13. Vectors and Strings I

Strings, Multidimensional Vector/Vectors of Vectors, Shortest Paths,
Vectors as Function Arguments



Texts

m Text “to be or not to be” could be represented as
vector<char>



Texts

m Text “to be or not to be” could be represented as
vector<char>

m Texts are ubiquitous, however, and thus have their own typ in the
standard library: std: :string

m Requires #include <string>



Using std: :string

m Declaration, and initialisation with a literal:

std::string text = "Essen ist fertig!"
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m Declaration, and initialisation with a literal:
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m Initialise with variable length:

std::string text(n, ’a’)



Using std: :string

m Declaration, and initialisation with a literal:
std::string text = "Essen ist fertig!"
m Initialise with variable length:
std: :string text(n, ’a’)
m Comparing texts:

if (textl == text2)



Using std: :string

m Querying size:

for (unsigned int i = 0; i < text.size(); ++i) ...



Using std: :string

m Querying size:
for (unsigned int i = 0; i < text.size(); ++i)
m Reading single characters:

if (text[0] == ’a’)



Using std: :string

m Querying size:

for (unsigned int i = 0; i < text.size(); ++i)
m Reading single characters:

if (text[0] == ’a’)
m Writing single characters:

text[0] = ’b’;



Using std: :string

m Concatenate strings:

text = ":-";
text += ")";
assert(text == ":-)");

m Many more operations; if interested, see
https://en.cppreference.com/w/cpp/string


https://en.cppreference.com/w/cpp/string

Multidimensional Vectors

m For storing multidimensional structures such as tables, matrices,

m ... vectors of vectors can be used:

std: :vector<std::vector<int>> m; // An empty matrix



Multidimensional Vectors

In memory: flat

m[0] [0] m[0] [1] m[0] [2] m[1] [0] m[1][1] m[1] [2]
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Multidimensional Vectors

In memory: flat
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Multidimensional Vectors: Initialisation Examples

Using literals:

// A 3—by—5 matrix
std::vector<std::vector<std::string>> m = {
{IIZHII’ llBEll’ IlLUIl, IlBSII’ IIGEH},
{IIFRII’ IIVDH’ IIVSII, llNEII’ IIJUII},
{IIARII, llAIll, "DW", llIw"’ IIZGII}
};

assert(m[1] [2] == "VS");



Multidimensional Vectors: Initialisation Examples

Fill to specific size:

unsigned int a 565
unsigned int b 6008

// An a—by—b matrix with all ones
std: :vector<std::vector<int>>
m(a, std::vector<int>(b, 1));

437



Multidimensional Vectors: Initialisation Examples

Fill to specific size:

unsigned int a = ..
unsigned int b

.
°

.
A

// An a—by—b matrix with all ones
std: :vector<std::vector<int>>
m(a, std::vector<int>(b, 1));

(Many further ways of initialising a vector exist)



Multidimensional Vectors and Type Aliases

m Also possible: vectors of vectors of vectors of ...:
std: :vector<std::vector<std::vector<...>>>

m Type names can obviously become looooooong



Multidimensional Vectors and Type Aliases

m Also possible: vectors of vectors of vectors of ...:
std: :vector<std::vector<std::vector<...>>>

m Type names can obviously become looooooong

m The declaration of a type alias helps here:

using Name = Typ;
7 ~

Name that can now be used to ac- existing type
cess the type



Type Aliases: Example

#include <iostream>
#include <vector>
using imatrix = std::vector<std::vector<int>>;

// POST: Matrix ’m’ was printed to stream ’to’
void print(imatrix m, std::ostream to);

int main() {
imatrix m = ...;
print(m, std::cout);

}



Application: Shortest Paths

Factory hall (n x m square cells)
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Application: Shortest Paths

Factory hall (n x m square cells)
obstacle

free cell

S SN v

v4

L]

Starting position of the robot

target position of the robot

L~

Goal: find the shortest path
- of the robot from S to T via

=

free cells. R




This problem appears to be different

Find the lengths of the shortest paths to all possible targets.
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3 1 9 10 15 16 17 | 18
2 10 | 11 12 13 14 | 15 16 | 17
3 ! 11 12 13 17 | 18
4 : 10 | 11 12 18 | 19
5 9 10 1 19 | 20
6 8 9 10 20 | 21
7 6 5 6 7 8 9 21 22




