
6. Control Statements II

Visibility, Local Variables, While Statement, Do Statement, Jump
Statements

197

Visibility

Declaration in a block is not visible outside of the block.

int main ()
{

{
int i = 2;

}
std::cout << i; // Error: undeclared name
return 0;

}

bl
oc

k

m
ai

n
bl

oc
k

„Blickrichtung”

198

Potential Scope
in the block

{
int i = 2;
...

}

in function body

int main() {
int i = 2;
...
return 0;

}

in control statement

for (int i = 0; i < 10; ++i) {s += i; ... }

200

Potential Scope
in the block

{
int i = 2;
...

}

in function body

int main() {
int i = 2;
...
return 0;

}

in control statement

for (int i = 0; i < 10; ++i) {s += i; ... }

sc
op

e

sc
op

e

scope

200

Scope

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}

201

Potential Scope

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}

201

Real Scope

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}

201

Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs
int k = 2;
std::cout << −−k; // outputs

}
}

Local variables (declaration in a block) have automatic storage
duration.

203

Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs 6, 7, 8, 9, 10
int k = 2;
std::cout << −−k; // outputs 1, 1, 1, 1, 1

}
}

Local variables (declaration in a block) have automatic storage
duration.

203

Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs
int k = 2;
std::cout << −−k; // outputs

}
}

Local variables (declaration in a block) have automatic storage
duration.

203

while Statement

while (condition)
statement

is equivalent to

for (; condition ;)
statement

205

while Statement

while (condition)
statement

is equivalent to

for (; condition ;)
statement

205

Example: The Collatz-Sequence (n ∈ N)

n0 = n

ni =

{ni−1

2
, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1

2
, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5

, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1

2
, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16

, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1

2
, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8

, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1

2
, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4

, 2, 1, 4, 2, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1

2
, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2

, 1, 4, 2, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1

2
, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1

, 4, 2, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1

2
, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4

, 2, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1

2
, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2

, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1

2
, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1

, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1

2
, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

208

The Collatz Sequence in C++

n = 27:
82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242,
121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233,
700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336,
668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276,
638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429,
7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232,
4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488,
244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20,
10, 5, 16, 8, 4, 2, 1

210

do Statement

do
statement

while (expression);

is equivalent to

statement
while (expression)

statement

213

do Statement

do
statement

while (expression);

is equivalent to

statement
while (expression)

statement

213

Calculator with break
Suppress irrelevant addition of 0:

int a;
int s = 0;
do {

std::cout << "next number =? ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle
s += a;
std::cout << "sum = " << s << "\n";

} while (a != 0)
220

Calculator with break
Equivalent and yet more simple:

int a;
int s = 0;
for (;;) {

std::cout << "next number =? ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle
s += a;
std::cout << "sum = " << s << "\n";

}
221

break and continue in practice

Advantage: Can avoid nested if-elseblocks (or complex
disjunctions)

But they result in additional jumps (for- and backwards) and thus
potentially complicate the control flow
Their use is thus controversial, and should be carefully considered

224

break and continue in practice

Advantage: Can avoid nested if-elseblocks (or complex
disjunctions)
But they result in additional jumps (for- and backwards) and thus
potentially complicate the control flow

Their use is thus controversial, and should be carefully considered

224

break and continue in practice

Advantage: Can avoid nested if-elseblocks (or complex
disjunctions)
But they result in additional jumps (for- and backwards) and thus
potentially complicate the control flow
Their use is thus controversial, and should be carefully considered

224

Calculator with continue
Ignore negative input:

for (;;)
{

std::cout << "next number =? ";
std::cin >> a;
if (a < 0) continue; // jump to }
if (a == 0) break;
s += a;
std::cout << "sum = " << s << "\n";

}
225

Control Flow if else

condition

statement1

statement2

true

false

if (condition)
statement1

else
statement2

228

Control Flow if else

condition

statement1

statement2

true

false
if (condition)

statement1
else

statement2

228

Control Flow if else

condition

statement1

statement2

true

false
if (condition)

statement1
else

statement2

228

Control Flow for

for (init statement condition ; expression)
statement

init-statement

condition

statement

expression

true

false

229

Control Flow for

for (init statement condition ; expression)
statement

init-statement

condition

statement

expression

true

false

229

Control Flow for

for (init statement condition ; expression)
statement

init-statement

condition

statement

expression

true

false

229

Control Flow break and continue in for

init-statement

condition

statement

expression

break
continue

230

Control Flow break and continue in for

init-statement

condition

statement

expression
break

continue

230

Control Flow break and continue in for

init-statement

condition

statement

expression

break
continue

230

Control Flow break and continue in for

init-statement

condition

statement

expression

break

continue

230

Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them:
Machine Language

Assembler (“higher” machine language)
BASIC, the first prorgamming language
for the general public (1964)

if

goto

235

Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them:
Machine Language

Assembler (“higher” machine language)
BASIC, the first prorgamming language
for the general public (1964)

if

goto

235

Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them:
Machine Language

Assembler (“higher” machine language)
BASIC, the first prorgamming language
for the general public (1964)

if

goto

235

Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them:
Machine Language
Assembler (“higher” machine language)

BASIC, the first prorgamming language
for the general public (1964)

if

goto

235

Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them:
Machine Language
Assembler (“higher” machine language)
BASIC, the first prorgamming language
for the general public (1964)

if

goto

235

BASIC and home computers...

