15. Recursion 2

Building a Calculator, Formal Grammars, Extended Backus Naur
Form (EBNF), Parsing Expressions

497

Naive Attempt (without Parentheses)

double lval;
std::cin >> 1lval;

char op;

while (std::cin >> op && op != ’=’) {
double rval;
std::cin >> rval;

if (op == ’+7)
lval += rval;
else if (op == ’%7)
lval *= rval;
else ...

Input 2 + 3 * 3 =
Result 15

}

std::cout << "Ergebnis " << lval << "\n";
499

Motivation: Calculator

Goal: we build a command line calculator

Input: 3 + 5

Output: 8

Input: 3 / 5

Output: 0.6

Input: 3 + 5 * 20
Output: 103

Input: (3 + 5) * 20
Output: 160

Input: -=(3 + 5) + 20
Output: 12

binary Operators +, -, *, / and numbers
floating point arithmetic
precedences and associativities like in C+-+

parentheses

unary operator -

498

Analyzing the Problem

Example

Input:

13+4x(15—7x3) =

L’ﬁf\J

Needs to be stored such that
evaluation can be performed

500

Analyzing the Problem

“Understanding an expression requires lookahead to upcoming

symbols!

13+4%(15—7x%3)

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).

Short Communications
Programming Languages

What Can We Do about the
Unnecessary Diversity of
Notation for Syntactic
Definitions?

Niklaus Wirth
Federal Institute of Technology (ETH), Zirich, and
Xerox Palo Alto Research Center

Key Words and Phrases: syntactic description
language, extended BNF
CR Categories: 4.20

The population of programming languages is stead-
ily growing, and there is no end of this growth in sight
Many language definitions appear in journals, many
are found in technical reports, and perhaps an even
greater number remains confined to proprietory circles.
After frequent exposure 1o these definitions, one can-
not fail to notice the lack of “common denominators.”
The only widely accepted fact is that the language
structure is defined by a syntax. But even notation for
syntactic description eludes any commonly agreed stan-
dard form, although the underlying ancestor is invaria-
bly the Backus-Naur Form of the Algol 60 report. As
variations are often only slight, they become annoying
for their very lack of an apparent motivation.

Out of sympathy with the troubled reader who is
weary of adapting to a new variant of BNF each time
another language definition appears, and without any
claim for originality, 1 venture to submit a simple
notation that has proven valuable and satisfactory in
use. It has the following properties to recommend it

Copyright © 1977, Association for Computing Machinery. Inc
General permission to republish, but not for profit, all or part of
this material s granted provided that ACM's copyright

given and that reference is made 1o the publication, 1o its date of

Author's present address: Xerox Corporation, Palo Alio Re-
search Center, 3333 Coyote Hill Road, Palo Alto, CA 94304,

Communications. November 1977
of Volume 20
the ACM Number 11

“The notation distinguishes clearly between meta-,
terminal, and nonterminal symbols

2. Tt does not exclude characters used as metasymbols
from use as symbols of the language (as e.g. “[" in
BNF).

3. It contains an explicit iteration construct, and

thereby avoids the heavy use of recursion for
expressing simple repetition
4. 1t avoids the use of an explicit symbol for the
empty string (such as (empty) o ¢)
5. 1Itis based on the ASCII character set
This meta language can therefore conveniently be
used to define its own syntax, which may serve here as
an example of its use. The word identifier is used to
denote nonterminal symbol, and literal stands for termi-
nal symbol. For brevity, identifier and character are
not defined in further detail.

syntax = {production}.

production = identifier " =" expression "."

expression = term {"[" term}

term = factor {factor}.

factor = identifier | literal | "(" expression ")"
" expression "] | "{" expression "}"*

literal - " character {character) " """

Repetition is denoted by curly brackets, i.e. {a}
stands for | a| aa | aaa| Optionality is expressed
by square brackets, i.e. [a) stands for a | €. Parentheses
merely serve for grouping, e.g. (a|b)c stands for ac | be.
Terminal symbols, i.e. literals, are enclosed in quote
marks (and, if a quote mark appears as a literal itself, it
is written twice), which is consistent with common
practice in programming languages.

Received January 1977; revised February 1977

501

Formal Grammars

m Alphabet: finite set of symbols
m Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)

502

Expressions

-(3-(4-5))*(3+4%5) /6

What do we need in a grammar?

m Number, (Expression)
-Number, - (Expression)

m Factor * Factor, Factor

Factor / Factor , ...

m Term + Term, Term
Term - Term, ...