This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 18 19
3 17 18
2 16 17
3 17 18
4 18 19
5 19 | 20

This solves the original problem also: start in T; fol- | 22 | 21 | 20 | 21

low a path with decreasing lenghts ol | o || o
| I I l l l l R




This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 [ 15 16 | 17 18 | 19

e [0 1als ] 16| 17| 18

{ ol lol12alqg|15] 1617
{ target position, —
3 |2 /1 | | shortest  path: -
starting position =T length 21 -

17 18

18 | 19

19 | 20

This solves the original problem also: start in T; fol- | 22 1 | 20 | 2

low a path with decreasing lenghts ol | o || o
| I I l l l l R

5 4 3 9 10 1




This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 [ 15 16 | 17 18 | 19

e [0 1als ] 16| 17| 18

{ ol lol12alqg|15] 1617
{ target position, —
3 |2 /1 | | shortest  path: -
starting position =T length 21 -

17 18

18 | 19

5 4 3 9 10 11 19 | 20

This solves the original problem also: start in T; fol- | 22 g 20 | 21

low a path with decreasing lenghts ol | o || o
| I I l l l l R




This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 [ 15 16 | 17 18 | 19

e [0 1als ] 16| 17| 18

il 11l 101412l 44|15 | 16 | 17
{ target position, —
3 |2 /1 | | shortest  path:
starting position =T length 21 -

17 18

18 | 19

5 4 3 9 10 11 19 | 20

This solves the original problem also: start in T; fol- | 22 20 | 21

low a path with decreasing lenghts ol | o || o
| I I l l l l R




This problem appears to be different

Find the lengths of the shortest paths to all possible targets.
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This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 | 17 18 | 19

9 10 14 | 15 | 16 | 17 | 18

10 11 12 12 14 15 16 17
target position,
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This solves the original problem also: start in T; fol-

low a path with decreasing lenghts ol | o || o
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This problem appears to be different

Find the lengths of the shortest paths to all possible targets.




Preparation: Sentinels




Preparation: Initial Marking




The Shortest Path Program

// define a two—dimensional array of dimensions
// (n+2) x (m+2) to hold the floor
// plus extra walls around
std: :vector<std::vector<int> >
floor (n+2, std::vector<int>(m+2));

// Einlesen der Hallenbelegung, initiale Markierung
// (Handout)

// Markierung der umschliessenden Waende (Handout)

448



The Shortest Path Program

// define a two—dimensional array of dimensions
// (n+2) x (m+2) to hold the floor
// plus extra walls around
std: :vector<std::vector<int> >
floor (n+2, std::vector<int>(m+2));

<

Sentinel
// Einlesen der Hallenbelegung, initiale Markierung

// (Handout)

// Markierung der umschliessenden Waende (Handout)

448



Mark all Cells with their Path Lengths

Step 0: all cells with path length O




Mark all Cells with their Path Lengths
Step 1: all cells with path length 1
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Mark all Cells with their Path Lengths
Step 2: all cells with path length 2

unmarked neighbours of

cells with length 1




Mark all Cells with their Path Lengths

Step 3: all cells with path length 3

/c,oyc,o

unmarked neighbours of

cells with length 2




Main Loop
Find and mark all cells with path lengths : = 1,2, 3...

for (int i=1;; ++i) {
bool progress = false;
for (int r=1; r<n+l; ++r)
for (int c=1; c<m+1l; ++c) {
if (floor[r][c] != —1) continue;
if (floor[r—1][c] == i—1 || floor[r+1][c] == i—1 ||
floor[r] [c—1] == i—1 || floor[r] [c+1] == i—1 ) {
floor[r][c] = i; // label cell with i
progress = true;
}
}
if (!progress) break;

}



Main Loop
Find and mark all cells with path lengths : = 1,2, 3...

for (int i=1;; ++i) {
bool progress = false;¢——
for (int r=1; r<n+l; ++r)
for (int c=1; c<m+1l; ++c) {
if (floor[r][c] != —1) continue;
if (floor[r—1][c] == i—1 || floor[r+1][c] == i—1 ||
floor[r] [c—1] == i—1 || floor[r] [c+1] == i—1 ) {
floor[r][c] = i; // label cell with i
progress = true;
}
}
if (!progress) break;

}

indicates if in sweep through all cells
there was progress



Main Loop
Find and mark all cells with path lengths : = 1,2, 3...

