11. Reference Types

Reference Types: Definition and Initialization, Pass By Value, Pass
by Reference, Temporary Objects, Constants, Const-References

378

Reference Types

m We can make functions change the values of the call arguments
m no new concept for functions, but a new class of types

[

Reference Types

380

Swap!

// POST: values of x and y are exchanged

void swap (in X, in y) {

int t = x;

X =y;

y =1t

}

int main(){
int a = 2;
int b = 1;
swap (a, b);

assert (a ==1&& b == 2); // ok! ©

Reference Types: Definition

T& \ read as “T-reference”
T

underlying type

m T7& has the same range of values and functionality as T, ...
m but initialization and assignment work differently.

379

381

Anakin Skywalker alias Darth Vader

382

Reference Types: Intialization and Assignment

int& darth_vader = anakin_skywalker;
darth_vader = 22; // anakin_skywalker = 22

m A variable of reference type (a reference) can only be initialized
with an L-Value .

m The variable is becoming an alias of the L-value (a different name
for the referenced object).

m Assignment to the reference is to the object behind the alias.

384

Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; //
darth_vader = 22;

“___ assignment to the L-value behind the alias

std::cout << anakin_skywalker; // 22

alias

anakin_skywalker darth_vader

—

HEEF AN EREREEEE

383

Reference Types: Implementation

Internally, a value of type T& is represented by the address of an
object of type T.

int& j; // Error: j must be an alias of something

int& k = 5; // Error: the literal 5 has no address

385

Pass by Reference

Reference types make it possible that functions modify the value of the call arguments:
void increment (int& i) <« initialization of the formal arguments

{ // i becomes an alias of the call argument
++1i;

1

int j = 5;
increment (j);

std::cout << j << "\n"; // 6

j i

L
T T T eI T T T TT 1T}
Pass by Value

Formal argument does not have a reference type:

= Pass by Value

Formal argument is initialized with the value of the actual parameter
(R-Value) and thus becomes a copy. J

388

Pass by Reference

Formal argument has reference type:

= Pass by Reference

Formal argument is (internally) initialized with the address of the call
argument (L-value) and thus becomes an alias.

References in the Context of intervals intersect

// PRE: [al, bl], [a2, b2] are (generalized) intervals,
// POST: returns true if [al, bi],
// [1, h] contains the intersection of [al, bil],
bool intervals_intersect (int& 1, int& h,
int al, int bl, int a2, int b2) {
sort (al, bl); a Q
sort (a2, b2); . -

[a2, b2]

387

[a2, b2] intersect, in which case

1 = std::max (al, a2); // Assignments as
h = std::min (bl, b2); // via references
return 1 <= h;

}

int lo = 0; int hi = 0;
if (intervals_intersect (lo, hi, 0, 2, 1, 3)) // Initialization
Std::CO'llt << |||:II << 10 << ll’ll << hi << ll]ll << II\nll; // [1’2]

/)-)

389

References in the Context of intervals intersect

// POST: a <= b
void sort (int& a, int& b) {
if (a > b)
std::swap (a, b); // Initialization ("passing through" a, b
}

bool intervals_intersect (int& 1, int& h,
int al, int b1, int a2, int b2) {
sort (al, bl); // Initialization
sort (a2, b2); // Initialization
1 = std::max (al, a2);
h = std::min (b1, b2);
return 1 <= h;

390

Temporary Objects

What is wrong here?

int& foo (int i)

{ Return value of type int& be-
return i comes an alias of the formal argu-
} ’ ment. But the memory lifetime of i

ends after the call!

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior

392

exactly the semantics of the pre-increment

Return by Value / Reference

m Even the return type of a function can be a reference type (return
by reference)

m In this case the function call itself is an L-value

int&_increment (int& i)

{

return k+i;
5

391

The Reference Guidline

Reference Guideline

When a reference is created, the object referred to must “stay alive”
at least as long as the reference.

393

Const-References

m have type const T &

m type can be interpreted as “(const T) &”

m can be initialized with R-Values (compiler generates a temporary
object with sufficient lifetime)

const T& r = Ivalue; J

r is initialized with the address of Ivalue (efficient)

const T& r = rvalue;
r is initialized with the address of a temporary object with the value
of the rvalue (pragmatic)

394

What exactly does Constant Mean?

Consider an L-value with type const T

m Case 1: Tis no reference type

Then the L-value is a constant. J

——

const int n = 5;
int& i = n; // error: const-qualification is discarded
i=6;

The compiler detects our attempt to cheat

396

When const T& ?

