
15. Recursion 2

Building a Calculator, Formal Grammars, Extended Backus Naur
Form (EBNF), Parsing Expressions

497

Motivation: Calculator
Goal: we build a command line calculator

Example

Input: 3 + 5
Output: 8
Input: 3 / 5
Output: 0.6
Input: 3 + 5 * 20
Output: 103
Input: (3 + 5) * 20
Output: 160
Input: -(3 + 5) + 20
Output: 12

binary Operators +, -, *, / and numbers

floating point arithmetic

precedences and associativities like in C++

parentheses

unary operator -

498

Naive Attempt (without Parentheses)
double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’∗’)
lval ∗= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";

Input 2 + 3 * 3 =
Result 15

499

Analyzing the Problem
Example

Input:

13 + 4 ∗ (15− 7∗ 3) =

Needs to be stored such that
evaluation can be performed

Example

This lecture is pretty much recursive.

500

Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming
symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).

501

Formal Grammars

Alphabet: finite set of symbols
Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)

502

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (Expression)
-Number, -(Expression)
Factor * Factor, Factor
Factor / Factor , ...
Term + Term, Term
Term - Term, ...

Factor

Term

Expression

504

The EBNF for Expressions

A factor is

a number,
an expression in parentheses or
a negated factor.

factor = number
| "(" expression ")"
| "−" factor.

alternative

terminal symbol

non-terminal symbol

505

The EBNF for Expressions

A term is

factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "∗" factor | "/" factor }.

optional repetition

506

The EBNF for Expressions

factor = number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.

507

Numbers

An integer comprises at least one digit, followed by an arbitrary
number of digits.

number = d i g i t { d i g i t }.
d i g i t = ’0’ | ’1’ | ’2’ | ... |’9’.

508

Parsing

Parsing: Check if a string is valid according to the EBNF.
Parser: A program for parsing.
Useful: From the EBNF we can (nearly) automatically generate a
parser

509

Construct a Parser

Rules become functions
Alternatives and options become if–statements.
Nonterminial symbols on the right hand side become function calls
Optional repetitions become while–statements

510

Rules (except number)

factor = number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.

511

Functions (Parser)
Expression is read from an input stream.

// POST: returns true if and only if is = factor ...
// and in this case extracts factor from is
bool factor (std::istream& is);

// POST: returns true if and only if is = term ...,
// and in this case extracts all factors from is
bool term (std::istream& is);

// POST: returns true if and only if is = expression ...,
// and in this case extracts all terms from is
bool expression (std::istream& is);

512

Functions (Parser with Evaluation)
Expression is read from an input stream.

// POST: extracts a factor from is
// and returns its value
double factor (std::istream& is);

// POST: extracts a term from is
// and returns its value
double term (std::istream& is);

// POST: extracts an expression from is
// and returns its value
double expression (std::istream& is);

513

One Character Lookahead. . .

. . . to find the right alternative.
// POST: leading whitespace characters are extracted
// from input, and the first non−whitespace character
// input returned (0 if there input no such character)
char lookahead (std:: istream& input)
{
input >> std :: ws; // skip whitespaces
if (input.eof ())
return 0; // end of stream

else
return input.peek(); // next character in input

}

514

Cherry-Picking

. . . to extract the desired character.
// POST: if ch matches the next lookahead then consume it and return true
// otherwise return false
bool consume (std :: istream& input, char c)
{

if (lookahead (input) == c) {
input >> c;
return true;

} else
return false ;

}

515

Evaluating Factors

double factor (std :: istream& input)
{
double value;
if (consume (input, ’(’)) {
value = expression (input); // "(" expression
consume (input, ’) ’); // ")"

} else if (consume (input, ’−’))
value = −factor (input); // − factor

else
value = number(input); // number

return value;
}

factor = "(" expression ")"
| "−" factor
| number.

516

Evaluating Terms

double term (std:: istream& input)
{
double value = factor (input); // factor
while (true) {

if (consume (input, ’∗’))
value ∗= factor (input); // "∗" factor

else if (consume (input, ’/’))
value /= factor (input); // "/" factor

else
return value;

}
}

term = factor { "∗" factor | "/" factor }.
517

Evaluating Expressions

double expression (std :: istream& input)
{
double value = term (input); // term
while (true) {

if (consume (input, ’+’))
value += term (input); // "+" term

else if (consume (input, ’−’))
value −= term (input); // "−" term

else
return value;

}
}

expression = term { "+" term |"−" term }.
518

Digits ...

