
13. Vectors and Strings II

Strings, Multidimensional Vector/Vectors of Vectors, Shortest Paths,
Vectors as Function Arguments

429

Texts

Text “to be or not to be” could be represented as
vector<char>

Texts are ubiquitous, however, and thus have their own typ in the
standard library: std::string
Requires #include <string>

430

Texts

Text “to be or not to be” could be represented as
vector<char>
Texts are ubiquitous, however, and thus have their own typ in the
standard library: std::string
Requires #include <string>

430

Using std::string

Declaration, and initialisation with a literal:

std::string text = "Essen ist fertig!"

Initialise with variable length:

std::string text(n, ’a’)

Comparing texts:

if (text1 == text2) ...

431

Using std::string

Declaration, and initialisation with a literal:

std::string text = "Essen ist fertig!"

Initialise with variable length:

std::string text(n, ’a’)

Comparing texts:

if (text1 == text2) ...

431

Using std::string

Declaration, and initialisation with a literal:

std::string text = "Essen ist fertig!"

Initialise with variable length:

std::string text(n, ’a’)

Comparing texts:

if (text1 == text2) ...

431

Using std::string

Querying size:

for (unsigned int i = 0; i < text.size(); ++i) ...

Reading single characters:

if (text[0] == ’a’) ... // or text.at(0)

Writing single characters:

text[0] = ’b’; // or text.at(0)

432

Using std::string

Querying size:

for (unsigned int i = 0; i < text.size(); ++i) ...

Reading single characters:

if (text[0] == ’a’) ... // or text.at(0)

Writing single characters:

text[0] = ’b’; // or text.at(0)

432

Using std::string

Querying size:

for (unsigned int i = 0; i < text.size(); ++i) ...

Reading single characters:

if (text[0] == ’a’) ... // or text.at(0)

Writing single characters:

text[0] = ’b’; // or text.at(0)

432

Using std::string

Concatenate strings:

text = ":-";
text += ")";
assert(text == ":-)");

Many more operations; if interested, see
https://en.cppreference.com/w/cpp/string

433

https://en.cppreference.com/w/cpp/string

Multidimensional Vectors

For storing multidimensional structures such as tables, matrices,
...

... vectors of vectors can be used:

std::vector<std::vector<int>> m; // An empty matrix

434

Multidimensional Vectors

In memory: flat

m[0][0] m[0][1] m[0][2] m[1][0] m[1][1] m[1][2]

m[0] m[1]

in our head: matrix columns

rows

0 1 2

0 m[0][0] m[0][1] m[0][2]

1 m[1][0] m[1][1] m[1][2]

435

Multidimensional Vectors

In memory: flat

m[0][0] m[0][1] m[0][2] m[1][0] m[1][1] m[1][2]

m[0] m[1]

in our head: matrix columns

rows

0 1 2

0 m[0][0] m[0][1] m[0][2]

1 m[1][0] m[1][1] m[1][2]

435

Multidimensional Vectors: Initialisation Examples

Using literals:

// A 3−by−5 matrix
std::vector<std::vector<std::string>> m = {

{"ZH", "BE", "LU", "BS", "GE"},
{"FR", "VD", "VS", "NE", "JU"},
{"AR", "AI", "OW", "IW", "ZG"}

};

assert(m[1][2] == "VS");

436

Multidimensional Vectors: Initialisation Examples

Fill to specific size:

unsigned int a = ...;
unsigned int b = ...;

// An a−by−b matrix with all ones
std::vector<std::vector<int>>

m(a, std::vector<int>(b, 1));

(Many further ways of initialising a vector exist)

437

Multidimensional Vectors: Initialisation Examples

Fill to specific size:

unsigned int a = ...;
unsigned int b = ...;

// An a−by−b matrix with all ones
std::vector<std::vector<int>>

m(a, std::vector<int>(b, 1));

(Many further ways of initialising a vector exist)

437

Multidimensional Vectors and Type Aliases

Also possible: vectors of vectors of vectors of ...:
std::vector<std::vector<std::vector<...>>>
Type names can obviously become looooooong

The declaration of a type alias helps here:
using Name = Typ;