Argument type const T & (pass by read-only reference) is used for
efficiency reasons instead of T (pass by value), if the type T requires
large memory. For fundamental types (int, double,...) it does not
pay off.

Examples will follow later in the course

What exactly does Constant Mean?

Consider L-value of type const T

m Case 2: Tis reference type.

Then the L-value is a read-only alias which cannot be used to change the vaIueJ

int n = 5;

const int& i = n;// i: read-only alias of n

int& j = n; // j: read-write alias

6; // Error: i is a read-only alias
6; // ok: n takes on value 6

i
J

397

12. Vectors and Strings |

Vector Types, Sieve of Erathostenes, Memory Layout, lteration,
Characters and Texts, ASCII, UTF-8, Caesar-Code

398

Vectors: a first Application

The Sieve of Erathostenes

m computes all prime numbers < n
m method: cross out all non-prime numbers

23/ s A7/ 7 Al AR L A Aie [0 0 A2

at the end of the crossing out process, only prime numbers remain.

m Question: how do we cross out numbers ??
m Answer: with a vector.

400

Vectors: Motivation

m Now we can iterate over numbers
for (int i=0; i<n ; ++i) ...)

m Often we have to iterate over data. (Example: find a cinema in
Zurich that shows “C-++ Runner 2049” today)

m Vectors allow to store homogeneous data (example: schedules of
all cinemas in Zurich)

399

Sieve of Erathostenes with Vectors

#include <iostream>
#include <vector> // standard containers with vector functionality
int main() {
// input
std::cout << "Compute prime numbers in {2,..., n—1} for n =7 "
unsigned int n;
std::cin >> n;

// definition and initialization: provides us with Booleans
// crossed_out[0],..., crossed_out[n—1], initialized to false
std: :vector<bool> crossed_out (n, false);

// computation and output
std::cout << "Prime numbers in {2,..., " << n—1 << "}:\n";
for (unsigned int i = 2; i < n; ++i)
if (!crossed_out[i]) { // i is prime
std::cout << i << " "
// cross out all proper multiples of i
for (unsigned int m = 2%i; m < n; m += i)
crossed_out[m] = true;
}
std::cout << "\n";
return 0; 403

Memory Layout of a Vector Random Access

m A vector occupies a contiguous memory area The L-value Valiei

example: a vector with 4 elements] al expr]
has type T and refers to the i-th element of the vector a (counting
from 0!)

memory cells for a value of type T each al0] al1] al2] a[3]

Random Access Random Access

m Random access is very efficient:
: address of a p+ s -1 address of a[i]
al expr] ll J

The value 7 of expr is called index.

[1: subscript operator \/ \/

s: memory consumption of a[i]
-
(in cells)

406

Vector Initialization

B std::vector<int> a (5);
The five elements of a are zero intialized)

B std::vector<int> a (5, 2);
the 5 elements of a are initialized with 2.

B std::vector<int> a {4, 3, 5, 2, 1};
the vector is initialized with an initialization list.

B std::vector<int> a;
An initially empty vector is created.

408

Attention

Bound Checks

When using a subscript operator on a vector, it is the sole
responsibility of the programmer to check the validity of element
accesses.

410

Attention

m Accessing elements outside the valid bounds of a vector leads to
undefined behavior.

std::vector arr (10);
for (int i=0; i<=10; ++i)
arr[i] = 30; // runtime error: access to arr[10]!

409

Vectors are Comfortable

std::vector<int> v (10);

v.at(5) = 3; // with bound check

v.push_back(8); // 8 is appended

std::vector<int> w = v; // w is initialized with v
int sz = v.size(Q); // sz = 11

413

Characters and Texts

m We have seen texts before:
std::cout << "Prime numbers in {2,...,999}:\n";

String-Literal

m can we really work with texts? Yes:

Character: Value of the fundamental type char
Text: std: :string ~ vector of char elements

The type char (“character”)

is formally an integer type

m values convertible to int / unsigned int

m all arithmetic operators are available (with dubious use: what is
’a’/’b’ ?)

m values typically occupy 8 Bit

domain:
{—128,...,127} or {0, ..., 255}

The type char (“character”)

m represents printable characters (e.g. *a’) and control characters
(e.g. ’\n?)

