15. Recursion 2

Building a Calculator, Formal Grammars, Extended Backus Naur
Form (EBNF), Parsing Expressions

493

Motivation: Calculator

Example

Input: 3 + 5
Output: 8

m binary Operators +, -, *, / and numbers

Motivation: Calculator

Example

Input: 3 / 5
Qutput: 0.6

m binary Operators +, -, *, / and numbers
m floating point arithmetic

Motivation: Calculator

Example

Input: 3 + 5 * 20
Output: 103

m binary Operators +, -, *, / and numbers
m floating point arithmetic
m precedences and associativities like in C++

Motivation: Calculator

Example

Input: (3 + 5) * 20
Output: 160

m binary Operators +, -, *, / and numbers

m floating point arithmetic

m precedences and associativities like in C++
m parentheses

Motivation: Calculator

Example

Input: -(3 + 5) + 20
Output: 12

m binary Operators +, -, *, / and numbers

m floating point arithmetic

m precedences and associativities like in C++
m parentheses

m unary operator -

Naive Attempt (without Parentheses)

double 1lval;
std::cin >> 1lval;

char op;

while (std::cin >> op && op != ’=’) {
double rval;
std::cin >> rval;

if (op == ’+7)
lval += rval;
else if (op == ’x’)
lval *= rval;
else ...

3

std::cout << "Ergebnis " << 1lval << "\n";

Seems to work...

double 1lval;
std::cin >> 1lval;

char op;

while (std::cin >> op && op != =’) {
double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’+’) Input 1 * 2 % 3 % 4 =
lval *= rval; Result 24

else ...

3

std::cout << "Ergebnis " << 1lval << "\n";

Oops, Multiplication first...

double 1lval;
std::cin >> 1lval;

char op;

while (std::cin >> op && op != =’) {
double rval;
std::cin >> rval;

if (op == ’+7)
lval += rval;

else if (op == ’+’) Input 2 + 3 * 3 =
lval %= rval; Result 15

else ...

3

std::cout << "Ergebnis " << 1lval << "\n";

Analyzing the Problem

Input:

13+ ...

Analyzing the Problem

Input:

134+4 % ...

Analyzing the Problem

Input:

13+ 4 (15 — ...

Analyzing the Problem

Input:

134+4%(15—Tx*...

Analyzing the Problem

Example

Input:

13 4 4% (15 — 7 3) =

____\Y/ﬂh__,/

Needs to be stored such that
evaluation can be performed

Analyzing the Problem

Result:

13 + 4x(15 — 21)

Analyzing the Problem

Result:

1344 % (—6)

Analyzing the Problem

Result:

13 + (—24)

Analyzing the Problem

Result:

—11

Analyzing the Problem

Expression:

13+4%(15—7x%3)

This

Analyzing the Problem

Expression:

13+4%(15—7x%3)

This lecture

Analyzing the Problem

Expression:

13+4%(15—7x%3)

This lecture is

Analyzing the Problem

Expression:

13+4%(15—7x%3)

This lecture is pretty

Analyzing the Problem

Expression:

13+4%(15—7x%3)

This lecture is pretty much

Analyzing the Problem

Expression:

13+4%(15—7x%3)

This lecture is pretty much recursive.

Analyzing the Problem

13+4%(15—7x%3)

Analyzing the Problem

13+4%(15—7x%3)

“Understanding an expression requires lookahead to upcoming
symbols!

Analyzing the Problem

13+4%(15—7x%3)

We will store symbols elegantly using recursion.

Analyzing the Problem

13+4%(15—7x%3)

We need a new formal tool (that is independent of C+-+).

Formal Grammars

m Alphabet: finite set of symbols
m Strings: finite sequences of symbols

Formal Grammars

m Alphabet: finite set of symbols
m Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

Formal Grammars

m Alphabet: finite set of symbols
m Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)

Short Communications
Programming Languages

What Can We Do about the
Unnecessary Diversity of
Notation for Syntactic
Definitions?