504

The EBNF for Expressions

A factor is

m a number,
m an expression in parentheses or
m a negated factor. non-terminal symbol

= number/

| " (" expression ")Y

/l " factor.

alternative

factor

terminal symbol

505

The EBNF for Expressions

factor = number

"(" expression ")"
""" factor.

factor { "«" factor | "/" factor }.

term

expression = term { "+" term |"—" term }.

507

The EBNF for Expressions

Atermis

m factor,

m factor * factor, factor / factor,

m factor * factor * factor, factor / factor * factor, ...
...

term = factor {<"*" factor | "/" factf}.

optional repetition

506

Numbers

An integer comprises at least one digit, followed by an arbitrary
number of digits.

number =
digit

digit { digit }.
)O) | 11 | 190 |

1797,

508

Parsing

m Parsing: Check if a string is valid according to the EBNF.
m Parser: A program for parsing.

m Useful: From the EBNF we can (nearly) automatically generate a
parser

509

Rules (except number)
factor = number
| " (" expression ")"
| "—" factor.
term = factor { "*" factor | "/" factor }.
expression = term { "+" term |"—" term }.

511

Construct a Parser

m Rules become functions

m Alternatives and options become if—statements.

m Nonterminial symbols on the right hand side become function calls
m Optional repetitions become while—statements

510

Functions (Parser)

Expression is read from an input stream.

// POST: returns true if and only if is = factor ...
// and in this case extracts factor from is
bool factor (std::istream& is);

// POST: returns true if and only if is = term ...,
// and in this case extracts all factors from is
bool term (std::istream& is);

// POST: returns true if and only if is = expression ...,
// and in this case extracts all terms from is
bool expression (std::istream& is);

512

Functions (Parser with Evaluation)

Expression is read from an input stream.

// POST: extracts a factor from is
// and returns its value
double factor (std::istream& is);

// POST: extracts a term from is
// and returns its value
double term (std::istream& is);

// POST: extracts an expression from is
// and returns its value
double expression (std::istream& is);

513

Cherry-Picking

... 1o extract the desired character.

// POST: if ch matches the next lookahead then consume it and return true
// otherwise return false
bool consume (std ::istreamé& input, char c)
{
if (lookahead (input) == c) {
input >> c;
return true;
} else
return false;

515

One Character Lookahead...

...to find the right alternative.

// POST: leading whitespace characters are extracted

// from input, and the first non—whitespace character
// input returned (0 if there input no such character)
char lookahead (std:istreamé& input)

{

input >> std:: ws; // skip whitespaces

if (input.eof())
return O;

else

return input.peekQ);

// end of stream

// next character in input

514

Evaluating Factors

double factor (std::istreamé& input)
{

double value;

if (consume (input, "(*)) {

value = expression (input); // "(" expression

consume (input, ’)’); /7 ")
} else if (consume (input, '—’))
value = —factor (input); // — factor
else
value = number(input); /
return value; factor n(n expression nym

" factor

) |
| number.

516

Evaluating Terms

double term (std::istreamé& input)
{
double value = factor (input);
while (true) {
if (consume (input, ’+’))
value *= factor (input);
else if (consume (input, ’/’))
value /= factor (input);
else
return value;

// factor

// "x" factor

// "/" factor

term = factor { "+" factor | "/" factor }.

517

Digits ...

// POST: returns the digit that could be consumed from a stream
// (0 if no digit available)
// digit =0’ | 21> | ... | ’9’.
char digit(std::istream& input){
char ch = input.peek(); // one symbol lookahead
if (input.eof()) return 0; // nothing available on the stream
if (ch >= 0’ && ch <= 9°){
input >> ch; // consume
return ch;
}

return O;

}

519

Evaluating Expressions

double expression (std ::istreamé& input)

{

double value = term (input); // term
while (true) {
if (consume (input, '+’))
value += term (input); // "+" term
else if (consume (input, '—’))
value —= term (input); // "—" term
else
return value;
}
}
expression = term { "+" term |"—" term }.