// POST: returns the digit that could be consumed from a stream
// (0 if no digit available)
// digit = ’0’ | ’1’ | ... | ’9’.
char digit(std::istream& input){

char ch = input.peek(); // one symbol lookahead
if (input.eof()) return 0; // nothing available on the stream
if (ch >= ’0’ && ch <= ’9’){

input >> ch; // consume
return ch;

}
return 0;

}

519

... and Numbers

// POST: returns an unsigned integer consumed from the stream
// number = digit {digit}.
unsigned int number (std::istream& input){

input >> std::skipws;// skip whitespaces before the first digit
char ch = digit(input);
input >> std::noskipws; // no whitespaces allowed within a number
unsigned int num = 0;
while(ch > 0){ // skip remaining digits

num = num ∗ 10 + ch − ’0’;
ch = digit(input);

}
return num;

}

520

Recursion!

number

factor

term

expression

521

EBNF — and it works!
EBNF (calculator.cpp, Evaluation from left to right):

factor = number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.

std::stringstream input ("1−2−3");
std::cout << expression (input) << "\n"; // −4

522

16. Structs

Rational Numbers, Struct Definition, Function- and Operator
Overloading

523

Calculating with Rational Numbers

Rational numbers (Q) are of the form
n

d
with n and d in Z

C++does not provide a built-in type for rational numbers

Goal

We build a C++-type for rational numbers ourselves!

524

Vision

How it could (will) look like// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;
std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";

525

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable (numerator)

member variable (denominator)

Invariant: specifies valid
value combinations (infor-
mal).

struct defines a new type
formal range of values: cartesian product of the value ranges of
existing types
real range of values: rational (int× int.

526

Accessing Member Variables
struct rational {

int n;
int d; // INV: d != 0

};

rational add (rational a, rational b){
rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}

rn
rd

:=
an
ad

+
bn
bd

=
an · bd + ad · bn

ad · bd
527

A First Struct: Functionality

// new type rational
struct rational {

int n;
int d; // INV: d != 0

};

// POST: return value is the sum of a and b
rational add (const rational a, const rational b)
{

rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}

Meaning: every object of the new type is rep-
resented by two objects of type int the ob-
jects are called n and d .

A struct defines a new type, not a variable!

member access to the int objects of a.
528

Input

// Input r
rational r;
std::cout << "Rational number r:\n";
std::cout << " numerator =? ";
std::cin >> r.n;
std::cout << " denominator =? ";
std::cin >> r.d;

// Input s the same way
rational s;
...

529

Vision comes within Reach ...

// computation
const rational t = add (r, s);

// output
std::cout << "Sum is " << t.n << "/" << t.d << ".\n";

530

Struct Definitions

struct T {
T1 name1 ;
T2 name2 ;
... ...
Tn namen ;
};

name of the new type (identifier)

names of the underlying
types

names of the member
variables

Range of Values of T: T1 × T2 × ...× Tn

531

Struct Defintions: Examples

struct rational_vector_3 {
rational x;
rational y;
rational z;

};

underlying types can be fundamental or user defined

532

Struct Definitions: Examples

struct extended_int {
// represents value if is_positive==true
// and −value otherwise
unsigned int value;
bool is_positive;

};

the underlying types can be different

533

Structs: Accessing Members

expr.namek

expression of struct-type T name of a member-variable of type T.

member access operator .

expression of type Tk; value is the value of
the object designated by namek

534

Structs: Initialization and Assignment

Default Initialization:

rational t;

Member variables of t are default-initialized
for member variables of fundamental types nothing happens
(values remain undefined)

535

Structs: Initialization and Assignment

Initialization:

rational t = {5, 1};

Member variables of t are initialized with the values of the list,
according to the declaration order.

536

Structs: Initialization and Assignment

Assignment:

rational s;
...
rational t = s;

The values of the member variables of s are assigned to the
member variables of t.