...allowed a whole generation of young adults to program.

Home-Computer Commodore C64 (1982)

236

Spaghetti-Code with goto

Output of of ???????????
using the programming language BASIC:

true

true

237

Spaghetti-Code with goto

Output of all prime numbers
using the programming language BASIC:

true

true

237

The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements
few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

238

The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements

few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

238

The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements
few lines of code

simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

238

The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements
few lines of code
simple control flow

simple expressions

Often not all goals can be achieved simultaneously.

238

The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements
few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

238

The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements
few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

238

Odd Numbers in {0, . . . , 100}

First (correct) attempt:

for (unsigned int i = 0; i < 100; ++i)
{

if (i % 2 == 0)
continue;

std::cout << i << "\n";
}

239

Odd Numbers in {0, . . . , 100}

Less statements, less lines:

for (unsigned int i = 0; i < 100; ++i)
{

if (i % 2 != 0)
std::cout << i << "\n";

}

240

Odd Numbers in {0, . . . , 100}
Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement

241

Odd Numbers in {0, . . . , 100}
Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement

241

Outputting Grades

1. Functional requirement:

6→ "Excellent ... You passed!"
5, 4→ "You passed!"
3→ "Close, but ... You failed!"

2, 1→ "You failed!"
otherwise→ "Error!"

2. Moreover: Avoid duplication of text and code

243

Outputting Grades

1. Functional requirement:

6→ "Excellent ... You passed!"
5, 4→ "You passed!"
3→ "Close, but ... You failed!"

2, 1→ "You failed!"
otherwise→ "Error!"

2. Moreover: Avoid duplication of text and code

243

Outputting Grades with if Statements

int grade;
...
if (grade == 6) std::cout << "Excellent ... ";
if (4 <= grade && grade <= 6) {

std::cout << "You passed!";
} else if (1 <= grade && grade < 4) {

if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";

} else std::cout << "Error!";

Disadvantage: Control flow – and thus program behaviour – not
quite obvious

244

Outputting Grades with if Statements

int grade;
...
if (grade == 6) std::cout << "Excellent ... ";
if (4 <= grade && grade <= 6) {

std::cout << "You passed!";
} else if (1 <= grade && grade < 4) {

if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";

} else std::cout << "Error!";

Disadvantage: Control flow – and thus program behaviour – not
quite obvious

244

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Advantage: Control flow clearly recognisable

245

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Jump to matching case

Advantage: Control flow clearly recognisable

245

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Fall-through

Advantage: Control flow clearly recognisable

245

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Fall-through

Exit switch

Advantage: Control flow clearly recognisable

245

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Fall-through

Advantage: Control flow clearly recognisable

245

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Fall-through

Exit switch

Advantage: Control flow clearly recognisable

245

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}
In all other cases

Advantage: Control flow clearly recognisable

245

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Advantage: Control flow clearly recognisable
245

The switch-Statement

switch (condition)
statement

condition: Expression, convertible to integral type
statement : arbitrary statemet, in which case and default-lables
are permitted, break has a special meaning.

Use of fall-through property is controversial and should be
carefully considered (corresponding compiler warning can be
enabled)

246

The switch-Statement

switch (condition)
statement

condition: Expression, convertible to integral type
statement : arbitrary statemet, in which case and default-lables
are permitted, break has a special meaning.
Use of fall-through property is controversial and should be
carefully considered (corresponding compiler warning can be
enabled)

246

7. Floating-point Numbers I

Types float and double; Mixed Expressions and Conversion;
Holes in the Value Range

249

“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 ∗ celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82 degrees Fahrenheit.

250

“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 ∗ celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82 degrees Fahrenheit.

richtig wäre 82.4
250

“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =? ";
float celsius; // Enable fractional numbers
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 ∗ celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82.4 degrees Fahrenheit.

250

Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

251

Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

82.4 = 0000082.400

251

Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

82.4 = 0000082.400

Disadvantages

Value range is getting even smaller than for integers.

251

Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

0.0824 = 0000000.082

Disadvantages

Representability depends on the position of the decimal point.

third place truncated

251

Floating-point numbers

Observation: same number, different representations with varying
“efficiency”, e.g.