Niklaus Wirth
Federal Institute of Technology (ETH), Ziirich, and
Xerox Palo Alto Research Center

Key Words and l'hrmu syntactic description

The population of programming languages is stead-
ily growing, and there is no end of this growth in sight.
Many language definitions appear in journals, many
are found in technical reports, and perhaps an even
greater number remains confined to proprietory circles.
After frequent exposure to these definitions, one can-
not fail to notice the lack of “common denominators.”
The only widely accepted fact is that the language
structure is defined by a syntax. But even notation for

ludes any lgreed stan-
d-rd form, -Ilhwgh the underlying ancestor is invaria-
bly the Backus-Naur Form of the Algol 60 report. As
variations are often only slight, they become annoying
for their very lack of an apparent motivation.

Out of sympathy with the troubled reader who is
weary of adapting to a new variant of BNF cach time
another language definition appears, and without any
claim for originality, I venture to submit a simple
notation that has proven valuable and satisfactory in
use. It has the following properties to recommend it:

Copyright © 1977, Association for Computing Machinery, Inc
Qeneral permission to republish, but not for profit, sl or pan of
this material is granted provided that ACM's copyright notice is
given and that reference is made 1 me publication, 10 its date of
issue, and to the fact that repri privileges were granted by per-
mision of the Association for Computing Machi

s present address: Xerox tion, Palo Alto Re-
search Cﬂllcl. 3333 Coyote Hill Road, Palo Alto, CA 94304,

November 1977
Volume 20
Number 11

Communications
of

the ACM

‘The notation distinguishes clearly between meta-,
terminal, and nonterminal sym!

2. Itdoes not exclude characters used as metasymbols
from use as symbols of the language (as e.g. " in
BNF).

3. It contains an explicit iteration construct, and
thereby avoids the heavy use of recursion for
expressing simple repetition.

4. It avoids the use of an explicit symbol for the
empty string (such as (empty) or €).

5. Itis based on the ASCII character set.

This meta language can therefore conveniently be
used to define its own syntax, which may serve here as
an example of its use. The word identifier is used to
denote nonterminal symbol, and literal stands for termi-
nal symbol. For brevity, idenifier and character are
not defined in further detail.

syntax =

production = " expression ",

expression = {"I" term}.

term = factor {factor}.

factor = |d=nhﬁ=r¥ literal | "(" expression)"
i expression "}’

literal = """ character {character} " """

Repetition is denoted by curly brackets, i.e. (a}
stands fore | a|aa|aaa| Optionality is expressed
by square brackets, i.c. [a] stands for a | €. Parentheses
merely serve for grouping, ¢.g. (a|b)c stands for ac| be.
Terminal symbols, i.e. literals, are enclosed in quote
marks (and, if a quote mark appears as a literal itself, it
is written twice), which is consistent with common
practice in programming languages.

Received January 1977; revised February 1977

Expressions

-(3-(4-5))*(3+4%5) /6

What do we need in a grammar?

Expressions

-(3-(4-5))*(3+4%5) /6

What do we need in a grammar?

m Number

Expressions

-(3-(4-5))*(3+4%5) /6

What do we need in a grammar?

m Number, (?)

Expressions

-(3-(4-5))*(3+4%5) /6

What do we need in a grammar?

m Number, (?)
-Number, -(?)

Expressions

-(3-(4-5))*(3+4%5) /6

What do we need in a grammar?

m Number, (?)
-Number, -(?)
m?x? ?2/?,

Expressions

-(3-(4-5))*(3+4%5) /6

What do we need in a grammar?

m Number, (?)
-Number, -(?)
m?x? ?2/?
m?-?, ?7+7?,

Expressions Multiplication/Division

-(3-(4-5))*(3+4%5) /6
What do we need in a grammar?
m Number, (?)
-Number, -(?)

m?2x?, ?/7
m2-? ?2+7

Expressions Multiplication/Division

-(3-(4-5))*(3+4%5) /6
What do we need in a grammar?
m Number, (?)
-Number, -(?)

m Factor * Factor,
Factor / Factor, ...
m?-? ?2+7?

