
11. Reference Types

Reference Types: Definition and Initialization, Pass By Value, Pass
by Reference, Temporary Objects, Constants, Const-References

378

Swap!
// POST: values of x and y are exchanged
void swap (int& x, int& y) {
int t = x;
x = y;
y = t;

}
int main(){

int a = 2;
int b = 1;
swap (a, b);
assert (a == 1 && b == 2); // ok!

}
379

Reference Types

We can make functions change the values of the call arguments
no new concept for functions, but a new class of types

Reference Types

380

Reference Types: Definition

T&

underlying type

read as “T-reference”

T& has the same range of values and functionality as T, ...
but initialization and assignment work differently.

381

Anakin Skywalker alias Darth Vader

382

Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
darth_vader = 22;

std::cout << anakin_skywalker; // 22

22

anakin_skywalkeranakin_skywalker darth_vaderdarth_vader

assignment to the L-value behind the alias

383

Reference Types: Intialization and Assignment

int& darth_vader = anakin_skywalker;
darth_vader = 22; // anakin_skywalker = 22

A variable of reference type (a reference) can only be initialized
with an L-Value .
The variable is becoming an alias of the L-value (a different name
for the referenced object).
Assignment to the reference is to the object behind the alias.

384

Reference Types: Implementation

Internally, a value of type T& is represented by the address of an
object of type T.

int& j; // Error: j must be an alias of something

int& k = 5; // Error: the literal 5 has no address

385

Pass by Reference
Reference types make it possible that functions modify the value of the call arguments:

void increment (int& i)
{ // i becomes an alias of the call argument

++i;
}
...
int j = 5;
increment (j);
std::cout << j << "\n"; // 6

6

j i

initialization of the formal arguments

386

Pass by Reference

Formal argument has reference type:

⇒ Pass by Reference

Formal argument is (internally) initialized with the address of the call
argument (L-value) and thus becomes an alias.

387

Pass by Value

Formal argument does not have a reference type:

⇒ Pass by Value

Formal argument is initialized with the value of the actual parameter
(R-Value) and thus becomes a copy.

388

References in the Context of intervals intersect
// PRE: [a1, b1], [a2, b2] are (generalized) intervals,
// POST: returns true if [a1, b1], [a2, b2] intersect, in which case
// [l, h] contains the intersection of [a1, b1], [a2, b2]
bool intervals_intersect (int& l, int& h,

int a1, int b1, int a2, int b2) {
sort (a1, b1);
sort (a2, b2);

a1 b1

a2 b2l = std::max (a1, a2); // Assignments
h = std::min (b1, b2); // via references
return l <= h;

}
...
int lo = 0; int hi = 0;
if (intervals_intersect (lo, hi, 0, 2, 1, 3)) // Initialization

std::cout << "[" << lo << "," << hi << "]" << "\n"; // [1,2]
389

References in the Context of intervals intersect
// POST: a <= b
void sort (int& a, int& b) {

if (a > b)
std::swap (a, b); // Initialization ("passing through" a, b

}

bool intervals_intersect (int& l, int& h,
int a1, int b1, int a2, int b2) {

sort (a1, b1); // Initialization
sort (a2, b2); // Initialization
l = std::max (a1, a2);
h = std::min (b1, b2);
return l <= h;

}
390

Return by Value / Reference

Even the return type of a function can be a reference type (return
by reference)
In this case the function call itself is an L-value

int& increment (int& i)
{

return ++i;
}

exactly the semantics of the pre-increment

391

Temporary Objects
What is wrong here?

int& foo (int i)
{

return i;
}

Return value of type int& be-
comes an alias of the formal argu-
ment. But the memory lifetime of i
ends after the call!

3 imemory re-
leased

j

value of the actual parameter is
pushed onto the call stacki is returned as reference...and disappears from the stackj becomes alias to released memoryvalue of j is output

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior

392

The Reference Guidline

Reference Guideline
When a reference is created, the object referred to must “stay alive”
at least as long as the reference.

393

Const-References

have type const T &
type can be interpreted as “(const T) &”
can be initialized with R-Values (compiler generates a temporary
object with sufficient lifetime)

const T& r = lvalue;

r is initialized with the address of lvalue (efficient)

const T& r = rvalue;
r is initialized with the address of a temporary object with the value
of the rvalue (pragmatic)

394

When const T& ?

Rule
Argument type const T & (pass by read-only reference) is used for
efficiency reasons instead of T (pass by value), if the type T requires
large memory. For fundamental types (int, double,...) it does not
pay off.