518

... and Numbers

// POST: returns an unsigned integer consumed from the stream
// number = digit {digit}.
unsigned int number (std::istream& input){
input >> std::skipws;// skip whitespaces before the first digit
char ch = digit(input);
input >> std::noskipws; // no whitespaces allowed within a number
unsigned int num = 0;
while(ch > 0){ // skip remaining digits
num = num *x 10 + ch — ’07;
ch = digit(input);
}
return num;

}

520

Recursion! EBNF — and it works!

EBNF (calculator.cpp, Evaluation from left to right):

number
e
factor = number
| "(" expression ")"
factor | "—" factor.
N
term = factor { "*" factor | "/" factor }.
tejfn expression = term { "+" term | "—" term }.
. . s : N4 _o_any.
expression std::stringstream input ("1-2-3");

std::cout << expression (input) << "\n"; // —4

521

Calculating with Rational Numbers

m Rational numbers (Q)) are of the form g with n and d in Z
16. Stl‘ucts m C{{does not provide a built-in type for rational numbers

Rational Numbers, Struct Definition, Function- and Operator

Overloading We build a C+ +-type for rational numbers ourselves! ©

523

Vision

Howi itraould (will) look like

std::cout << "Rational number r =7 ";
rational r;

std::cin >> r;

std::cout << "Rational number s =7 ";
rational s;

std::cin >> s;

]
~N

// computation and output
std::cout << "Sum is " << r + s << " \n";

Accessing Member Variables

struct rationmal {

int n;

int d; // INV: d != 0
};

rational add (rational a, ratiomnal b){
rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

Tn Ay bn Qp - bd +aq - bn

aq - bd

527

A First Struct

Invariant: specifies valid
value combinations (infor-
struct rational { mal).

int n;+— member variable{riumerator)
int d;,.// INV: 4 != 0

oo —

member variable (denominator)

m struct defines a new type

m formal range of values: cartesian product of the value ranges of
existing types

m real range of values: rational C int X int.

A First Struct: Functionality

A struct defines a new type, not a variable!

// new type rational

struct rational {
int n; <
int d4; // INV: 4 != 0

Meaning: every object of the new type is rep-
resented by two objects of type int the ob-
jects are calledn and d .

};

// POST: return value is the sum of a and b
rational add (const rational a, const rational b)
{

rational result;

result.n = a.n .d + a.dex b.n;

result.d = a.d ii;FE?—___-“t:::::::====__

return result; member access to the int objects of a.

526

528

Input

// Input r

rational r;

std::cout << "Rational number r:\n";
std::cout << " numerator =7 ";
std::cin >> r.n;

std::cout << " denominator =7 ";
std::cin >> r.d;

// Input s the same way
rational s;

529

Struct Definitions

name of the new type (identifier)

|

struct T {

T, name;«
names of the underlying . names of the member
types T2 name2 ? variables

T,, name,«;

1

Range of Valuesof T: Ty x To x ... x T,

531

Vision comes within Reach ...

// computation
const rational t = add (r, s);

// output
std::cout << "Sum is " << t.n << "/" << t.d << ".\n";

Struct Defintions: Examples

struct rational_vector_3 {
rational x;
rational y;
rational z;

};

underlying types can be fundamental or user defined

530

532

Struct Definitions: Examples

struct extended_int {
// represents value if is_positive==true
// and —value otherwise
unsigned int value;
bool is_positive;

};

the underlying types can be different

Structs: Initialization and Assignment

Default Initialization:

rational t;

m Member variables of t are default-initialized

m for member variables of fundamental types nothing happens
(values remain undefined)

Structs: Accessing Members

expression of struct-type T name of a member-variable of type T.

N

expression of type Ty ; value is the value of

eXpr. namek the object designated by namey.

|

member access operator .

Structs: Initialization and Assignment

Initialization:
rational t = {5, 1};

m Member variables of t are initialized with the values of the list,
according to the declaration order.

536

Structs: Initialization and Assignment

Assignment:

rational s;
rational t = s;

m The values of the member variables of s are assigned to the
member variables of t.

Structs: Initialization and Assignment

Assignment:

rational t;
t = add (r, s);

m t is default-initialized
m The value of add (r, s) isassignedtot

Structs: Initialization and Assignment

t.n .n
o = add (r, s) d

Initialization: f_J

rational t = add (r, s);

m t is initialized with the values of add(r, s)

Structs: Initialization and Assignment

rational s; <— member variables are uninitialized

member-wise initialization:

rational t = {1,5}; «
t.n=1, t.d =5

rational u = t; «— member-wise copy
t = u; «+— member-wise copy

rational v = add (u,t); «— member-wise copy

Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and !=, not so for structs! Why?

m member-wise comparison does not make sense in general...

