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Swap!
// POST: values of x and y are exchanged
void swap (int& x, int& y) {
int t = x;
x = y;
y = t;

}
int main(){

int a = 2;
int b = 1;
swap (a, b);
assert (a == 1 && b == 2); // ok!

}
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Reference Types

We can make functions change the values of the call arguments
no new concept for functions, but a new class of types

Reference Types
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Reference Types: Definition

T&

underlying type

read as “T-reference”

T& has the same range of values and functionality as T, ...
but initialization and assignment work differently.
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Anakin Skywalker alias Darth Vader
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Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
darth_vader = 22;

std::cout << anakin_skywalker; // 22

22

anakin_skywalkeranakin_skywalker darth_vaderdarth_vader

assignment to the L-value behind the alias
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Reference Types: Intialization and Assignment

int& darth_vader = anakin_skywalker;
darth_vader = 22; // anakin_skywalker = 22

A variable of reference type (a reference) can only be initialized
with an L-Value .
The variable is becoming an alias of the L-value (a different name
for the referenced object).
Assignment to the reference is to the object behind the alias.
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Reference Types: Implementation

Internally, a value of type T& is represented by the address of an
object of type T.

int& j; // Error: j must be an alias of something

int& k = 5; // Error: the literal 5 has no address
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Pass by Reference
Reference types make it possible that functions modify the value of the call arguments:

void increment (int& i)
{ // i becomes an alias of the call argument

++i;
}
...
int j = 5;
increment (j);
std::cout << j << "\n"; // 6

6

j i

initialization of the formal arguments
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Pass by Reference

Formal argument has reference type:

⇒ Pass by Reference

Formal argument is (internally) initialized with the address of the call
argument (L-value) and thus becomes an alias.
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Pass by Value

Formal argument does not have a reference type:

⇒ Pass by Value

Formal argument is initialized with the value of the actual parameter
(R-Value) and thus becomes a copy.
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References in the Context of intervals intersect
// PRE: [a1, b1], [a2, b2] are (generalized) intervals,
// POST: returns true if [a1, b1], [a2, b2] intersect, in which case
// [l, h] contains the intersection of [a1, b1], [a2, b2]
bool intervals_intersect (int& l, int& h,

int a1, int b1, int a2, int b2) {
sort (a1, b1);
sort (a2, b2);

a1 b1

a2 b2l = std::max (a1, a2); // Assignments
h = std::min (b1, b2); // via references
return l <= h;

}
...
int lo = 0; int hi = 0;
if (intervals_intersect (lo, hi, 0, 2, 1, 3)) // Initialization

std::cout << "[" << lo << "," << hi << "]" << "\n"; // [1,2]
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References in the Context of intervals intersect
// POST: a <= b
void sort (int& a, int& b) {

if (a > b)
std::swap (a, b); // Initialization ("passing through" a, b

}

bool intervals_intersect (int& l, int& h,
int a1, int b1, int a2, int b2) {

sort (a1, b1); // Initialization
sort (a2, b2); // Initialization
l = std::max (a1, a2);
h = std::min (b1, b2);
return l <= h;

}
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Return by Value / Reference

Even the return type of a function can be a reference type (return
by reference)
In this case the function call itself is an L-value

int& increment (int& i)
{

return ++i;
}

exactly the semantics of the pre-increment
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Temporary Objects
What is wrong here?

int& foo (int i)
{

return i;
}

Return value of type int& be-
comes an alias of the formal argu-
ment. But the memory lifetime of i
ends after the call!

3 imemory re-
leased

j

value of the actual parameter is
pushed onto the call stacki is returned as reference...and disappears from the stackj becomes alias to released memoryvalue of j is output

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior
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The Reference Guidline

Reference Guideline
When a reference is created, the object referred to must “stay alive”
at least as long as the reference.
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Const-References

have type const T &
type can be interpreted as “(const T) &”
can be initialized with R-Values (compiler generates a temporary
object with sufficient lifetime)

const T& r = lvalue;

r is initialized with the address of lvalue (efficient)

const T& r = rvalue;
r is initialized with the address of a temporary object with the value
of the rvalue (pragmatic)
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When const T& ?

Rule
Argument type const T & (pass by read-only reference) is used for
efficiency reasons instead of T (pass by value), if the type T requires
large memory. For fundamental types (int, double,...) it does not
pay off.

Examples will follow later in the course
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What exactly does Constant Mean?