for (int i=1;; ++i) {
bool progress = false;
for (int r=1; r<n+l; ++r)<——— sweep over all cells
for (int c=1; c<m+1l; ++c) {
if (floor[r][c] != —1) continue;
if (floor[r—1][c] == i—1 || floor[r+1][c] == i—1 ||
floor([r] [c—1] == i—1 || floor[r][c+1l] == i—1 ) {
floor[r][c] = i; // label cell with i
progress = true;
}
}
if (!progress) break;

}



Main Loop
Find and mark all cells with path lengths : = 1,2, 3...

for (int i=1;; ++i) {
ool prepmeEs o rellisy cell already marked or obstacle
for (int r=1; r<n+l; ++r)
for (int c=1; c<m+1; ++§>/f/
if (floor[r][c] != —1)¥continue;
if (floor[r—1][c] == i—1 || floor[r+1][c] == i—1 ||
floor([r] [c—1] == i—1 || floor[r][c+1l] == i—1 ) {
floor[r][c] = i; // label cell with i
progress = true;
}
}
if (!progress) break;

}



Main Loop
Find and mark all cells with path lengths : = 1,2, 3...

for (int i=1;; ++i) { a neighbour has path length i — 1. The

bool progress = false; sentinels guarantee that there are al-
for (int r=1; r<n+l; ++r) ways 4 neighbours
for (int c=1; c<m+1l; ++c) {
if (floor[r][c] != —1) continue;
if (floor[r—1][c] == i—1 || floor[r+1][c] == i—1\||
floor[r] [c—1] == i—1 || floor([r] [c+1] == i—1 )¥
floor[r][c] = i; // label cell with i
progress = true;
}
}
if (!progress) break;

}



Main Loop
Find and mark all cells with path lengths : = 1,2, 3...

for (int i=1;; ++i) {
bool progress = false;
for (int r=1; r<n+l; ++r)
for (int c=1; c<m+1l; ++c) {
if (floor[r][c] != —1) continue;
if (floor[r—1][c] == i—1 || floor[r+1][c] == i—1 ||
floor[r] [c—1] == i—1 || floor[r] [c+1] == i—1 ) {
floor[r][c] = i; // label cell with i
progress = true;
}

3

s (o) T no progress, all reachable cells
} marked; done.



The Shortest Paths Program

m Algorithm: Breadth First Search



The Shortest Paths Program

m Algorithm: Breadth First Search

m The program can become pretty slow because for each : all cells
are traversed



The Shortest Paths Program

m Algorithm: Breadth First Search

m The program can become pretty slow because for each : all cells
are traversed

m Improvement: for marking with ¢, traverse only the neighbours of
the cells marked with 7 — 1.

m Improvement: stop once the goal has been reached



Vectors as Function Arguments

m Recall the following:

#include <iostream>
#include <vector>

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>> m);

int main() {
std::vector<std::vector<int>> m = ...;
print(m) ;

+



Printing a Matrix: Version 1

m Recall the following:

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>> m);

print (m) ;



Printing a Matrix: Version 1

m Recall the following:
// POST: Matrix ’m’ was printed to std::cout

void print(std::vector<std::vector<int>> m);
print (m) ;

m Disadvantage: When calling print (m) the (potentially large)
matrix m will be copied (call-by-value) = inefficient



Printing a Matrix: Version 2

m Better: Pass by reference (call-by-reference)

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>>& m);

print (m) ;



Printing a Matrix: Version 2

m Better: Pass by reference (call-by-reference)
// POST: Matrix ’m’ was printed to std::cout

void print(std::vector<std::vector<int>>& m);
print (m) ;

m Disadvantage: print (m) could modify the matrix = potentially
error-prone



Printing a Matrix: Version 3

m Better: Pass by const reference

// POST: Matrix ’m’ was printed to std::cout
void print(const std::vector<std::vector<int>>& m);

print (m) ;



Printing a Matrix: Version 3

m Better: Pass by const reference

// POST: Matrix ’m’ was printed to std::cout
void print(const std::vector<std::vector<int>>& m);

print (m) ;

m Now: Efficient, but nevertheless not more error-prone



14. Recursion 1

Mathematical Recursion, Termination, Call Stack, Examples,
Recursion vs. lteration, n-Queen Problem, Lindenmayer Systems



Mathematical Recursion

m Many mathematical functions can be naturally defined recursively.