Name that can now be used to ac-
cess the type

existing type

438

Multidimensional Vectors and Type Aliases

Also possible: vectors of vectors of vectors of ...:
std::vector<std::vector<std::vector<...>>>
Type names can obviously become looooooong
The declaration of a type alias helps here:

using Name = Typ;

Name that can now be used to ac-
cess the type

existing type

438

Type Aliases: Example

#include <iostream>
#include <vector>
using imatrix = std::vector<std::vector<int>>;

// POST: Matrix ’m’ was printed to stream ’to’
void print(imatrix m, std::ostream to);

int main() {
imatrix m = ...;
print(m, std::cout);

}

439

Application: Shortest Paths
Factory hall (n×m square cells)

S

T

Starting position of the robot
target position of the robot

obstacle

free cell

Goal: find the shortest path
of the robot from S to T via
free cells.

440

Application: Shortest Paths
Factory hall (n×m square cells)

S

T

Starting position of the robot
target position of the robot

obstacle

free cell

Goal: find the shortest path
of the robot from S to T via
free cells.

440

Application: Shortest Paths
Factory hall (n×m square cells)

S

T

Starting position of the robot
target position of the robot

obstacle

free cell

Goal: find the shortest path
of the robot from S to T via
free cells.

440

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

442

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; fol-
low a path with decreasing lenghts

442

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; fol-
low a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

442

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; fol-
low a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

21

442

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; fol-
low a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

21

20

442

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; fol-
low a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

21

20

19

442

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; fol-
low a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

21

20

19 18

442

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

443

Preparation: Sentinels

S

T

row 0, column 0 row 0, column m+1

row n, column 0 row n+1, column m+1

Surrounding sentinels to avoid special
cases.

445

Preparation: Initial Marking

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-2

start

446

The Shortest Path Program

// define a two−dimensional array of dimensions
// (n+2) x (m+2) to hold the floor
// plus extra walls around
std::vector<std::vector<int> >

floor (n+2, std::vector<int>(m+2));

// Einlesen der Hallenbelegung, initiale Markierung
// (Handout)
...
// Markierung der umschliessenden Waende (Handout)
...

448

The Shortest Path Program

// define a two−dimensional array of dimensions
// (n+2) x (m+2) to hold the floor
// plus extra walls around
std::vector<std::vector<int> >

floor (n+2, std::vector<int>(m+2));

// Einlesen der Hallenbelegung, initiale Markierung
// (Handout)
...
// Markierung der umschliessenden Waende (Handout)
...

Sentinel

448

Mark all Cells with their Path Lengths

Step 0: all cells with path length 0

0

T

unmarked neighbours of
cells with length 2

451

Mark all Cells with their Path Lengths

Step 1: all cells with path length 1

1 0
1

Tunmarked neighbours of
cells with length 0

unmarked neighbours of
cells with length 2

451

Mark all Cells with their Path Lengths

Step 2: all cells with path length 2

2 1 0
2 1

2

Tunmarked neighbours of
cells with length 1

unmarked neighbours of
cells with length 2

451

Mark all Cells with their Path Lengths

Step 3: all cells with path length 3

3
2 1 0
3 2 1

3 2
3

Tunmarked neighbours of
cells with length 2

451

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

452

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

indicates if in sweep through all cells
there was progress

452

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

sweep over all cells

452

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

cell already marked or obstacle

452

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

a neighbour has path length i − 1. The
sentinels guarantee that there are al-
ways 4 neighbours

452

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

no progress, all reachable cells
marked; done.