Consider an L-value with type const T

Case 1: T is no reference type

Then the L-value is a constant.

const int n = 5;
int& i = n; // error: const-qualification is discarded
i = 6;

The compiler detects our attempt to cheat
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What exactly does Constant Mean?

Consider L-value of type const T

Case 2: T is reference type.

Then the L-value is a read-only alias which cannot be used to change the value

int n = 5;
const int& i = n;// i: read-only alias of n
int& j = n; // j: read-write alias
i = 6; // Error: i is a read-only alias
j = 6; // ok: n takes on value 6
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12. Vectors and Strings I

Vector Types, Sieve of Erathostenes, Memory Layout, Iteration,
Characters and Texts, ASCII, UTF-8, Caesar-Code
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Vectors: Motivation

Now we can iterate over numbers

for (int i=0; i<n ; ++i) ...
Often we have to iterate over data. (Example: find a cinema in
Zurich that shows “C++ Runner 2049” today)
Vectors allow to store homogeneous data (example: schedules of
all cinemas in Zurich)
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Vectors: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 234 6 8 10 12 14 16 18 20 226 9 12 15 18 212 3 5 7 11 13 17 19 23

at the end of the crossing out process, only prime numbers remain.

Question: how do we cross out numbers ??
Answer: with a vector.
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Sieve of Erathostenes with Vectors
#include <iostream>
#include <vector> // standard containers with vector functionality
int main() {

// input
std::cout << "Compute prime numbers in {2,...,n−1} for n =? ";
unsigned int n;
std::cin >> n;

// definition and initialization: provides us with Booleans
// crossed_out[0],..., crossed_out[n−1], initialized to false
std::vector<bool> crossed_out (n, false);

// computation and output
std::cout << "Prime numbers in {2,...," << n−1 << "}:\n";
for (unsigned int i = 2; i < n; ++i)

if (!crossed_out[i]) { // i is prime
std::cout << i << " ";
// cross out all proper multiples of i
for (unsigned int m = 2∗i; m < n; m += i)

crossed_out[m] = true;
}

std::cout << "\n";
return 0;

}
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Memory Layout of a Vector

A vector occupies a contiguous memory area

example: a vector with 4 elements

memory cells for a value of type T each

404

Random Access
The L-value

a [ expr ]

has type T and refers to the i-th element of the vector a (counting
from 0!)

value i

a[0] a[1] a[2] a[3]
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Random Access

a [ expr ]

The value i of expr is called index.
[]: subscript operator
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Random Access

Random access is very efficient:

s: memory consumption of
T
(in cells)

p: address of a p+ s · i: address of a[i]

a[i]
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Vector Initialization

std::vector<int> a (5);
The five elements of a are zero intialized)
std::vector<int> a (5, 2);
the 5 elements of a are initialized with 2.
std::vector<int> a {4, 3, 5, 2, 1};
the vector is initialized with an initialization list.
std::vector<int> a;
An initially empty vector is created.
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Attention

Accessing elements outside the valid bounds of a vector leads to
undefined behavior.

std::vector arr (10);
for (int i=0; i<=10; ++i)

arr[i] = 30; // runtime error: access to arr[10]!

409

Attention

Bound Checks
When using a subscript operator on a vector, it is the sole
responsibility of the programmer to check the validity of element
accesses.
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Vectors are Comfortable

std::vector<int> v (10);
v.at(5) = 3; // with bound check
v.push_back(8); // 8 is appended
std::vector<int> w = v; // w is initialized with v
int sz = v.size(); // sz = 11
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Characters and Texts

We have seen texts before:
std::cout << "Prime numbers in {2,...,999}:\n";

String-Literal

can we really work with texts? Yes:

Character: Value of the fundamental type char
Text: std::string ≈ vector of char elements
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The type char (“character”)

represents printable characters (e.g. ’a’) and control characters
(e.g. ’\n’)

char c = ’a’

defines variable c of type
char with value ’a’

literal of type char
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The type char (“character”)

is formally an integer type

values convertible to int / unsigned int
all arithmetic operators are available (with dubious use: what is
’a’/’b’ ?)
values typically occupy 8 Bit

domain:
{−128, . . . , 127} or {0, . . . , 255}
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The ASCII-Code

defines concrete conversion rules
char −→ int / unsigned int
is supported on nearly all platforms

Zeichen −→ {0, . . . , 127}
’A’, ’B’, ... , ’Z’ −→ 65, 66, ..., 90
’a’, ’b’, ... , ’z’ −→ 97, 98, ..., 122
’0’, ’1’, ... , ’9’ −→ 48, 49, ..., 57

for (char c = ’a’; c <= ’z’; ++c)
std::cout << c; abcdefghijklmnopqrstuvwxyz
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Extension of ASCII: UTF-8

Internationalization of Software⇒ large character sets required.
Common today: unicode, 100 symbol sets, 110000 characters.
ASCII can be encoded with 7 bits. An eighth bit can be used to
indicate the appearance of further bits.