Mathematical Recursion

m Many mathematical functions can be naturally defined recursively.
m This means, the function appears in its own definition

1 ifn<l1

n-(n—1)!, otherwise

nl=<"



Recursion in C++-: In the same Way!

' {1, if n <1
n! —

n-(n—1)!, otherwise

// POST: return value is n!
unsigned int fac (unsigned int n)

{

if (n <= 1)
return 1;
else

return n * fac (n-1);



Infinite Recursion

m is as bad as an infinite loop. ..



Infinite Recursion

m is as bad as an infinite loop. ..
m ...but even worse: it burns time and memory



Infinite Recursion

m is as bad as an infinite loop. ..
m ...but even worse: it burns time and memory

void f()

{
£QO; // £ -> £f() -> ... stack overflow

}

465



Infinite Recursion

m is as bad as an infinite loop. ..
m ...but even worse: it burns time and memory

void f()

{
£QO; // £ -> £() -> ... stack overflow

}

Ein Euro ist ein Euro.

Wim Duisenberg, erster Prasident der EZB

465



Recursive Functions: Termination

As with loops we need

m progress towards termination



Recursive Functions: Termination

As with loops we need
m progress towards termination
fac(n):

terminates immediately for n < 1, otherwise the function is called
recusively with < n .



Recursive Functions: Termination

As with loops we need
m progress towards termination
fac(n):

terminates immediately for n < 1, otherwise the function is called
recusively with < n .

[

“n is getting smaller for each call”



Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)

{
if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Call of fac(4)



Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{// n=24

if (n <= 1) return 1;

return n * fac(n-1); // n > 1

}

Initialization of the formal argument



Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{// n=24

if (n <= 1) return 1;

return n * fac(n-1); // n > 1

}

Evaluation of the return expression

467



Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{// n=4

if (n <= 1) return 1;

return n * fac(n-1); // n > 1

}

recursive call with argumentn — 1 ==



Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{// n=3

if (n <= 1) return 1;

return n * fac(n-1); // n > 1

}

Initialization of the formal argument



Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{// n=3

if (n <= 1) return 1;

return n * fac(n-1); // n > 1

}

Now there are two n. That of fac(4) and that of fac(3)

/

Initialization of the formal argument



Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)

{
if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

The n of the current call is used: n = 3

Initialization of the formal argument



The Call Stack

std:cout << fac(4)



The Call Stack

For each function call:

fac(4)T
std:cout << fac(4)



The Call Stack

For each function call:

m push value of the call argument onto
the stack

[n=4 |
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std:cout << fac(4)
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The Call Stack

For each function call:

m push value of the call argument onto
the stack

n=3 |
fac(3)A

[n=4 |
fac(4)/

std:cout << fac(4)



The Call Stack

For each function call:

A

m push value of the call argument onto fac(2)
the stack [n=3 |
fac(3)A
’n =4 ‘
fac(4) T

std:cout << fac(4)



The Call Stack

For each function call: [n=2 |
m push value of the call argument onto fFac(2) |

the stack =3 )
fac(3)A

n=4 |
fac(4) T

std:cout << fac(4)



The Call Stack

A

fac(1)
For each function call: [n =2 |

m push value of the call argument onto fac(2) |
the stack

n=3 |
fac(S)A

(n=4 |
fac(4)/

std:cout << fac(4)



The Call Stack

n=1 |

A~

fac(1)
For each function call: [n =2 |

m push value of the call argument onto fac(2) |
the stack

n=3 |
fac(S)A

(n=4 |
fac(4)/

std:cout << fac(4)



The Call Stack

For each function call:

m push value of the call argument onto
the stack

m always work with the top value

’n/zzl

11=1]

A~

fac(1)

’n/::Z

A~

fac(2)

’n/=:3

AN

fac(3)

’n,=:4

fac(4)/

std:cout

<< fac(4)



The Call Stack

For each function call:

m push value of the call argument onto
the stack

m always work with the top value

m at the end of the call the top value is
removed from the stack

’n/zzl
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fac(1)

’n/::Z
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AN
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std:cout

<< fac(4)



The Call Stack

For each function call:

m push value of the call argument onto
the stack

m always work with the top value

m at the end of the call the top value is
removed from the stack
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The Call Stack