452

The Shortest Paths Program

Algorithm: Breadth First Search

The program can become pretty slow because for each i all cells
are traversed
Improvement: for marking with i, traverse only the neighbours of
the cells marked with i− 1.
Improvement: stop once the goal has been reached

456

The Shortest Paths Program

Algorithm: Breadth First Search
The program can become pretty slow because for each i all cells
are traversed

Improvement: for marking with i, traverse only the neighbours of
the cells marked with i− 1.
Improvement: stop once the goal has been reached

456

The Shortest Paths Program

Algorithm: Breadth First Search
The program can become pretty slow because for each i all cells
are traversed
Improvement: for marking with i, traverse only the neighbours of
the cells marked with i− 1.
Improvement: stop once the goal has been reached

456

Vectors as Function Arguments

Recall the following:
#include <iostream>
#include <vector>

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>> m);

int main() {
std::vector<std::vector<int>> m = ...;
print(m);

}
458

Printing a Matrix: Version 1

Recall the following:

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>> m);
...
print(m);

Disadvantage: When calling print(m) the (potentially large)
matrix m will be copied (call-by-value)⇒ inefficient

459

Printing a Matrix: Version 1

Recall the following:

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>> m);
...
print(m);

Disadvantage: When calling print(m) the (potentially large)
matrix m will be copied (call-by-value)⇒ inefficient

459

Printing a Matrix: Version 2

Better: Pass by reference (call-by-reference)

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>>& m);
...
print(m);

Disadvantage: print(m) could modify the matrix⇒ potentially
error-prone

460

Printing a Matrix: Version 2

Better: Pass by reference (call-by-reference)

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>>& m);
...
print(m);

Disadvantage: print(m) could modify the matrix⇒ potentially
error-prone

460

Printing a Matrix: Version 3

Better: Pass by const reference

// POST: Matrix ’m’ was printed to std::cout
void print(const std::vector<std::vector<int>>& m);
...
print(m);

Now: Efficient, but nevertheless not more error-prone

461

Printing a Matrix: Version 3

Better: Pass by const reference

// POST: Matrix ’m’ was printed to std::cout
void print(const std::vector<std::vector<int>>& m);
...
print(m);

Now: Efficient, but nevertheless not more error-prone

461

14. Recursion 1

Mathematical Recursion, Termination, Call Stack, Examples,
Recursion vs. Iteration, n-Queen Problem, Lindenmayer Systems

462

Mathematical Recursion

Many mathematical functions can be naturally defined recursively.

This means, the function appears in its own definition

n! =

{
1, if n ≤ 1

n · (n− 1)!, otherwise

463

Mathematical Recursion

Many mathematical functions can be naturally defined recursively.
This means, the function appears in its own definition

n! =

{
1, if n ≤ 1

n · (n− 1)!, otherwise

463

Recursion in C++: In the same Way!

n! =

{
1, if n ≤ 1

n · (n− 1)!, otherwise

// POST: return value is n!
unsigned int fac (unsigned int n)
{

if (n <= 1)
return 1;

else
return n * fac (n-1);

} 464

Infinite Recursion

is as bad as an infinite loop. . .

. . . but even worse: it burns time and memory

void f()
{

f(); // f() -> f() -> ... stack overflow
}

465

Infinite Recursion

is as bad as an infinite loop. . .
. . . but even worse: it burns time and memory

void f()
{

f(); // f() -> f() -> ... stack overflow
}

465

Infinite Recursion

is as bad as an infinite loop. . .
. . . but even worse: it burns time and memory

void f()
{

f(); // f() -> f() -> ... stack overflow
}

465

Infinite Recursion

is as bad as an infinite loop. . .
. . . but even worse: it burns time and memory

void f()
{

f(); // f() -> f() -> ... stack overflow
}

Ein Euro ist ein Euro.

Wim Duisenberg, erster Präsident der EZB
465

Recursive Functions: Termination

As with loops we need

progress towards termination

fac(n):
terminates immediately for n ≤ 1, otherwise the function is called
recusively with < n .

“n is getting smaller for each call”

466

Recursive Functions: Termination

As with loops we need

progress towards termination

fac(n):
terminates immediately for n ≤ 1, otherwise the function is called
recusively with < n .

“n is getting smaller for each call”

466

Recursive Functions: Termination

As with loops we need

progress towards termination

fac(n):
terminates immediately for n ≤ 1, otherwise the function is called
recusively with < n .