Expressions Addition/Subtraction

-(3-(4-5))*(3+4%5) /6
What do we need in a grammar?
m Number, (?)
-Number, -(?)
m Factor * Factor,

Factor / Factor, ...
m?-? ?2+7?

Expressions Addition/Subtraction

-(3-(4-5))*(3+4x%5) /6
What do we need in a grammar?
m Number, (?)
-Number, -(?)
m Factor * Factor, Factor

Factor / Factor, ...
m?-? ?2+7?

Expressions

-(3-(4-5))*(3+4x5) /6
What do we need in a grammar?

m Number, (?)

-Number, -(?)

m Factor * Factor, Factor
Factor / Factor, ...

m Term + Term,
Term - Term, ...

Expressions

-(3-(4-5))*(3+4%5) /6
What do we need in a grammar?
m Number, (?)
-Number, -(?)

m Factor * Factor, Factor
Factor / Factor, ...

m Term + Term, Expression

Term - Term, ...

Expressions

-(3-(4-5))*(3+4%5) /6
What do we need in a grammar?

m Number, (?)

-Number, -(?)
m Factor * Factor, Factor
Factor / Factor, ...

m Term + Term, Term Expression

Term - Term, ...

Expressions

-(3-(4-5))*(3+4%5) /6

What do we need in a grammar?

m Number, (Expression)
-Number, - (Expression)
m Factor * Factor, Factor

Factor / Factor, ...

m Term + Term, Term Expression

Term - Term, ...

The EBNF for Expressions

A factor is

® a number,

The EBNF for Expressions

A factor is

® a number,
m an expression in parentheses

The EBNF for Expressions

A factor is

® a number,
m an expression in parentheses or
m a negated factor.

The EBNF for Expressions

A factor is

factor = number
| " (" expression ")"
| "—" factor.

The EBNF for Expressions

A factor is

non-terminal symbol

factor = number/

| " (" expression ")/

| "—" factor.
/ terminal symbol

alternative

The EBNF for Expressions

Atermis

m factor,

The EBNF for Expressions

Atermis

m factor,
m factor * factor, factor / factor,

The EBNF for Expressions

Atermis

m factor,

m factor * factor, factor / factor,

m factor * factor * factor, factor / factor * factor, ...
m ...

The EBNF for Expressions

Atermis

term = factor { "«" factor | "/" factor }.

The EBNF for Expressions

Atermis

term = factor {"*" factor | "/" facty}.

optional repetition

The EBNF for Expressions

factor = number
| " (" expression ")"
| "—" factor.
term = factor { "*" factor | "/" factor }.

expression = term { "+" term |"—" term }.

Numbers

An integer comprises at least one digit, followed by an arbitrary
number of digits.

number = digit { digit }.
digit 00 | 210 | 020 | ... |97,

Numbers

An integer comprises at least one digit, followed by an arbitrary
number of digits.

number
digit

digit { digit .
;O; |)1; | 222 l .. |;9;.

Numbers

An integer comprises at least one digit, followed by an arbitrary
number of digits.

number = digit { digit }.
digit 200 | 212 | ’22 | ... 1’97,

Parsing

m Parsing: Check if a string is valid according to the EBNF.

Parsing

m Parsing: Check if a string is valid according to the EBNF.
m Parser: A program for parsing.

Parsing

m Parsing: Check if a string is valid according to the EBNF.
m Parser: A program for parsing.

m Useful: From the EBNF we can (nearly) automatically generate a
parser

Construct a Parser

m Rules become functions

m Alternatives and options become if—statements.

m Nonterminial symbols on the right hand side become function calls
m Optional repetitions become while—statements

Rules (except number)

factor = number
| "(" expression ")"
| "—" factor.
term = factor { "«" factor | "/" factor }.

expression = term { "+" term |"—" term }.

507

Functions (Parser)

Expression is read from an input stream.

// POST: returns true if and only if is = factor ...
// and in this case extracts factor from is
bool factor (std::istream& is);

// POST: returns true if and only if is = term ...,
// and in this case extracts all factors from is
bool term (std::istream& is);

// POST: returns true if and only if is = expression ...,
// and in this case extracts all terms from is
bool expression (std::istream& is);

508

Functions (Parser with Evaluation)

Expression is read from an input stream.