Bits Encoding
7 0xxxxxxx

11 110xxxxx 10xxxxxx
16 1110xxxx 10xxxxxx 10xxxxxx
21 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
26 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
31 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

Interesting property: for each byte you can decide if a new UTF8 character begins.
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Einige Zeichen in UTF-8
Symbol Codierung (jeweils 16 Bit)

11101111 10101111 10111001

11100010 10011000 10100000

11100010 10011000 10000011

11100010 10011000 10011001

A 01000001

ht
tp

://
t-a

-w
.b

lo
gs

po
t.c

h/
20

08
/1

2/
fu

nn
y-

ch
ar

ac
te

rs
-in

-u
ni

co
de

.h
tm

l

P.S.: Search for apple "unicode of death"
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Caesar-Code
Replace every printable character in a text by its
pre-pre-predecessor.

’ ’ (32) → ’|’ (124)
’!’ (33) → ’}’ (125)

...
’D’ (68) → ’A’ (65)
’E’ (69) → ’B’ (66)

...
∼ (126) → ’{’ (123)
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Caesar-Code: shift-Function
// pre: divisor > 0
// post: return the remainder of dividend / divisor
// with 0 <= result < divisor
int mod(int dividend, int divisor);

// POST: if c is one of the 95 printable ASCII characters, c is
// cyclically shifted s printable characters to the right
char shift(char c, int s) {

if (c >= 32 && c <= 126) { // c printable
c = 32 + mod(c − 32 + s,95)};

}
return c;

}
"- 32" transforms interval [32, 126] to [0, 94]
"32 +" transforms interval [0, 94] back to [32, 126]
mod(x,95) is the representative of x(mod95) in interval [0, 94]
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Caesar-Code: caesar-Function

// POST: Each character read from std::cin was shifted cyclically
// by s characters and afterwards written to std::cout
void caesar(int s) {

std::cin >> std::noskipws; // #include <ios>

char next;
while (std::cin >> next) {

std::cout << shift(next, s);
}

}

spaces and newline characters
shall not be ignored
Conversion to bool: returns false if and
only if the input is empty.

shifts only printable characters.
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Caesar-Code: Main Program

int main() {
int s;
std::cin >> s;

// Shift input by s
caesar(s);

return 0;
}

Encode: shift by n (here: 3)

Encode: shift by −n (here: -3)
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Caesar-Code: Generalisation

void caesar(int s) {
std::cin >> std::noskipws;

char next;
while (std::cin >> next) {

std::cout << shift(next, s);
}

}

Currently only from std::cin
to std::cout

Better: from arbitrary character
source (console, file, ...) to
arbitrary character sink
(console, ...)

. . .
Icons: flaticon.com; authors Smashicons, Kirill Kazachek; CC 3.0 BY
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Caesar-Code: Generalisation

void caesar(std::istream& in,
std::ostream& out,
int s) {

in >> std::noskipws;

char next;
while (in >> next) {

out << shift(next, s);
}

}

std::istream/std::ostream
is an generic input/output
stream of chars

Function is called with specific
streams, e.g.: Console
(std::cin/cout), Files
(std::i/ofstream), Strings
(std::i/ostringstream)

425



Caesar-Code: Generalisation, Example 1

#include <iostream>
...

// in void main():
caesar(std::cin, std::cout, s);

Calling the generalised caesar function: from std::cin to
std::cout
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Caesar-Code: Generalisation, Example 2

#include <iostream>
#include <fstream>
...

// in void main():
std::string from_file_name = ...; // Name of file to read from
std::string to_file_name = ...; // Name of file to write to
std::ifstream from(from_file_name); // Input file stream
std::ofstream to(to_file_name); // Output file stream

caesar(from, to, s);

Calling the generalised caesar function: from file to file
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Caesar-Code: Generalisation, Example 3

#include <iostream>
#include <sstream>
...

// in void main():
std::string plaintext = "My password is 1234";
std::istringstream from(plaintext);

caesar(from, std::cout, s);

Calling the generalised caesar function: from a string to std::cout
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