char ¢ = ’a’

defines variable ¢ of}ype
char with value ’a’
literal of type char

The ASCII-Code

m defines concrete conversion rules
char — int / unsigned int

m is supported on nearly all platforms

Zeichen — {0, ..., 127}

'A’, ’B, , ’Z’ — 65,66, ...,90
‘a’, ’b’, ... , ’z’ — 97,98, ..., 122
00, 17, , 797 —» 48,49, ... 57

m for (char c = ’a’; c <= ’z’; ++c)
std::cout << c; abcdefghijklmnopqrstuvwxyz

416 417

Extension of ASCII: UTF-8

m Internationalization of Software = large character sets required.
Common today: unicode, 100 symbol sets, 110000 characters.

m ASCII can be encoded with 7 bits. An eighth bit can be used to
indicate the appearance of further bits.

Bits

Encoding

7
11
16
21
26
31

0XXXXXXX
110xxxxX
1110xxxx
11110xxx
111110xx
1111110x

1
1
10
10
10

XXXXX
XXXXX
KXXXXX
KXXXXX
KXXXXX

10xxxXXX

10xxxxxx 10XXXXXX

10xxxxxx 10xxxxxX 10XXXXXX

10xxxxxx 10xxxxxxX 10xxXXxxXXx 10XXXXXX

Interesting property: for each byte you can decide if a new UTF8 character begins.

Caesar-Code

Replace every printable character in a text by its
pre-pre-predecessor.

’D,
!E!

(32) —
(33) —
(68) —
(69) —
(126) —

418

420

Einige Zeichen in UTF-8
Symbol | Codierung (jeweils 16 Bit)

c

<’ 11101111 10101111 10111001

@
-4 11100010 10011000 10100000

&3

%g 11100010 10011000 10011001

11100010 10011000 10000011

A 01000001

P.S.: Search for apple "unicode of death"

Caesar-Code: shift-Function

int mod(int dividend, int divisor);

char shift(char c, int s) {
if (c >= 32 && c <= 126) {
c = 32 + mod(c — 32 + s,95)};

}
return c; - 32"transforms interval (32, 126] to [0, 94]

} "32 +" transforms interval [0, 94] back to [32, 126]
mod(x,95) is the representative of z:(mod95) in interval [0, 94]

+&http://t-a-w.blogspot.ch/2008/12/funny-characters-in-unicode.html

421

Caesar-Code: caesar-Function Caesar-Code: Main Program

Encode: shift by n (here: 3)

' : int main() {
void caesar(int s) { int s;
’

std::cin >> std::noskipws; e .
\ std::cin >> s; Khoor#Zruog/#p | #sdvvzrug#lv#45671

char next;

: ion 1 1: retu i // Shift input by s
vhile (std::cin >> next) Conversion to bool: returns false if and P y

ctd: :cout << shiftw input is empty. caesar(s) ; Encode: shift by —n (here: -3)
} return O;
X shifts only printable characters. }
Hello World, my password is 1234,
Caesar-Code: Generalisation Caesar-Code: Generalisation

m Better: from arbitrary character

. B std::istream/std::ostream

std::cin >> std::noskipws; SOU.I’CG (console, fl|e: ..) to void caesar(std::istream& in, is an generic input/outout
arbitrary character sink std::ostream& out, f

char next; (console, ...) int) { stream of chars

void caesar(int s) {

while (std::cin >> next) {

std::cout << shift(next, s); in >> std::noskipws;

m Function is called with specific

} ’ char next; streams, e.g.: Console
| while (in >> next) { (std::cin/cout), Files
m Currently only from std: :cin N) out << shift(next, s); (std: :i/ofstream), Strings

to std: :cout } (std::i/ostringstream)

Caesar-Code: Generalisation, Example 1

#include <iostream>
// in void main():
caesar(std::cin, std::cout, s);

Calling the generalised caesar function: from std: :cin to
std: :cout

426

Caesar-Code: Generalisation, Example 3

#include <iostream>
#include <sstream>

// in void main():
std::string plaintext = "My password is 1234";
std::istringstream from(plaintext);

caesar (from, std::cout, s);

Calling the generalised caesar function: from a string to std: : cout

428

Caesar-Code: Generalisation, Example 2

#include <iostream>
#include <fstream>

// in void main():

std::string from_file_name = ...; // Name of file to read from
std::string to_file_name = ...; // Name of file to write to
std::ifstream from(from_file_name); // Input file stream
std::ofstream to(to_file_name); // Output file stream

caesar(from, to, s);

Calling the generalised caesar function: from file to file

427