2 4
m ...otherwise we had, for example, 3 %+ 6

541

Structs as Function Arguments

void increment(rational & dest, const rational src)
{

dest = add (dest, src);
}

Call by Reference

rational a;

rational b;

a.d=1; a.n =2

b = a;

increment (b, a);

std::cout << b.n<< "/" << b.d; // 2/ 2

Structs as Function Arguments

void increment(rational dest, const rational src)

{
dest = add (dest, src); // modifies local copy only
}
Call by Value !
rational a;

rational b;

a.d=1;a.n=2;

b = a;

increment (b, a); // no effect!

std::cout << b.n << "/" << b.d; // 1/ 2

User Defined Operators

Instead of
rational t = add(r, s);
we would rather like to write

rational t = r + s;

This can be done with Operator Overloading.

544

Overloading Functions

m Functions can be addressed by name in a scope

m It is even possible to declare and to defined several functions
with the same name

m the “correct” version is chosen according to the signature of the
function.

Operator Overloading

m Operators are special functions and can be overloaded
m Name of the operator op:

operatorop

m we already know that, for example, operator+ exists for different
types

Function Overloading

B A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // £2
int pow (int b, int e) { ... } // £3

int pow (int e) { return pow (2,e); } // £f4

m the compiler automatically chooses the function that fits “best” for a function
call (we do not go into details)

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2); // compiler chooses f4

std::cout << pow (3,3); // compiler chooses £f3

Adding rational Numbers - Before

// POST: return value is the sum of a and b
rational add (rational a, rational b)

{
rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;
}

const rational t = add (r, s);

546

548

Adding rational Numbers - After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)

{
rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d x b.d;
return result;
}

const rational t = r + s;
4\

infix notation

549

Unary Minus

has the same symbol as the binary minus but only one argument:

// POST: return value is —a
rational operator— (rational a)

a.n = —a.n;
return a;

551

Other Binary Operators for Rational Numbers

// POST: return value is difference of a and b
rational operator— (rational a, rational b);

// POST: return value is the product of a and b
rational operatorx (rational a, rational b);

// POST: return value is the quotient of a and b
// PRE:b!=0
rational operator/ (rational a, rational b);

550

Comparison Operators

are not built in for structs, but can be defined

// POST: returns true iff a ==
bool operator== (rational a, rational b)

{

return a.n * b.d == a.d * b.n;

}

2 4
o v
376

552

Arithmetic Assignment

We want to write

rational r;

r.n=1; r.d = 2;
rational s;
s.n=1; s.d = 3;

r += s;
std::cout << r.n << "/" << r.d;

/] 1/2

// 1/3

// 5/6

Operator +=
rational& operator+= (rational& a, rational b)
{
a.n = a.n *x b.d + a.d * b.n;
a.d x= b.d;
return a;
}
this works

m The L-value a is increased by the value of b and returned as

L-value

r += s; now has the desired effect.

553

Operator+= First Trial

rational operator+= (rational a, rational b)

{
a.n = a.n *x b.d + a.d * b.n;
a.d %= b.d;
return a;

}

does not work. Why?

m The expression r += s has the desired value, but because the arguments are
R-values (call by value!) it does not have the desired effect of modifying r.

m Theresult of r += s is, against the convention of C++ no L-value.

In/Output Operators

can also be overloaded.

m Before:

std: :cout << "Sum is "
<< t.n << "/" << t.d << "\n";

m After (desired):

std::cout << "Sum is "
<< t << |I\nll;

In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out,
rational r)

{

return out << r.n << "/" << r.d;

}

writes r to the output stream
and returns the stream as L-value.

557

Goal Attained!

// input
std::cout << "Rational number r =7 ";
rational r;

std::cin >>cr;

operator >>

std::cout << "Rationa
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + 8 << ".\n";

~

operator<<

J/.operator W

559

Input

// PRE: in starts with a rational number
// of the form "n/4"
// POST: r has been read from in
std::istream& operator>> (std::istream& in,
rational& r){
char c; // separating character ’/’
return in >> r.n >> ¢ >> r.d;

reads r from the input stream
and returns the stream as L-value.

558

