
6. Control Statements II

Visibility, Local Variables, While Statement, Do Statement, Jump
Statements
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Visibility

Declaration in a block is not visible outside of the block.

int main ()
{

{
int i = 2;

}
std::cout << i; // Error: undeclared name
return 0;

}

bl
oc

k

m
ai

n
bl

oc
k

„Blickrichtung”
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Potential Scope
in the block

{
int i = 2;
...

}

in function body

int main() {
int i = 2;
...
return 0;

}

in control statement

for ( int i = 0; i < 10; ++i) {s += i; ... }
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}
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int main() {
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return 0;

}
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for ( int i = 0; i < 10; ++i) {s += i; ... }
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Scope

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}
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Real Scope

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}
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Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs
int k = 2;
std::cout << −−k; // outputs

}
}

Local variables (declaration in a block) have automatic storage
duration.
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Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs 6, 7, 8, 9, 10
int k = 2;
std::cout << −−k; // outputs 1, 1, 1, 1, 1

}
}

Local variables (declaration in a block) have automatic storage
duration.
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Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs
int k = 2;
std::cout << −−k; // outputs

}
}

Local variables (declaration in a block) have automatic storage
duration.
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while Statement

while ( condition )
statement

is equivalent to

for ( ; condition ; )
statement
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while Statement

while ( condition )
statement

is equivalent to

for ( ; condition ; )
statement
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Example: The Collatz-Sequence (n ∈ N)

n0 = n

ni =

{ni−1

2
, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)
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The Collatz-Sequence

n0 = n

ni =

{ni−1

2
, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)
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The Collatz Sequence in C++

n = 27:
82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242,
121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233,
700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336,
668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276,
638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429,
7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232,
4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488,
244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20,
10, 5, 16, 8, 4, 2, 1
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do Statement

do
statement

while ( expression );

is equivalent to

statement
while ( expression )

statement
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do Statement

do
statement

while ( expression );

is equivalent to

statement
while ( expression )

statement
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Calculator with break
Suppress irrelevant addition of 0:

int a;
int s = 0;
do {

std::cout << "next number =? ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle
s += a;
std::cout << "sum = " << s << "\n";

} while (a != 0)
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Calculator with break
Equivalent and yet more simple:

int a;
int s = 0;
for (;;) {

std::cout << "next number =? ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle
s += a;
std::cout << "sum = " << s << "\n";

}
221



break and continue in practice

Advantage: Can avoid nested if-elseblocks (or complex
disjunctions)

But they result in additional jumps (for- and backwards) and thus
potentially complicate the control flow
Their use is thus controversial, and should be carefully considered
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disjunctions)
But they result in additional jumps (for- and backwards) and thus
potentially complicate the control flow
Their use is thus controversial, and should be carefully considered
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Calculator with continue
Ignore negative input:

for (;;)
{

std::cout << "next number =? ";
std::cin >> a;
if (a < 0) continue; // jump to }
if (a == 0) break;
s += a;
std::cout << "sum = " << s << "\n";

}
225



Control Flow if else

condition

statement1

statement2

true

false

if ( condition )
statement1

else
statement2
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Control Flow if else

condition

statement1

statement2

true

false
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statement1
else
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Control Flow if else

condition

statement1

statement2

true

false
if ( condition )

statement1
else

statement2
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Control Flow for

for ( init statement condition ; expression )
statement

init-statement

condition

statement

expression

true

false

229



Control Flow for

for ( init statement condition ; expression )
statement

init-statement

condition

statement

expression

true

false
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Control Flow for

for ( init statement condition ; expression )
statement

init-statement

condition

statement

expression

true

false
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Control Flow break and continue in for

init-statement

condition

statement

expression

break
continue
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Control Flow break and continue in for

init-statement
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statement
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break
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Control Flow break and continue in for
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statement
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Control Flow break and continue in for

init-statement

condition

statement

expression

break

continue
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Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them:
Machine Language

Assembler (“higher” machine language)
BASIC, the first prorgamming language
for the general public (1964)

if

goto
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Observation
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BASIC, the first prorgamming language
for the general public (1964)

if

goto
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BASIC and home computers...

...allowed a whole generation of young adults to program.

Home-Computer Commodore C64 (1982)

236



Spaghetti-Code with goto

Output of of ???????????
using the programming language BASIC:

true

true
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Spaghetti-Code with goto

Output of all prime numbers
using the programming language BASIC:

true

true
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The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements
few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.
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Odd Numbers in {0, . . . , 100}

First (correct) attempt:

for (unsigned int i = 0; i < 100; ++i)
{

if (i % 2 == 0)
continue;

std::cout << i << "\n";
}

239



Odd Numbers in {0, . . . , 100}

Less statements, less lines:

for (unsigned int i = 0; i < 100; ++i)
{

if (i % 2 != 0)
std::cout << i << "\n";

}
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Odd Numbers in {0, . . . , 100}
Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement
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Odd Numbers in {0, . . . , 100}
Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement
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Outputting Grades

1. Functional requirement:

6→ "Excellent ... You passed!"
5, 4→ "You passed!"
3→ "Close, but ... You failed!"

2, 1→ "You failed!"
otherwise→ "Error!"