Examples will follow later in the course

395

What exactly does Constant Mean?

Consider an L-value with type const T

Case 1: T is no reference type

Then the L-value is a constant.

const int n = 5;
int& i = n; // error: const-qualification is discarded
i = 6;

The compiler detects our attempt to cheat

396

What exactly does Constant Mean?

Consider L-value of type const T

Case 2: T is reference type.

Then the L-value is a read-only alias which cannot be used to change the value

int n = 5;
const int& i = n;// i: read-only alias of n
int& j = n; // j: read-write alias
i = 6; // Error: i is a read-only alias
j = 6; // ok: n takes on value 6

397

12. Vectors and Strings I

Vector Types, Sieve of Erathostenes, Memory Layout, Iteration,
Characters and Texts, ASCII, UTF-8, Caesar-Code

398

Vectors: Motivation

Now we can iterate over numbers

for (int i=0; i<n ; ++i) ...
Often we have to iterate over data. (Example: find a cinema in
Zurich that shows “C++ Runner 2049” today)
Vectors allow to store homogeneous data (example: schedules of
all cinemas in Zurich)

399

Vectors: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 234 6 8 10 12 14 16 18 20 226 9 12 15 18 212 3 5 7 11 13 17 19 23

at the end of the crossing out process, only prime numbers remain.

Question: how do we cross out numbers ??
Answer: with a vector.

400

Sieve of Erathostenes with Vectors
#include <iostream>
#include <vector> // standard containers with vector functionality
int main() {

// input
std::cout << "Compute prime numbers in {2,...,n−1} for n =? ";
unsigned int n;
std::cin >> n;

// definition and initialization: provides us with Booleans
// crossed_out[0],..., crossed_out[n−1], initialized to false
std::vector<bool> crossed_out (n, false);

// computation and output
std::cout << "Prime numbers in {2,...," << n−1 << "}:\n";
for (unsigned int i = 2; i < n; ++i)

if (!crossed_out[i]) { // i is prime
std::cout << i << " ";
// cross out all proper multiples of i
for (unsigned int m = 2∗i; m < n; m += i)

crossed_out[m] = true;
}

std::cout << "\n";
return 0;

}
403

Memory Layout of a Vector

A vector occupies a contiguous memory area

example: a vector with 4 elements

memory cells for a value of type T each

404

Random Access
The L-value

a [expr]

has type T and refers to the i-th element of the vector a (counting
from 0!)

value i

a[0] a[1] a[2] a[3]

405

Random Access

a [expr]

The value i of expr is called index.
[]: subscript operator

406

Random Access

Random access is very efficient:

s: memory consumption of
T
(in cells)

p: address of a p+ s · i: address of a[i]

a[i]

407

Vector Initialization

std::vector<int> a (5);
The five elements of a are zero intialized)
std::vector<int> a (5, 2);
the 5 elements of a are initialized with 2.
std::vector<int> a {4, 3, 5, 2, 1};
the vector is initialized with an initialization list.
std::vector<int> a;
An initially empty vector is created.

408

Attention

Accessing elements outside the valid bounds of a vector leads to
undefined behavior.

std::vector arr (10);
for (int i=0; i<=10; ++i)

arr[i] = 30; // runtime error: access to arr[10]!

409

Attention

Bound Checks
When using a subscript operator on a vector, it is the sole
responsibility of the programmer to check the validity of element
accesses.

410

Vectors are Comfortable

std::vector<int> v (10);
v.at(5) = 3; // with bound check
v.push_back(8); // 8 is appended
std::vector<int> w = v; // w is initialized with v
int sz = v.size(); // sz = 11

413

Characters and Texts

We have seen texts before:
std::cout << "Prime numbers in {2,...,999}:\n";

String-Literal

can we really work with texts? Yes:

Character: Value of the fundamental type char
Text: std::string ≈ vector of char elements

414

The type char (“character”)

represents printable characters (e.g. ’a’) and control characters
(e.g. ’\n’)

char c = ’a’

defines variable c of type
char with value ’a’

literal of type char

415

The type char (“character”)

is formally an integer type

values convertible to int / unsigned int
all arithmetic operators are available (with dubious use: what is
’a’/’b’ ?)
values typically occupy 8 Bit

domain:
{−128, . . . , 127} or {0, . . . , 255}

416

The ASCII-Code

defines concrete conversion rules
char −→ int / unsigned int
is supported on nearly all platforms

Zeichen −→ {0, . . . , 127}
’A’, ’B’, ... , ’Z’ −→ 65, 66, ..., 90
’a’, ’b’, ... , ’z’ −→ 97, 98, ..., 122
’0’, ’1’, ... , ’9’ −→ 48, 49, ..., 57

for (char c = ’a’; c <= ’z’; ++c)
std::cout << c; abcdefghijklmnopqrstuvwxyz

417

Extension of ASCII: UTF-8

Internationalization of Software⇒ large character sets required.
Common today: unicode, 100 symbol sets, 110000 characters.
ASCII can be encoded with 7 bits. An eighth bit can be used to
indicate the appearance of further bits.