For each function call:

m push value of the call argument onto
the stack

m always work with the top value

m at the end of the call the top value is
removed from the stack

’n,=:2

A~

fac(2)

’n/=:3

AN

fac(3)

’n,=:4

fac(4)/

std:cout

<< fac(4)



The Call Stack

For each function call:

m push value of the call argument onto
the stack

m always work with the top value

m at the end of the call the top value is
removed from the stack

n=3 320 =6
fac(3)A

[n=4 |
fac(4)A

std:cout << fac(4)



The Call Stack

For each function call:

m push value of the call argument onto
the stack

m always work with the top value

m at the end of the call the top value is
removed from the stack

(n=3 3-2!=6]
fac(3) 6
[n=4 |

fac(4)/

std:cout << fac(4)



The Call Stack

For each function call:

m push value of the call argument onto
the stack

m always work with the top value

m at the end of the call the top value is
removed from the stack

ls
In=4 4-30=24]

fac(4)T
std:cout << fac(4)




The Call Stack

For each function call:

m push value of the call argument onto
the stack

m always work with the top value

m at the end of the call the top value is
removed from the stack [n=4 4-31=24|
fac (4)T J’24

std:cout << fac(4)



The Call Stack

For each function call:

m push value of the call argument onto
the stack

m always work with the top value

m at the end of the call the top value is
removed from the stack

J'24

std:cout << fac(4)



Euclidean Algorithm

m finds the greatest common divisor ged(a, b) of two natural
numbers a and b



Euclidean Algorithm

m finds the greatest common divisor ged(a, b) of two natural
numbers a and b

m is based on the following mathematical recursion (proof in the
lecture notes):

a, itb=0
ged(b, @ mod b), otherwise

ged(a, b) = {



Euclidean Algorithm in C+-+

a, if b=20
gced(b, @ mod b), otherwise

ged(a, b) = {

unsigned int gcd (unsigned int a, unsigned int b)

{

if (b == 0)
return a;
else

return gcd (b, a % b);



Euclidean Algorithm in C+-+

a, if b=20

ged(a, b) = .
gced(b, @ mod b), otherwise

unsigned int gcd (unsigned int a, unsigned int b)

{

if (b == 0) —
Termination: @ mod b < b, thus b
return a; . .
gets smaller in each recursive call.
else

return gcd (b, a % b);



Fibonacci Numbers

0, if n=20
F, =<1, ifn=1
\Fn—l + Fn_g, ifn>1




Fibonacci Numbers

0 ifn =0
F, =41, ifn=1
\Fn_l—i_Fn_Q, ifn>1

0,1,1,2.3,5,8.13,21,34,55.89.. ..



Fibonacci Numbers in Zurich




Fibonacci Numbers in C+-+

0, ifn =0
F, =<1, ifn=1
F,_1+ Fn_g, ifn>1

unsigned int fib (unsigned int n)
{

if (n == 0) return 0;

if (n == 1) return 1;

return fib (n-1) + fib (n-2); // n > 1
}



Fibonacci Numbers in C+-+

0, ifn =0
F, =<1, ifn=1
F,_1+ Fn_g, ifn>1

unsigned int fib (unsigned int n)

{

}

if (n == 0) return O;
if (n == 1) return 1;
return fib (n-1) + fib (n-2); // n > 1

Correctness
and
termination
are clear.



Fibonacci Numbers in C++4-

Laufzeit

fib(50) takes “forever” because it computes

Fis two times, Fy; 3 times, Fys 5 times, Fy5 8 times, Fi4 13 times,
Fy3 21 times ... Iy ca. 10” times (!)

unsigned int fib (unsigned int n)
{

if (n == 0) return O;

if (n == 1) return 1;

return fib (n-1) + fib (n-2); // n > 1
}



Fast Fibonacci Numbers

Idea:

m Compute each Fibonacci number only once, in the order
Fo, F1, by, ... B



Fast Fibonacci Numbers

Idea:

m Compute each Fibonacci number only once, in the order
Fo, F1, by, ... B
m Memorize the most recent two numbers (variables a and b)!



Fast Fibonacci Numbers

ldea:

m Compute each Fibonacci number only once, in the order
Ey, B, Fs, ... F)

m Memorize the most recent two numbers (variables a and b)!

m Compute the next number as a sum of a and b!