537

Structs: Initialization and Assignment

Initialization:

rational t = add (r, s);

t is initialized with the values of add(r, s)

t.n
t.d = add (r, s) .n

.d ;

538

Structs: Initialization and Assignment

Assignment:

rational t;
t = add (r, s);

t is default-initialized
The value of add (r, s) is assigned to t

539

Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member variables are uninitialized

member-wise initialization:
t.n = 1, t.d = 5

member-wise copy

member-wise copy

member-wise copy
540

Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and != , not so for structs! Why?

member-wise comparison does not make sense in general...

...otherwise we had, for example,
2

3
6= 4

6

541

Structs as Function Arguments

void increment(rational dest, const rational src)
{

dest = add (dest, src); // modifies local copy only
}

Call by Value !

rational a;
rational b;
a.d = 1; a.n = 2;
b = a;
increment (b, a); // no effect!
std :: cout << b.n << "/" << b.d; // 1 / 2

542

Structs as Function Arguments

void increment(rational & dest, const rational src)
{

dest = add (dest, src);
}

Call by Reference

rational a;
rational b;
a.d = 1; a.n = 2;
b = a;
increment (b, a);
std :: cout << b.n << "/" << b.d; // 2 / 2

543

User Defined Operators

Instead of

rational t = add(r, s);
we would rather like to write

rational t = r + s;

This can be done with Operator Overloading.

544

Overloading Functions

Functions can be addressed by name in a scope
It is even possible to declare and to defined several functions
with the same name
the “correct” version is chosen according to the signature of the
function.

545

Function Overloading
A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call (we do not go into details)

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2); // compiler chooses f4
std::cout << pow (3,3); // compiler chooses f3

546

Operator Overloading

Operators are special functions and can be overloaded
Name of the operator op:

operatorop

we already know that, for example, operator+ exists for different
types

547

Adding rational Numbers – Before

// POST: return value is the sum of a and b
rational add (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = add (r, s);

548

Adding rational Numbers – After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = r + s;

infix notation

549

Other Binary Operators for Rational Numbers

// POST: return value is difference of a and b
rational operator− (rational a, rational b);

// POST: return value is the product of a and b
rational operator∗ (rational a, rational b);

// POST: return value is the quotient of a and b
// PRE: b != 0
rational operator/ (rational a, rational b);

550

Unary Minus

has the same symbol as the binary minus but only one argument:

// POST: return value is −a
rational operator− (rational a)
{

a.n = −a.n;
return a;

}

551

Comparison Operators

are not built in for structs, but can be defined

// POST: returns true iff a == b
bool operator== (rational a, rational b)
{

return a.n ∗ b.d == a.d ∗ b.n;
}

2

3
=

4

6
X

552

Arithmetic Assignment

We want to write

rational r;
r.n = 1; r.d = 2; // 1/2

rational s;
s.n = 1; s.d = 3; // 1/3

r += s;
std::cout << r.n << "/" << r.d; // 5/6

553

Operator+= First Trial
rational operator+= (rational a, rational b)
{

a.n = a.n ∗ b.d + a.d ∗ b.n;
a.d ∗= b.d;
return a;

}

does not work. Why?

The expression r += s has the desired value, but because the arguments are
R-values (call by value!) it does not have the desired effect of modifying r.

The result of r += s is, against the convention of C++ no L-value.

554

Operator +=
rational& operator+= (rational& a, rational b)
{

a.n = a.n ∗ b.d + a.d ∗ b.n;
a.d ∗= b.d;
return a;

}

this works

The L-value a is increased by the value of b and returned as
L-value

r += s; now has the desired effect.
555

In/Output Operators

can also be overloaded.

Before:

std::cout << "Sum is "
<< t.n << "/" << t.d << "\n";

After (desired):

std::cout << "Sum is "
<< t << "\n";

556

In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out,

rational r)
{

return out << r.n << "/" << r.d;
}

writes r to the output stream
and returns the stream as L-value.

557

Input

// PRE: in starts with a rational number
// of the form "n/d"
// POST: r has been read from in
std::istream& operator>> (std::istream& in,

rational& r){
char c; // separating character ’/’
return in >> r.n >> c >> r.d;

}

reads r from the input stream
and returns the stream as L-value.

558

Goal Attained!
// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;

std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";

operator >>

operator +

operator<< 559