2. Moreover: Avoid duplication of text and code
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2, 1→ "You failed!"
otherwise→ "Error!"
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Outputting Grades with if Statements

int grade;
...
if (grade == 6) std::cout << "Excellent ... ";
if (4 <= grade && grade <= 6) {

std::cout << "You passed!";
} else if (1 <= grade && grade < 4) {

if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";

} else std::cout << "Error!";

Disadvantage: Control flow – and thus program behaviour – not
quite obvious
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Outputting Grades with if Statements

int grade;
...
if (grade == 6) std::cout << "Excellent ... ";
if (4 <= grade && grade <= 6) {

std::cout << "You passed!";
} else if (1 <= grade && grade < 4) {

if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";

} else std::cout << "Error!";

Disadvantage: Control flow – and thus program behaviour – not
quite obvious
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Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Advantage: Control flow clearly recognisable
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Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Jump to matching case

Advantage: Control flow clearly recognisable
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Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Fall-through

Advantage: Control flow clearly recognisable
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Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}
In all other cases

Advantage: Control flow clearly recognisable
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Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Advantage: Control flow clearly recognisable
245



The switch-Statement

switch (condition)
statement

condition: Expression, convertible to integral type
statement : arbitrary statemet, in which case and default-lables
are permitted, break has a special meaning.

Use of fall-through property is controversial and should be
carefully considered (corresponding compiler warning can be
enabled)
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The switch-Statement

switch (condition)
statement

condition: Expression, convertible to integral type
statement : arbitrary statemet, in which case and default-lables
are permitted, break has a special meaning.
Use of fall-through property is controversial and should be
carefully considered (corresponding compiler warning can be
enabled)
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7. Floating-point Numbers I

Types float and double; Mixed Expressions and Conversion;
Holes in the Value Range
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“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 ∗ celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82 degrees Fahrenheit.
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“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 ∗ celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82 degrees Fahrenheit.

richtig wäre 82.4
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“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =? ";
float celsius; // Enable fractional numbers
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 ∗ celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82.4 degrees Fahrenheit.
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Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)
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Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

82.4 = 0000082.400
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Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

82.4 = 0000082.400

Disadvantages

Value range is getting even smaller than for integers.
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Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

0.0824 = 0000000.082

Disadvantages

Representability depends on the position of the decimal point.

third place truncated
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Floating-point numbers

Observation: same number, different representations with varying
“efficiency”, e.g.

0.0824 = 0.00824 · 101 = 0.824 · 10−1
= 8.24 · 10−2 = 824 · 10−4

Number of significant digits remains constant

Floating-point number representation thus:

Fixed number of significant places (e.g. 10),
Plus position of the decimal point via exponent
Number is Mantissa× 10Exponent
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Types float and double

are the fundamental C++ types for floating point numbers
approximate the field of real numbers (R,+,×) from mathematics

have a big value range, sufficient for many applications:

float: approx. 7 digits, exponent up to ±38
double: approx. 15 digits, exponent up to ±308

are fast on most computers (hardware support)
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Arithmetic Operators

Analogous to int, but . . .

Division operator / models a “proper” division (real-valued, not
integer)
No modulo operator, i.e. no %
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Literals
are different from integers

by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1

.23e-7f

integer part

fractional part

exponent
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1.27f : type float, value 1.27

and / or exponent.

1e3 : type double, value 1000
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Computing with float: Example

Approximating the Euler-Number

e =
∞∑
i=0

1

i!
≈ 2.71828 . . .

using the first 10 terms.
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Computing with float: Euler Number

std::cout << "Approximating the Euler number... \n";

// values for i−th iteration, initialized for i = 0
float t = 1.0f; // term 1/i!
float e = 1.0f; // i−th approximation of e

// iteration 1, ..., n
for (unsigned int i = 1; i < 10; ++i) {

t /= i; // 1/(i−1)! −> 1/i!
e += t;
std::cout << "Value after term " << i << ": "

<< e << "\n";
}
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Computing with float: Euler Number

Value after term 1: 2
Value after term 2: 2.5
Value after term 3: 2.66667
Value after term 4: 2.70833
Value after term 5: 2.71667
Value after term 6: 2.71806
Value after term 7: 2.71825
Value after term 8: 2.71828
Value after term 9: 2.71828
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.

In mixed expressions integers are converted to floating point
numbers.
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numbers.

9 * celsius / 5 + 32
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

9 * celsius / 5 + 32

Typ float, value 28
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

9 * 28.0f / 5 + 32
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

9 * 28.0f / 5 + 32

is converted to float : 9.0f
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

252.0f / 5 + 32

is converted to float : 5.0f
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

50.4f + 32

is converted to float : 32.0f
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

82.4f
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Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";
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Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.5

input 1.0

input 0.5
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Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.5

input 1.0

input 0.5

output 0
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Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.1

input 1.0

input 0.1
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Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.1

input 1.0

input 0.1

output 2.23517e-8
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Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.1

input 1.0

input 0.1

output 2.23517e-8
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Value range

Integer Types:

Over- and Underflow relatively frequent, but ...
the value range is contiguous (no holes): Z is “discrete”.

Floating point types:

Overflow and Underflow seldom, but ...
there are holes: R is “continuous”.
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Value range

Integer Types:

Over- and Underflow relatively frequent, but ...
the value range is contiguous (no holes): Z is “discrete”.

Floating point types:

Overflow and Underflow seldom, but ...
there are holes: R is “continuous”.
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