why?

member-wise comparison does not make sense in general...

...otherwise we had, for example,
2

3
6= 4

6

537

User Defined Operators

Instead of

rational t = add(r, s);

we would rather like to write

rational t = r + s;

This can be done with Operator Overloading.

540

User Defined Operators

Instead of

rational t = add(r, s);

we would rather like to write

rational t = r + s;

This can be done with Operator Overloading.

540

Function Overloading
A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call

std::cout << sq (3);
std::cout << sq (1.414);
std::cout << pow (2);
std::cout << pow (3,3);

542

Function Overloading
A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call

std::cout << sq (3);
std::cout << sq (1.414);
std::cout << pow (2);
std::cout << pow (3,3);

542

Function Overloading
A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call

std::cout << sq (3);
std::cout << sq (1.414);
std::cout << pow (2);
std::cout << pow (3,3);

542

Function Overloading
A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414);
std::cout << pow (2);
std::cout << pow (3,3);

542

Function Overloading
A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2);
std::cout << pow (3,3);

542

Function Overloading
A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2); // compiler chooses f4
std::cout << pow (3,3);

542

Function Overloading
A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2); // compiler chooses f4
std::cout << pow (3,3); // compiler chooses f3

542

Operator Overloading

Operators are special functions and can be overloaded
Name of the operator op:

operatorop

543

Adding rational Numbers – Before

// POST: return value is the sum of a and b
rational add (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = add (r, s);

544

Adding rational Numbers – After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = r + s;

545

Adding rational Numbers – After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = r + s;

infix notation

545

Adding rational Numbers – After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = operator+ (r, s);

equivalent but less handy: functional notation

545

Unary Minus

Only one argument:

// POST: return value is −a
rational operator− (rational a)
{

a.n = −a.n;
return a;

}

547

Comparison Operators

can be defined such that they do the right thing:

// POST: returns true iff a == b
bool operator== (rational a, rational b)
{

return a.n ∗ b.d == a.d ∗ b.n;
}

2

3
=

4

6
X

548

Comparison Operators

can be defined such that they do the right thing:

// POST: returns true iff a == b
bool operator== (rational a, rational b)
{

return a.n ∗ b.d == a.d ∗ b.n;
}

2

3
=

4

6
X

548

Comparison Operators

can be defined such that they do the right thing:

// POST: returns true iff a == b
bool operator== (rational a, rational b)
{

return a.n ∗ b.d == a.d ∗ b.n;
}

2

3
=

4

6
X

548

Arithmetic Assignment

We want to write

rational r;
r.n = 1; r.d = 2; // 1/2

rational s;
s.n = 1; s.d = 3; // 1/3

r += s;
std::cout << r.n << "/" << r.d; // 5/6

549

Operator +=

rational& operator+= (rational& a, rational b)
{

a.n = a.n ∗ b.d + a.d ∗ b.n;
a.d ∗= b.d;
return a;

}

The L-value a is increased by the value of b and returned as
L-value

551

Operator +=

rational& operator+= (rational& a, rational b)
{

a.n = a.n ∗ b.d + a.d ∗ b.n;
a.d ∗= b.d;
return a;

}

The L-value a is increased by the value of b and returned as
L-value

551

In/Output Operators

can also be overloaded.

Before:

std::cout << "Sum is "
<< t.n << "/" << t.d << "\n";

After (desired):

std::cout << "Sum is "
<< t << "\n";

552

In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out,

rational r)
{

return out << r.n << "/" << r.d;
}

writes r to the output stream
and returns the stream as L-value.

553

In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out,

rational r)
{

return out << r.n << "/" << r.d;
}

writes r to the output stream
and returns the stream as L-value.

553

Input

// PRE: in starts with a rational number
// of the form "n/d"
// POST: r has been read from in
std::istream& operator>> (std::istream& in,

rational& r){
char c; // separating character ’/’
return in >> r.n >> c >> r.d;

}

reads r from the input stream
and returns the stream as L-value.

554

Goal Attained!
// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;

std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";

operator >>

operator +

operator<<

555

Goal Attained!
// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;

std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";

operator >>

operator +

operator<< 555

	Recursion 2
	Motivation: Calculator
	Formal Grammars
	Expressions
	EBNF for Expressions
	Lookahead
	Evaluation

	Structs
	Structs
	Overloading Functions
	Operator Overloading
	Arithmetic Operators
	Comparison Operators
	In/Output Operators