“n is getting smaller for each call”

466

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Call of fac(4)
467

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{ // n = 4

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Initialization of the formal argument
467

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{ // n = 4

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Evaluation of the return expression
467

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{ // n = 4

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

recursive call with argument n− 1 == 3

467

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{ // n = 3

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Initialization of the formal argument
467

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{ // n = 3

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Initialization of the formal argument

Now there are two n. That of fac(4) and that of fac(3)

467

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Initialization of the formal argument

The n of the current call is used: n = 3

467

The Call Stack

For each function call:

push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

468

The Call Stack

For each function call:

push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

468

The Call Stack

For each function call:
push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

468

The Call Stack

For each function call:
push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

468

The Call Stack

For each function call:
push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

468

The Call Stack

For each function call:
push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

468

The Call Stack

For each function call:
push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

468

The Call Stack

For each function call:
push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

fac(1)

468

The Call Stack

For each function call:
push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1

n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

fac(1)

468

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value

at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1

n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

fac(1)

468

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1

n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

fac(1) 1

468

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

1

468

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2) 2

468

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

2

468

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3) 6

468

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

6

468

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4) 24

468

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

24

468

Euclidean Algorithm

finds the greatest common divisor gcd(a, b) of two natural
numbers a and b

is based on the following mathematical recursion (proof in the
lecture notes):

gcd(a, b) =

{
a, if b = 0

gcd(b, a mod b), otherwise

469

Euclidean Algorithm

finds the greatest common divisor gcd(a, b) of two natural
numbers a and b

is based on the following mathematical recursion (proof in the
lecture notes):

gcd(a, b) =

{
a, if b = 0

gcd(b, a mod b), otherwise

469

Euclidean Algorithm in C++

gcd(a, b) =

{
a, if b = 0

gcd(b, a mod b), otherwise

unsigned int gcd (unsigned int a, unsigned int b)
{

if (b == 0)
return a;

else
return gcd (b, a % b);

} 470

Euclidean Algorithm in C++

gcd(a, b) =

{
a, if b = 0

gcd(b, a mod b), otherwise

unsigned int gcd (unsigned int a, unsigned int b)
{

if (b == 0)
return a;

else
return gcd (b, a % b);

}

Termination: a mod b < b, thus b
gets smaller in each recursive call.

470

Fibonacci Numbers

Fn :=


0, if n = 0

1, if n = 1

Fn−1 + Fn−2, if n > 1

471

Fibonacci Numbers

Fn :=


0, if n = 0

1, if n = 1

Fn−1 + Fn−2, if n > 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 . . .
471

Fibonacci Numbers in Zurich

472

Fibonacci Numbers in C++

Fn :=


0, if n = 0

1, if n = 1

Fn−1 + Fn−2, if n > 1

unsigned int fib (unsigned int n)
{

if (n == 0) return 0;
if (n == 1) return 1;
return fib (n-1) + fib (n-2); // n > 1

}
473

Fibonacci Numbers in C++

Fn :=


0, if n = 0

1, if n = 1

Fn−1 + Fn−2, if n > 1

unsigned int fib (unsigned int n)
{

if (n == 0) return 0;
if (n == 1) return 1;
return fib (n-1) + fib (n-2); // n > 1

}

Correctness
and
termination
are clear.

473

Fibonacci Numbers in C++

Laufzeit

fib(50) takes “forever” because it computes
F48 two times, F47 3 times, F46 5 times, F45 8 times, F44 13 times,
F43 21 times ... F1 ca. 109 times (!)

unsigned int fib (unsigned int n)
{

if (n == 0) return 0;
if (n == 1) return 1;
return fib (n-1) + fib (n-2); // n > 1

}
473

Fast Fibonacci Numbers

Idea:

Compute each Fibonacci number only once, in the order
F0, F1, F2, . . . , Fn!

Memorize the most recent two numbers (variables a and b)!
Compute the next number as a sum of a and b!

474

Fast Fibonacci Numbers

Idea:

Compute each Fibonacci number only once, in the order
F0, F1, F2, . . . , Fn!
Memorize the most recent two numbers (variables a and b)!

Compute the next number as a sum of a and b!

474

Fast Fibonacci Numbers

Idea:

Compute each Fibonacci number only once, in the order
F0, F1, F2, . . . , Fn!
Memorize the most recent two numbers (variables a and b)!
Compute the next number as a sum of a and b!