Fast Fibonacci Numbers in C+-+

unsigned int fib (unsigned int n){
if (n == 0) return O;
if (n <= 2) return 1;
unsigned int a = 1; //
unsigned int b = 1; //
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Fast Fibonacci Numbers in C+-+

unsigned int fib (unsigned int n){
if (n == 0) return O;
if (n <= 2) return 1;
unsigned int a = 1; //
unsigned int b = 1; //
for (unsigned int i = 3

unsigned int a_old = a; // F_i-2

a =b; // F_i-1
b += a_old; // F_i-1 +=
} (E*Q)E—l) —> (E*17E)

return b;
} ///’,,,,/?f
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Fast Fibonacci Numbers in C+-+-

unsigned int fib (unsigned int n){
if (n == 0) return O;
if (n <= 2) return 1;
unsigned int a = 1; //
unsigned int b = 1; //
for (unsigned int i = 3

unsigned int a_old = a; // F_i-2

1
2 very fast, also for £ib(50)

a = b; // F_i-1
b += a_old; // F_i-1 += F_i-2 -> F_i
’ (Fi-s, Fi-1) — (Fi_1, Fy)

return b;
} ///’,,,,/7¢

a b



The Power of Recursion

m Some problems appear to be hard to solve without recursion. With
recursion they become significantly simpler.

m Examples: The n-Queens-Problem, The towers of Hanoi,
Sudoku-Solver, Expression Parsers, Reversing In- or Output,
Searching in Trees, Divide-And-Conquer (e.g. sorting)



The n-Queens Problem

W

m Provided is a n timesn chessboard
g m For example n =6

Y/ m Question: is it possiblt to position n
— queens such that no two queens
g threaten each other?
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The n-Queens Problem

m Provided is a n timesn chessboard
m Forexample n =6

m Question: is it possiblt to position n
queens such that no two queens
threaten each other?

m If yes, how many solutions are
there?
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Solution?

m Try all possible placements?

m (Tf) possibilities. Too many!

m n" possibilities. Better — but still too many.

m Idea: Do not follow paths that obviously fail. (Backtracking)
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Solution with Backtracking

Wy

Forbidden

Squares: no other
queens may be
here.

queens

0

1
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Solution with Backtracking

mﬁy \ | / Second Queen in

——— —
@5‘1 next row (no colli-
/ \ sion)

queens

o | O | N | O




Solution with Backtracking

queens

X X \!f All squares in next
= row forbiden. Track
N B back !
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Solution with Backtracking

queens

N . B \‘ua‘/ Move queen one
= step further and try
again

o O w o
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Solution with Backtracking

queens

0
J//\‘ua‘/ Ok (only previous
queens have to be 3
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Solution with Backtracking

queens
W .
X X X &/ All squares of the
= next row forbidden. 3
= ‘lﬁ/ Track back. 1
X X X X
4




Solution with Backtracking

queens
Wy 0
X X X gf Continue in previous 3

x I row.
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Solution with Backtracking

queens

X X X \M Remaining squares
— also forbidden.
3 BE Track back!

o | B~ W | O




Solution with Backtracking

All squares of this

X X X X row did not yield
a solution. Track
back!

queens

o | o | | O




Solution with Backtracking

queens
x Y 1
again advance
queen by one
square

o | O | O




Solution with Backtracking
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queens
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Solution with Backtracking

queens
X@ 1
e Xg next row 3
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Solution with Backtracking

queens
X g 1
X X X

w = Found a solution

X
X
IE
N o w
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Search Strategy Visualized as a Tree
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Search Strategy Visualized as a Tree
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Check Queen

using Queens = std::vector<unsigned int>;

// post: returns if queen in the given row is valid, i.e.

// does not share a common row, column or diagonal

// with any of the queens on rows O to row—1

bool valid(const Queens& queens, unsigned int row){
unsigned int col = queens[row];

for (unsigned int r = 0; r != row; ++r){
unsigned int c = queens[r];
if (col == |l col — row == cO — r || col + row == ¢c + r)

return false; // same column or diagonal
}

return true; // no shared column or diagonal

}



Recursion: Find a Solution

// pre: all queens from row O to row—1 are valid,
// i.e. do not share any common row, column or diagonal
// post: returns if there is a valid position for queens on
// row .. queens.size(). if true is returned then the
// queens vector contains a valid configuration.
bool solve(Queens& queens, unsigned int row){
if (row == queens.size())
return true;
for (unsigned int col = 0; col != queens.size(); ++col){
queens [row] = col;
if (valid(queens, row) && solve(queens,row+1))
return true; // (else check next position)
}

return false; // no valid configuration found

3



Recursion: Count all Solutions

// pre: all queens from row O to row—1 are valid,
// i.e. do not share any common row, column or diagonal
// post: returns the number of valid configurations of the