// POST: extracts a factor from is
// and returns its value
double factor (std::istream& is);

// POST: extracts a term from is
// and returns its value
double term (std::istream& is);

// POST: extracts an expression from is
// and returns its value
double expression (std::istream& is);

One Character Lookahead...

...to find the right alternative.

// POST: leading whitespace characters are extracted

// from input, and the first non—whitespace character
// input returned (0 if there input no such character)
char lookahead (std::istreamé& input)
{
input >> std :: ws; // skip whitespaces
if (input.eof())
return O; // end of stream
else
return input.peek(); // next character in input

Cherry-Picking

...to extract the desired character.

// POST: if ch matches the next lookahead then consume it and return true
// otherwise return false
bool consume (std ::istreamé& input, char c)
{
if (lookahead (input) == c) {
input >> c;
return true;
} else
return false ;

Evaluating Factors

double factor (std::istreamé& input)
{
double value;
if (consume (input, '(’)) {
value = expression (input);
consume (input, ')’);

} else if (consume (input, '—’))
value = —factor (input);
else

value = number(input);
return value;

// "(" expression

// II)II

// — factor

factor = " (" expression ")"
| "—" factor
|

Evaluating Terms

double term (std::istreamé& input)

{

double value = factor (input); // factor

while (true) {

if (consume (input, '*’))

value *= factor (input); // "x" factor
else if (consume (input, '/’))

value /= factor (input); // "/" factor
else

return value;

term = factor { "+" factor | "/" factor }.

Evaluating Expressions

double expression (std ::istreamé& input)
{
double value = term (input); // term
while (true) {
if (consume (input, '+’))

value += term (input); // "+" term
else if (consume (input, '—’))

value —= term (input); // "—" term
else

return value;

expression = term { "+" term |"—" term }.

Digits ...

// POST: returns the digit that could be consumed from a stream
// (0 if no digit available)
// digit = 0’ | ’1° | ... | ’9’.
char digit(std::istream& input){
char ch = input.peek(); // one symbol lookahead
if (input.eof()) return O; // nothing available on the stream
if (ch >= 0’ && ch <= ’9’){
input >> ch; // consume
return ch;
}

return O;

}

515

... and Numbers

// POST: returns an unsigned integer consumed from the stream
// number = digit {digit}.
unsigned int number (std::istream& input){
input >> std::skipws;// skip whitespaces before the first digit
char ch = digit(input);
input >> std::noskipws; // no whitespaces allowed within a number
unsigned int num = O;
while(ch > 0){ // skip remaining digits
num = num *x 10 + ch — ’0’;
ch = digit(input);
}

return num;

3

Recursion!

number

factor

term

expression

Recursion!

number
factor
term

|

expression

Recursion!

number

factor

_

term

\
[4

expression

Recursion!

number

expression

Recursion!

number

expression

EBNF — and it works!

EBNF (calculator.cpp, Evaluation from left to right):

factor = number

| " (" expression ")"

| "—" factor.
term = factor { "+" factor | "/" factor }.
expression = term { "+" term | "—" term }.

std: :stringstream input ("1-2-3");
std::cout << expression (input) << "\n'";

16. Structs

Rational Numbers, Struct Definition, Function- and Operator
Overloading

519

Calculating with Rational Numbers

m Rational numbers (QQ) are of the form % with n and d in Z

m C-+-+does not provide a built-in type for rational numbers

Calculating with Rational Numbers

m Rational numbers (Q) are of the form g with n and d in Z

m C+-+does not provide a built-in type for rational numbers

We build a C-++-type for rational numbers ourselves! ©

Vision

// input

std::cout << "Rational number r =7 ";
rational r;

std::cin >> r;

std::cout << "Rational number s =7 ";
rational s;

std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << " \n";

A First Struct

struct rational {

int n;

int 4; // INV: 4 !'=0
};