474

Fast Fibonacci Numbers in C++

unsigned int fib (unsigned int n){
if (n == 0) return 0;
if (n <= 2) return 1;
unsigned int a = 1; // F_1
unsigned int b = 1; // F_2
for (unsigned int i = 3; i <= n; ++i){

unsigned int a_old = a; // F_i-2
a = b; // F_i-1
b += a_old; // F_i-1 += F_i-2 -> F_i

}
return b;

}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b
475

Fast Fibonacci Numbers in C++

unsigned int fib (unsigned int n){
if (n == 0) return 0;
if (n <= 2) return 1;
unsigned int a = 1; // F_1
unsigned int b = 1; // F_2
for (unsigned int i = 3; i <= n; ++i){

unsigned int a_old = a; // F_i-2
a = b; // F_i-1
b += a_old; // F_i-1 += F_i-2 -> F_i

}
return b;

}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b
475

Fast Fibonacci Numbers in C++

unsigned int fib (unsigned int n){
if (n == 0) return 0;
if (n <= 2) return 1;
unsigned int a = 1; // F_1
unsigned int b = 1; // F_2
for (unsigned int i = 3; i <= n; ++i){

unsigned int a_old = a; // F_i-2
a = b; // F_i-1
b += a_old; // F_i-1 += F_i-2 -> F_i

}
return b;

}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b
475

Fast Fibonacci Numbers in C++

unsigned int fib (unsigned int n){
if (n == 0) return 0;
if (n <= 2) return 1;
unsigned int a = 1; // F_1
unsigned int b = 1; // F_2
for (unsigned int i = 3; i <= n; ++i){

unsigned int a_old = a; // F_i-2
a = b; // F_i-1
b += a_old; // F_i-1 += F_i-2 -> F_i

}
return b;

}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b

very fast, also for fib(50)

475

The Power of Recursion

Some problems appear to be hard to solve without recursion. With
recursion they become significantly simpler.
Examples: The n-Queens-Problem, The towers of Hanoi,
Sudoku-Solver, Expression Parsers, Reversing In- or Output,
Searching in Trees, Divide-And-Conquer (e.g. sorting)

476

The n-Queens Problem

Provided is a n timesn chessboard
For example n = 6

Question: is it possiblt to position n
queens such that no two queens
threaten each other?

If yes, how many solutions are
there?

477

The n-Queens Problem

Provided is a n timesn chessboard
For example n = 6

Question: is it possiblt to position n
queens such that no two queens
threaten each other?

If yes, how many solutions are
there?

477

The n-Queens Problem

Provided is a n timesn chessboard
For example n = 6

Question: is it possiblt to position n
queens such that no two queens
threaten each other?

If yes, how many solutions are
there?

477

The n-Queens Problem

Provided is a n timesn chessboard
For example n = 6

Question: is it possiblt to position n
queens such that no two queens
threaten each other?
If yes, how many solutions are
there?

477

Solution?

Try all possible placements?

(
n2

n

)
possibilities. Too many!

nn possibilities. Better – but still too many.
Idea: Do not follow paths that obviously fail. (Backtracking)

478

Solution?

Try all possible placements?(
n2

n

)
possibilities. Too many!

nn possibilities. Better – but still too many.
Idea: Do not follow paths that obviously fail. (Backtracking)

478

Solution?

Try all possible placements?(
n2

n

)
possibilities. Too many!

nn possibilities. Better – but still too many.

Idea: Do not follow paths that obviously fail. (Backtracking)

478

Solution?