// remaining queens on rows row ... queens.size()
int nSolutions(Queens& queens, unsigned int row){
if (row == queens.size())
return 1;
int count = 0;
for (unsigned int col = 0; col != queens.size(); ++col){

queens [row] = col;
if (valid(queens, row))
count += nSolutions(queens,row+l);
}
return count;

}



Main Program

// pre: positions of the queens in vector queens
// post: output of the positions of the queens in a graphical way
void print(const Queens& queens);

int main(){
int n;
std::cin >> n;
Queens queens(n);
if (solve(queens,0)){
print (queens);
std::cout << "# solutions:" << nSolutions(queens,0) << std::endl;
} else
std::cout << "no solution" << std::endl;
return O;

}



Lindenmayer-Systems (L-Systems)

Fractals from Strings and Turtles
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Definition and Example

m{F, +, -}
m alphabet X . ‘ P(c)
m X" finite words over X F|F+F +
m production P : Y — »* " + +
m initial word sy € X* - -
mF

The triple £ = (X, P, sp) is an L-System.
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The Language Described

Woérter wg, wy, wo, ... € X*: P(F)=F+F+
wy = Sp wy = F
wy; = P(wy) wy; = F+F+
wy = P(w) wy = F4+F+4+F+F 4+ +

Definition
P(cicy...cy) := P(c1)P(ca) ... P(cy)




The Language Described

Woérter wy, wy, wo, ... € X*:

P(F)=F +F +

Wy = So wy =

wy = P(wy) wy =

wy = P(w) wy =
Definition

P(cico...cy) := P(c1)P(ea) ... P(cy)




The Language Described

Worter wy, wy, wo, ... € X*:

Wy = 8o Wy -
wy; = P(wy) (T

Wy = P(wl) wo .

P(F)=F +F +
F
F+F +

F+F++F+F++
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Turtle Graphics

Turtle with position and direction

B

Turtle understands 3 commands:

F': moveonestep || +: rotate by 90
forwards v degrees v

o X

—: rotate by —90
degrees v’

»
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int main () {

std::cout << "Maximal Recursion Depth =7 ";

unsigned int n;
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lindenmayer:

word w,y € X*:

int main () {
std::cout << "Maximal Recursion Depth =7 ";
unsigned int n;

std::cin >> n;

std::string w = "F"; // w_0 w=wy=F
produce (w,n) ;

return O;

Main Program



lindenmayer: production

// POST: recursively iterate over the production of the characters
// of a word.
// When recursion limit is reached, the word is "drawn"
void produce(std::string word, int depth){
if (depth > 0){
for (unsigned int k = 0; k < word.length(); ++k)
produce (replace(word[k]), depth—1);
} else {
draw_word(word) ;
}
1
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lindenmayer: production

// POST: recursively iterate over the production of the characters
// of a word.
// When recursion limit is reached, the word is "drawn"
void produce(std::string word, int depth){
if (depth > 0){
for (unsigned int k = 0; k < word.length(); ++k)
produce(replace(word[k]), depth—1);
} else { draw w = w,,!
draw_word (word) ;
}
1



lindenmayer: replace

// POST: returns the production of c
std::string replace (const char c)

{
switch (c) {
case ’F’:
return "F+F+";
default:

return std::string (1, c¢); // trivial production ¢ —> ¢
}
}



lindenmayer: draw

// POST: draws the turtle graphic interpretation of word
void draw_word (const std::string& word)
{
for (unsigned int k = 0; k < word.length(); ++k)
switch (word[k]) {
case ’'F’:
turtle::forward(); // move one step forward
break;
case ’+7:
turtle::1eft(90); // turn counterclockwise by 90 degrees
break;

case ’—’:
turtle::right(90); // turn clockwise by 90 degrees

3



The Recursion




L-Systeme: Erweiterungen

m arbitrary symbols without graphical interpetation
m arbitrary angles (snowflake)
m saving and restoring the state of the turtle — plants (bush)

495
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