Bits Encoding
7 0xxxxxxx

11 110xxxxx 10xxxxxx
16 1110xxxx 10xxxxxx 10xxxxxx
21 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
26 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
31 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

Interesting property: for each byte you can decide if a new UTF8 character begins.

418

Einige Zeichen in UTF-8
Symbol Codierung (jeweils 16 Bit)

11101111 10101111 10111001

11100010 10011000 10100000

11100010 10011000 10000011

11100010 10011000 10011001

A 01000001

ht
tp

://
t-a

-w
.b

lo
gs

po
t.c

h/
20

08
/1

2/
fu

nn
y-

ch
ar

ac
te

rs
-in

-u
ni

co
de

.h
tm

l

P.S.: Search for apple "unicode of death"
419

Caesar-Code
Replace every printable character in a text by its
pre-pre-predecessor.

’ ’ (32) → ’|’ (124)
’!’ (33) → ’}’ (125)

...
’D’ (68) → ’A’ (65)
’E’ (69) → ’B’ (66)

...
∼ (126) → ’{’ (123)

420

Caesar-Code: shift-Function
// pre: divisor > 0
// post: return the remainder of dividend / divisor
// with 0 <= result < divisor
int mod(int dividend, int divisor);

// POST: if c is one of the 95 printable ASCII characters, c is
// cyclically shifted s printable characters to the right
char shift(char c, int s) {

if (c >= 32 && c <= 126) { // c printable
c = 32 + mod(c − 32 + s,95)};

}
return c;

}
"- 32" transforms interval [32, 126] to [0, 94]
"32 +" transforms interval [0, 94] back to [32, 126]
mod(x,95) is the representative of x(mod95) in interval [0, 94]

421

Caesar-Code: caesar-Function

// POST: Each character read from std::cin was shifted cyclically
// by s characters and afterwards written to std::cout
void caesar(int s) {

std::cin >> std::noskipws; // #include <ios>

char next;
while (std::cin >> next) {

std::cout << shift(next, s);
}

}

spaces and newline characters
shall not be ignored
Conversion to bool: returns false if and
only if the input is empty.

shifts only printable characters.

422

Caesar-Code: Main Program

int main() {
int s;
std::cin >> s;

// Shift input by s
caesar(s);

return 0;
}

Encode: shift by n (here: 3)

Encode: shift by −n (here: -3)

423

Caesar-Code: Generalisation

void caesar(int s) {
std::cin >> std::noskipws;

char next;
while (std::cin >> next) {

std::cout << shift(next, s);
}

}

Currently only from std::cin
to std::cout

Better: from arbitrary character
source (console, file, ...) to
arbitrary character sink
(console, ...)

. . .
Icons: flaticon.com; authors Smashicons, Kirill Kazachek; CC 3.0 BY

424

Caesar-Code: Generalisation

void caesar(std::istream& in,
std::ostream& out,
int s) {

in >> std::noskipws;

char next;
while (in >> next) {

out << shift(next, s);
}

}

std::istream/std::ostream
is an generic input/output
stream of chars

Function is called with specific
streams, e.g.: Console
(std::cin/cout), Files
(std::i/ofstream), Strings
(std::i/ostringstream)

425

Caesar-Code: Generalisation, Example 1

#include <iostream>
...

// in void main():
caesar(std::cin, std::cout, s);

Calling the generalised caesar function: from std::cin to
std::cout

426

Caesar-Code: Generalisation, Example 2

#include <iostream>
#include <fstream>
...

// in void main():
std::string from_file_name = ...; // Name of file to read from
std::string to_file_name = ...; // Name of file to write to
std::ifstream from(from_file_name); // Input file stream
std::ofstream to(to_file_name); // Output file stream

caesar(from, to, s);

Calling the generalised caesar function: from file to file

427

Caesar-Code: Generalisation, Example 3

#include <iostream>
#include <sstream>
...

// in void main():
std::string plaintext = "My password is 1234";
std::istringstream from(plaintext);

caesar(from, std::cout, s);

Calling the generalised caesar function: from a string to std::cout

428