0.0824 = 0.00824 · 101 = 0.824 · 10−1
= 8.24 · 10−2 = 824 · 10−4

Number of significant digits remains constant

Floating-point number representation thus:

Fixed number of significant places (e.g. 10),
Plus position of the decimal point via exponent
Number is Mantissa× 10Exponent

252

Floating-point numbers

Observation: same number, different representations with varying
“efficiency”, e.g.

0.0824 = 0.00824 · 101 = 0.824 · 10−1
= 8.24 · 10−2 = 824 · 10−4

Number of significant digits remains constant

Floating-point number representation thus:

Fixed number of significant places (e.g. 10),
Plus position of the decimal point via exponent
Number is Mantissa× 10Exponent

252

Types float and double

are the fundamental C++ types for floating point numbers
approximate the field of real numbers (R,+,×) from mathematics

have a big value range, sufficient for many applications:

float: approx. 7 digits, exponent up to ±38
double: approx. 15 digits, exponent up to ±308

are fast on most computers (hardware support)

253

Types float and double

are the fundamental C++ types for floating point numbers
approximate the field of real numbers (R,+,×) from mathematics
have a big value range, sufficient for many applications:

float: approx. 7 digits, exponent up to ±38
double: approx. 15 digits, exponent up to ±308

are fast on most computers (hardware support)

253

Types float and double

are the fundamental C++ types for floating point numbers
approximate the field of real numbers (R,+,×) from mathematics
have a big value range, sufficient for many applications:

float: approx. 7 digits, exponent up to ±38
double: approx. 15 digits, exponent up to ±308

are fast on most computers (hardware support)

253

Arithmetic Operators

Analogous to int, but . . .

Division operator / models a “proper” division (real-valued, not
integer)
No modulo operator, i.e. no %

254

Literals
are different from integers

by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1

.23e-7f

integer part

fractional part

exponent

255

Literals
are different from integers by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1.23

e-7f

integer part

fractional part

exponent

255

Literals
are different from integers by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1

.23

e-7

f

integer part

fractional part

exponent

255

Literals
are different from integers by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

and / or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1.23e-7

f

integer part

fractional part

exponent

255

Literals
are different from integers by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

and / or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1.23e-7f

integer part

fractional part

exponent

255

Computing with float: Example

Approximating the Euler-Number

e =
∞∑
i=0

1

i!
≈ 2.71828 . . .

using the first 10 terms.

256

Computing with float: Euler Number

std::cout << "Approximating the Euler number... \n";

// values for i−th iteration, initialized for i = 0
float t = 1.0f; // term 1/i!
float e = 1.0f; // i−th approximation of e

// iteration 1, ..., n
for (unsigned int i = 1; i < 10; ++i) {

t /= i; // 1/(i−1)! −> 1/i!
e += t;
std::cout << "Value after term " << i << ": "

<< e << "\n";
}

257

Computing with float: Euler Number

Value after term 1: 2
Value after term 2: 2.5
Value after term 3: 2.66667
Value after term 4: 2.70833
Value after term 5: 2.71667
Value after term 6: 2.71806
Value after term 7: 2.71825
Value after term 8: 2.71828
Value after term 9: 2.71828

258

Mixed Expressions, Conversion

Floating point numbers are more general than integers.

In mixed expressions integers are converted to floating point
numbers.

259

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

259

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

9 * celsius / 5 + 32

259

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

9 * celsius / 5 + 32

Typ float, value 28

259

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

9 * 28.0f / 5 + 32

259

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

9 * 28.0f / 5 + 32

is converted to float : 9.0f

259

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

252.0f / 5 + 32

is converted to float : 5.0f

259

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

50.4f + 32

is converted to float : 32.0f

259

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

82.4f

259

Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

260

Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.5

input 1.0

input 0.5

260

Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.5

input 1.0

input 0.5

output 0

260

Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.1

input 1.0

input 0.1

260

Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.1

input 1.0

input 0.1

output 2.23517e-8

260

Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.1

input 1.0

input 0.1

output 2.23517e-8

W
ha

ti
s

go
in

g
on

he
re

?

260

Value range

Integer Types:

Over- and Underflow relatively frequent, but ...
the value range is contiguous (no holes): Z is “discrete”.

Floating point types:

Overflow and Underflow seldom, but ...
there are holes: R is “continuous”.

261

Value range

Integer Types:

Over- and Underflow relatively frequent, but ...
the value range is contiguous (no holes): Z is “discrete”.

Floating point types:

Overflow and Underflow seldom, but ...
there are holes: R is “continuous”.

261

	Control Statements II
	Visibility
	Lifetime
	While and Do-While
	Jump Statements
	Control Flow

	Floating-point Numbers I
	Fixed-point Numbers
	Arithmetic Operators and Literals
	Mixed Expressions
	Value Range