Try all possible placements?(
n2

n

)
possibilities. Too many!

nn possibilities. Better – but still too many.
Idea: Do not follow paths that obviously fail. (Backtracking)

478

Solution with Backtracking

First Queen

queens

0

0

0

0

479

Solution with Backtracking

x
Forbidden
Squares: no other
queens may be
here.

queens

0

0

0

0

479

Solution with Backtracking

x x
Forbidden
Squares: no other
queens may be
here.

queens

0

1

0

0

479

Solution with Backtracking

x x Second Queen in
next row (no colli-
sion)

queens

0

2

0

0

479

Solution with Backtracking

x x

x x x x

All squares in next
row forbiden. Track
back !

queens

0

2

4

0

479

Solution with Backtracking

x x x Move queen one
step further and try
again

queens

0

3

0

0

479

Solution with Backtracking

x x x

x
next row

queens

0

3

1

0

479

Solution with Backtracking

x x x

x

Ok (only previous
queens have to be
tested)

queens

0

3

1

0

479

Solution with Backtracking

x x x

x

x x x x

All squares of the
next row forbidden.
Track back.

queens

0

3

1

4

479

Solution with Backtracking

x x x

x x

Continue in previous
row.

queens

0

3

1

0

479

Solution with Backtracking

x x x

x x x x

Remaining squares
also forbidden.
Track back!

queens

0

3

4

0

479

Solution with Backtracking

x x x x
All squares of this
row did not yield
a solution. Track
back!

queens

0

4

0

0

479

Solution with Backtracking

x
again advance
queen by one
square

queens

1

0

0

0

479

Solution with Backtracking

x

x x x
next row

queens

1

3

0

0

479

Solution with Backtracking

x

x x x
next row

queens

1

3

0

0

479

Solution with Backtracking

x

x x x

x x

next row

queens

1

3

0

1

479

Solution with Backtracking

x

x x x

x x

Found a solution

queens

1

3

0

2

479

Search Strategy Visualized as a Tree

480

Search Strategy Visualized as a Tree

x x

480

Search Strategy Visualized as a Tree

x x

x x x x

480

Search Strategy Visualized as a Tree

x x x

480

Search Strategy Visualized as a Tree

x x x

x

480

Search Strategy Visualized as a Tree

x x x

x

x x x x

480

Search Strategy Visualized as a Tree

x x x

x x

480

Search Strategy Visualized as a Tree

x x x

x x x x

480

Search Strategy Visualized as a Tree

x x x x

480

Search Strategy Visualized as a Tree

x

480

Search Strategy Visualized as a Tree

x

x x x

480

Search Strategy Visualized as a Tree

x

x x x

480

Search Strategy Visualized as a Tree

x

x x x

x x

480

Search Strategy Visualized as a Tree

x

x x x

x x

480

Check Queen
using Queens = std::vector<unsigned int>;

// post: returns if queen in the given row is valid, i.e.
// does not share a common row, column or diagonal
// with any of the queens on rows 0 to row−1
bool valid(const Queens& queens, unsigned int row){

unsigned int col = queens[row];
for (unsigned int r = 0; r != row; ++r){

unsigned int c = queens[r];
if (col == c || col − row == c0 − r || col + row == c + r)

return false; // same column or diagonal
}
return true; // no shared column or diagonal

}

481

Recursion: Find a Solution
// pre: all queens from row 0 to row−1 are valid,
// i.e. do not share any common row, column or diagonal
// post: returns if there is a valid position for queens on
// row .. queens.size(). if true is returned then the
// queens vector contains a valid configuration.
bool solve(Queens& queens, unsigned int row){

if (row == queens.size())
return true;

for (unsigned int col = 0; col != queens.size(); ++col){
queens[row] = col;
if (valid(queens, row) && solve(queens,row+1))

return true; // (else check next position)
}
return false; // no valid configuration found

}
482

Recursion: Count all Solutions
// pre: all queens from row 0 to row−1 are valid,
// i.e. do not share any common row, column or diagonal
// post: returns the number of valid configurations of the
// remaining queens on rows row ... queens.size()
int nSolutions(Queens& queens, unsigned int row){

if (row == queens.size())
return 1;

int count = 0;
for (unsigned int col = 0; col != queens.size(); ++col){

queens[row] = col;
if (valid(queens, row))

count += nSolutions(queens,row+1);
}
return count;

}
483

Main Program
// pre: positions of the queens in vector queens
// post: output of the positions of the queens in a graphical way
void print(const Queens& queens);

int main(){
int n;
std::cin >> n;
Queens queens(n);
if (solve(queens,0)){

print(queens);
std::cout << "# solutions:" << nSolutions(queens,0) << std::endl;

} else
std::cout << "no solution" << std::endl;

return 0;
}

484

Lindenmayer-Systems (L-Systems)

Fractals from Strings and Turtles

485

Definition and Example

alphabet Σ

Σ∗: finite words over Σ

production P : Σ→ Σ∗

initial word s0 ∈ Σ∗

{F , + , −}

c P (c)
F F + F +
+ +
− −

F

Definition

The triple L = (Σ, P, s0) is an L-System.