A First Struct

struct rational {
int n;+<— member variable (numerator)
int d4;.// INV: 4 '= 0

o T~

member variable (denominator)

A First Struct

struct rational {
int n;<— member variable
int d4; // INV: 4 !'=0
}; \

member variable

m struct defines a new fype

A First Struct

struct rational {
int n;<— member variable
int d4; // INV: 4 !'=0

TN

member variable

m struct defines a new fype

m formal range of values: cartesian product of the value ranges of
existing types

A First Struct

struct rational {
int n;<— member variable
int d;. // INV: 4 '=0

TN

member variable

m struct defines a new fype

m formal range of values: cartesian product of the value ranges of
existing types

m real range of values: rational C int X int.

Accessing Member Variables

struct ratiomnal {

int n;

int d; // INV: d '= 0
};

rational add (rational a, rational b){
rational result;
result.n = a.n *x b.d + a.d *x b.n;
result.d a.d x b.d;
return result;

n . Qp, bn . ap - bd"'ad :

Td ag by

aq - by

Input

// Input r

rational r;

std::cout << "Rational number r:\n";
std::cout << " numerator =7 ";
std::cin >> r.n;

std::cout << " denominator =7 ";
std::cin >> r.d;

// Input s the same way
rational s;

Vision comes within Reach ...

// computation
const rational t = add (r, s);

// output
std::cout << "Sum is " << t.n << "/" << t.d << ".\n";

Struct Defintions: Examples

struct rational vector_3 {
rational x;
rational y;
rational z;

};

underlying types can be fundamental or user defined

Struct Definitions: Examples

struct extended_int {
// represents value if is_positive==true
// and —value otherwise
unsigned int value;
bool is_positive;

};

the underlying types can be different

Structs: Initialization and Assignment

rational s; «— member variables are uninitialized

Structs: Initialization and Assignment

member-wise initialization:

rational t = {1,5};
t.n=1, t.d =5

Structs: Initialization and Assignment

rational u = t; «— member-wise copy

Structs: Initialization and Assignment

t = u; +— member-wise copy

Structs: Initialization and Assignment

rational v = add (u,t); «— member-wise copy

Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and !=, not so for structs! Why?

Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and !=, not so for structs! Why?

m member-wise comparison does not make sense in general...

Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and !=, not so for structs! Why?

m member-wise comparison does not make sense in general...
4

2
m ...otherwise we had, for example, 3 #* 6

User Defined Operators

Instead of
rational t = add(r, s);
we would rather like to write

rational t = r + s;

User Defined Operators

Instead of
rational t = add(r, s);
we would rather like to write

rational t = r + s;

This can be done with Operator Overloading.

Function Overloading

B A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // £2
int pow (int b, int e) { ... } // £3

int pow (int e) { return pow (2,e); } // f4

Function Overloading

|
double sq (double x) { ... } // f1
int sq (int x) { ... } // £2
int pow (int b, int e) { ... } // £3

int pow (int e) { return pow (2,e); } // f4

m the compiler automatically chooses the function that fits “best” for a function
call

Function Overloading

double sq (double x) { ... } // f1
int sq (int x) { ... } // £2
int pow (int b, int e) { ... } // £3

int pow (int e) { return pow (2,e); } // f4

std::cout << sq (3);

Function Overloading

|
double sq (double x) { ... } // f1
int sq (int x) { ... } // £2
int pow (int b, int e) { ... } // £3

int pow (int e) { return pow (2,e); } // f4

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414);

Function Overloading

|
double sq (double x) { ... } // f1
int sq (int x) { ... } // £2
int pow (int b, int e) { ... } // £3

int pow (int e) { return pow (2,e); } // f4

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2);

Function Overloading

|
double sq (double x) { ... } // f1
int sq (int x) { ... } // £2
int pow (int b, int e) { ... } // £3

int pow (int e) { return pow (2,e); } // f4

[
std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2); // compiler chooses f4

std::cout << pow (3,3);

Function Overloading

// f1
// £2
// £3

double sq (double x) { ... }

int sq (int x) { ... }

int pow (int b, int e) { ... }

int pow (int e) { return pow (2,e); } // f4

std:
std:
std:
std:

:cout
:cout
:cout
:cout

<< sq (3);

<< sq (1.414);

<< pow (2);
<< pow (3,3);

//
//
//
//

compiler
compiler
compiler
compiler

chooses
chooses
chooses
chooses

f2
f1
f4
£3

Operator Overloading

m Operators are special functions and can be overloaded
m Name of the operator op:

operatorop

Adding rational Numbers — Before

// POST: return value is the sum of a and b
rational add (rational a, rational b)
{
rational result;
result.n = a.n *x b.d + a.d *x b.n;
result.d a.d x b.d;
return result;

}

const ratiomal t = add (r, s);

Adding rational Numbers - After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)

{
rational result;
result.n = a.n * b.d + a.d *x b.n;
result.d = a.d *x b.d;
return result;
+

const rational t = r + s;

Adding rational Numbers - After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)

{
rational result;
result.n = a.n * b.d + a.d *x b.n;
result.d = a.d *x b.d;
return result;
+

const rational t = r + s;
4\

infix notation

Adding rational Numbers - After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)

{
rational result;
result.n = a.n * b.d + a.d *x b.n;
result.d = a.d *x b.d;
return result;
+

const rational t = operator+ (r, s);
/h

equivalent but less handy: functional notation

Unary Minus

Only one argument:

// POST: return value is —a
rational operator— (rational a)
{

a.n = —a.n;

return a;

Comparison Operators

can be defined such that they do the right thing:

Comparison Operators

can be defined such that they do the right thing:

// POST: returns true iff a ==
bool operator== (rational a, rational b)

{

return a.n * b.d == a.d * b.n;

}

Comparison Operators

can be defined such that they do the right thing:

// POST: returns true iff a ==
bool operator== (rational a, rational b)
{

return a.n * b.d == a.d * b.n;

}

4
G v

2
3

Arithmetic Assignment

We want to write

rational r;

r.n=1; r.d = 2;
rational s;
s.n=1; s.d = 3;

r += s8;
std::cout << r.n << "/" << r.d;

Operator +=

rational& operator+= (rational& a, rational b)
{

a.n = a.n *x b.d + a.d *x b.n;

a.d x= b.d;

return a;

Operator +=

rational& operator+= (rational& a, rational b)
{

a.n = a.n *x b.d + a.d *x b.n;

a.d x= b.d;

return a;

m The L-value a is increased by the value of b and returned as
L-value

In/Output Operators

can also be overloaded.

m Before:

std::cout << "Sum is "
<< t.n << n/n << t.d << H\n";

m After (desired):

std: :cout << "Sum is "
<L t << "\n";

In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out,
rational r)

{

return out << r.n << "/" << r.d;

}

In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std: :ostream& operator<< (std::ostream& out,
rational r)

{

return out << r.n << "/" << r.d;

}

writes r to the output stream
and returns the stream as L-value.

Input

// PRE: in starts with a rational number
// of the form "n/4"
// POST: r has been read from in
std::istream& operator>> (std::istream& in,
rational& r){
char c; // separating character ’/’
return in >> r.n >> ¢ >> r.d;

reads r from the input stream
and returns the stream as L-value.

Goal Attained!

// input

std: :cout << "Rational number r

rational r;
std::cin >> r;

std: :cout << "Rational number s

rational s;
std::cin >> s;

// computation and output

std::cout << "Sum is

" <K< r + 8

< .\Il";

Goal Attained!

// input
std::cout << "Rational number r =7 ";
rational r;

std::cin >>cr; operator >>

std::cout << "Rationa
rational s;
std::cin >> s;

g =7 ".

’

operator +
// computation and output J/

std::cout << "Sum is " << r + s << " \n";

~—

operator<<

	Recursion 2
	Motivation: Calculator
	Formal Grammars
	Expressions
	EBNF for Expressions
	Lookahead
	Evaluation

	Structs
	Structs
	Overloading Functions
	Operator Overloading
	Arithmetic Operators
	Comparison Operators
	In/Output Operators