486

Definition and Example

alphabet Σ

Σ∗: finite words over Σ

production P : Σ→ Σ∗

initial word s0 ∈ Σ∗

{F , + , −}

c P (c)
F F + F +
+ +
− −

F

Definition

The triple L = (Σ, P, s0) is an L-System.

486

Definition and Example

alphabet Σ

Σ∗: finite words over Σ

production P : Σ→ Σ∗

initial word s0 ∈ Σ∗

{F , + , −}
c P (c)
F F + F +
+ +
− −

F

Definition

The triple L = (Σ, P, s0) is an L-System.

486

Definition and Example

alphabet Σ

Σ∗: finite words over Σ

production P : Σ→ Σ∗

initial word s0 ∈ Σ∗

{F , + , −}
c P (c)
F F + F +
+ +
− −

F

Definition

The triple L = (Σ, P, s0) is an L-System.

486

Definition and Example

alphabet Σ

Σ∗: finite words over Σ

production P : Σ→ Σ∗

initial word s0 ∈ Σ∗

{F , + , −}
c P (c)
F F + F +
+ +
− −

F

Definition

The triple L = (Σ, P, s0) is an L-System.

486

The Language Described
Wörter w0, w1, w2, . . . ∈ Σ∗: P (F) = F + F +

w0 := s0

w1 := P (w0)

w2 := P (w1)

...

w0 := F

w1 := F + F +

w2 := F + F + + F + F + +

...Definition

P (c1c2 . . . cn) := P (c1)P (c2) . . . P (cn)

487

The Language Described
Wörter w0, w1, w2, . . . ∈ Σ∗: P (F) = F + F +

w0 := s0

w1 := P (w0)

w2 := P (w1)

...

w0 := F

w1 := F + F +

w2 := F + F + + F + F + +

...Definition

P (c1c2 . . . cn) := P (c1)P (c2) . . . P (cn)

487

The Language Described
Wörter w0, w1, w2, . . . ∈ Σ∗: P (F) = F + F +

w0 := s0

w1 := P (w0)

w2 := P (w1)

...

w0 := F

w1 := F + F +

w2 := F + F + + F + F + +

...

Definition

P (c1c2 . . . cn) := P (c1)P (c2) . . . P (cn)

487

The Language Described
Wörter w0, w1, w2, . . . ∈ Σ∗: P (F) = F + F +

w0 := s0

w1 := P (w0)

w2 := P (w1)

...

w0 := F

w1 := F + F +

w2 := F + F + + F + F + +

...

Definition

P (c1c2 . . . cn) := P (c1)P (c2) . . . P (cn)

F F

P (F) P (F)

+ +

P (+) P (+)

487

The Language Described
Wörter w0, w1, w2, . . . ∈ Σ∗: P (F) = F + F +

w0 := s0

w1 := P (w0)

w2 := P (w1)

...

w0 := F

w1 := F + F +

w2 := F + F + + F + F + +

...

Definition

P (c1c2 . . . cn) := P (c1)P (c2) . . . P (cn)

487

Turtle Graphics
Turtle with position and direction

Turtle understands 3 commands:
F : move one step
forwards

X

+ : rotate by 90
degrees

X

− : rotate by −90
degrees

X

488

Turtle Graphics
Turtle with position and direction

Turtle understands 3 commands:
F : move one step
forwards

X

+ : rotate by 90
degrees

X

− : rotate by −90
degrees

X

488

Turtle Graphics
Turtle with position and direction

Turtle understands 3 commands:
F : move one step
forwards

X

+ : rotate by 90
degrees

X

− : rotate by −90
degrees

X

488

Turtle Graphics
Turtle with position and direction

Turtle understands 3 commands:
F : move one step
forwards X

+ : rotate by 90
degrees

X

− : rotate by −90
degrees

X

trace

488

Turtle Graphics
Turtle with position and direction

Turtle understands 3 commands:
F : move one step
forwards X

+ : rotate by 90 de-
grees X

− : rotate by −90
degrees

X

488

Turtle Graphics
Turtle with position and direction

Turtle understands 3 commands:
F : move one step
forwards X

+ : rotate by 90
degrees X

− : rotate by −90
degrees X

488

Draw Words!

w1 = F + F +

489

Draw Words!

w1 = F + F +

489

Draw Words!

w1 = F + F +

489

Draw Words!

w1 = F + F +

489

Draw Words!

w1 = F + F +

489

Draw Words!

w1 = F + F +X

489

lindenmayer: Main Program
word w0 ∈ Σ∗:

int main () {
std::cout << "Maximal Recursion Depth =? ";
unsigned int n;
std::cin >> n;

std::string w = "F"; // w_0
produce(w,n);

return 0;
}

490

lindenmayer: Main Program
word w0 ∈ Σ∗:

int main () {
std::cout << "Maximal Recursion Depth =? ";
unsigned int n;
std::cin >> n;

std::string w = "F"; // w_0
produce(w,n);

return 0;
}

w = w0 = F

490

lindenmayer: production

// POST: recursively iterate over the production of the characters
// of a word.
// When recursion limit is reached, the word is "drawn"
void produce(std::string word, int depth){

if (depth > 0){
for (unsigned int k = 0; k < word.length(); ++k)

produce(replace(word[k]), depth−1);
} else {

draw_word(word);
}

}

491

lindenmayer: production

// POST: recursively iterate over the production of the characters
// of a word.
// When recursion limit is reached, the word is "drawn"
void produce(std::string word, int depth){

if (depth > 0){
for (unsigned int k = 0; k < word.length(); ++k)

produce(replace(word[k]), depth−1);
} else {

draw_word(word);
}

}

w = wi → w = wi+1

491

lindenmayer: production

// POST: recursively iterate over the production of the characters
// of a word.
// When recursion limit is reached, the word is "drawn"
void produce(std::string word, int depth){

if (depth > 0){
for (unsigned int k = 0; k < word.length(); ++k)

produce(replace(word[k]), depth−1);
} else {

draw_word(word);
}

}

491

lindenmayer: production

// POST: recursively iterate over the production of the characters
// of a word.
// When recursion limit is reached, the word is "drawn"
void produce(std::string word, int depth){

if (depth > 0){
for (unsigned int k = 0; k < word.length(); ++k)

produce(replace(word[k]), depth−1);
} else {

draw_word(word);
}

}

draw w = wn!

491

lindenmayer: replace

// POST: returns the production of c
std::string replace (const char c)
{

switch (c) {
case ’F’:

return "F+F+";
default:

return std::string (1, c); // trivial production c −> c
}

}

492

lindenmayer: draw

// POST: draws the turtle graphic interpretation of word
void draw_word (const std::string& word)
{

for (unsigned int k = 0; k < word.length(); ++k)
switch (word[k]) {
case ’F’:

turtle::forward(); // move one step forward
break;

case ’+’:
turtle::left(90); // turn counterclockwise by 90 degrees
break;

case ’−’:
turtle::right(90); // turn clockwise by 90 degrees

}
}

493

The Recursion

F

F + F +

F + F + + F + F + +

produce("F+F+")

produce("F+F+")

produce("+")

produce("F+F+")

produce("+")

494

L-Systeme: Erweiterungen

arbitrary symbols without graphical interpetation
arbitrary angles (snowflake)
saving and restoring the state of the turtle→ plants (bush)

495

	Vectors and Strings II
	Texts
	Multidimensional Vectors
	Shortest Paths
	Vectors as Function Arguments

	Recursion 1
	Mathematical Recursion
	Termination
	The Call Stack
	Examples
	Recursion vs. Iteration
	The Power of Recursion
	Lindenmayer Systems

