6. Control Statements |

Visibility, Local Variables, While Statement, Do Statement, Jump
Statements

main block

Visibility
Declaration in a block is not visible outside of the block.

int main ()

{
{

block

int i = 2;
+

std::cout << i; // Error: undeclared name
return O;

,Blickrichtung”

Potential Scope

in the block in function body
{ int main() {
int i1 = 2; int i = 2;
} return O;
}

in control statement

for (int i = 0; i < 10; ++i) {s += i;

scope

Potential Scope

in the block

int 1 = 2;

in control statement

in function body

int main() {
int 1 = 2;

scope

return O;

for ((int i = 0; i < 10; ++i) {s += i;

scope

Scope

int main()

{
int i = 2;
for (int i = 0; 1 < 5; ++i)

std::cout << i;

std::cout << i;
return O;

Potential Scope

int main()

{
int i = 2;
for (int i = 0; 1 < 5; ++i)

std::cout << i;

std::cout << i;
return O;

Real Scope

int main()
{
int i = 2;
for (int i = 0; i < 5; ++i)
// outputs 0,1,2,3,4
std::cout << 1i;
// outputs 2
std::cout << i;
return O;

Local Variables

int main()

{

int i = 5;

for (int j = 0; j < 5; ++j) {
std::cout << ++i; // outputs
int k = 2;
std::cout << ——k; // outputs

Local Variables

int main()
{
int i = 5;
for (int j = 0; j < 5; ++j) {
std::cout << ++i; // outputs 6, 7, 8, 9, 10
int k = 2;
std::cout << ——k; // outputs 1, 1, 1, 1, 1

Local Variables

int main()

{
int i = 5;
for (int j = 0; j < 5; ++j) {
std::cout << ++i; // outputs
int k = 2;
std::cout << ——k; // outputs
}
}

Local variables (declaration in a block) have automatic storage
duration.

while Statement

while (condition)
statement

while Statement

while (condition)
statement

is equivalent to

for (; condition ;)
statement

Example: The Collatz-Sequence (n € N)

B nyg=n

n;,—1 .
- , if n;_; even)
mn; = 2 1> 1

3ni1+1 ,ifni,o0odd

The Collatz-Sequence

B nyg=n

i , if n;_; even
mn = 2
3n, ,+1 , ifn;, odd

n=5:5

, 1

208

The Collatz-Sequence

B nyg=n

i , if n;_; even
mn = 2
3n, ,+1 , ifn;, odd

n=5: 5, 16

, 1

208

The Collatz-Sequence

B nyg=n
, if n;_; even

n;—1
mn = 2
3n,_1+1 , ifn;_; odd

n=5:5, 16, 8

i>1

208

The Collatz-Sequence

B nyg=n
, if n;_; even

n;—1
mn = 2
3n,_1+1 , ifn;_; odd

n=5:5, 16, 8, 4

i>1

208

The Collatz-Sequence

B nyg=n
, if n;_; even

n;—1
mn = 2
3n,_1+1 , ifn;_; odd

n=5:5, 16, 8,4, 2

i>1

208

The Collatz-Sequence

B nyg=n
, if n;_; even

n;—1
mn = 2
3n,_1+1 , ifn;_; odd

n=5:5, 16, 8,4, 2, 1

i>1

208

The Collatz-Sequence

B nyg=n
, if n;_; even

n;—1
mn = 2
3n,_1+1 , ifn;_; odd

n=5:5,16,8,4,2,1,4

i>1

208

The Collatz-Sequence

B nyg=n
, if n;_; even

n;—1
mn = 2
3n,_1+1 , ifn;_; odd

n=5:5,16,8,4,2,1,4,2

i>1

208

The Collatz-Sequence

B nyg=n
, if n;_; even

n;—1
mn = 2
3n,_1+1 , ifn;_; odd

n=5:5,16,8,4,2,1,4,2, 1

i>1

208

The Collatz-Sequence

B nyg=n

n;,—1 .
- , if n;_; even)
mn; = 2 1> 1

3ni1+1 ,ifni,o0odd

n=5:5,16,8,4,2,1,4,2,1, ... (repetition at 1)

208

The Collatz Sequence in C++

n = 27:

82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242,
121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233,
700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336,
668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276,
638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429,
7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232,
4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488,
244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20,
10, 5, 16, 8, 4, 2, 1

do Statement

do
statement
while (expression);

do Statement

do
statement
while (expression);

is equivalent to

Statement
while (expression)
Statement

Calculator with break

Suppress irrelevant addition of 0:

int a;
int s = 0;
do {
std::cout << "next number =7 ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle
s += a;
std::cout << "sum = " << s << "\n'";
} while (a != 0)

Calculator with break

Equivalent and yet more simple:

int a;
int s = 0;
for (;;) {
std::cout << "next number =7 ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle
s += a;
std::cout << "sum = " << g << "\n";

break and continue in practice

m Advantage: Can avoid nested if-elseblocks (or complex
disjunctions)

break and continue in practice

m Advantage: Can avoid nested if-elseblocks (or complex
disjunctions)

m But they result in additional jumps (for- and backwards) and thus
potentially complicate the control flow

break and continue in practice

m Advantage: Can avoid nested if-elseblocks (or complex
disjunctions)

m But they result in additional jumps (for- and backwards) and thus
potentially complicate the control flow

m Their use is thus controversial, and should be carefully considered

Calculator with continue

Ignore negative input:

for (;;)

{
std::cout << "next number =7 ";
std::cin >> a;
if (a < 0) continue; // jump to }
if (a == 0) break;
s += a;
std::cout << "sum = " << g << "\n";

Control Flow if else

condition

statement1

statement2

if (condition)
statementi

else
statement2

Control Flow if

condition

statementi

statement2

else

false

if (condition)
statementi

else
statement2

Control Flow if else

condition

true

statement1 false

statement2

if (condition)
statementi

else
statement2

Control Flow for

for (init statement condition ; expression)
Statement

init-statement
condition
statement

expression

Control Flow for

for (init statement condition ; expression)
Statement

init-statement

condition

statement
false

expression

Control Flow for

for (init statement condition ; expression)
Statement

init-statement

condition

statement
false

expression

Control Flow break and continue in for

init-statement

condition

statement

expression

Control Flow break and continue in for

init-statement

condition

statement

. break
expression

Control Flow break and continue in for

init-statement

condition

statement

expression

Control Flow break and continue in for

init-statement

condition

statement
ontinue

expression

Control Flow: the Good old Times?

Observation

Actually, we only need if and jumps to
arbitrary places in the program (goto).

Control Flow: the Good old Times?

Observation

Actually, we only need if and jumps to
arbitrary places in the program (goto).

goto

Control Flow: the Good old Times?

Observation

Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them:
m Machine Language

goto

Control Flow: the Good old Times?

Observation

Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them: goto
m Machine Language
m Assembler (“higher” machine language)

Control Flow: the Good old Times?

Observation

Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them: goto
m Machine Language
m Assembler (“higher” machine language)

m BASIC, the first prorgamming language
for the general public (1964)

BASIC and home computers...

...allowed a whole generation of young adults to program.

Home-Computer Commodore C64 (1982)

Spaghetti-Code with goto

using the programming language BASIC:

Spaghetti-Code with goto

Output of all prime numbers
using the programming language BASIC:

true

The “right” Iteration Statement

Goals: readability, conciseness, in particular

The “right” Iteration Statement

Goals: readability, conciseness, in particular

m few statements

The “right” Iteration Statement

Goals: readability, conciseness, in particular

m few statements
m few lines of code

The “right” Iteration Statement

Goals: readability, conciseness, in particular

m few statements
m few lines of code
m simple control flow

The “right” Iteration Statement

Goals: readability, conciseness, in particular

m few statements

m few lines of code

m simple control flow
m simple expressions

The “right” Iteration Statement

m few statements

m few lines of code

m simple control flow
m simple expressions

Often not all goals can be achieved simultaneously.

Odd Numbers in {0, ..., 100}

First (correct) attempit:

for (unsigned int i = 0; i < 100; ++i)
{
if (A% 2 ==0)
continue;
std::cout << i << "\n";

Odd Numbers in {0, ..., 100}

Less statements, /ess lines:

for (unsigned int i = 0; i < 100; ++i)

{
if (4% 2 !'=0)
std::cout << i << "\n";

Odd Numbers in {0, ..., 100}

Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n'";

Odd Numbers in {0, ..., 100}

Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n'";

This is the “right” iteration statement

Outputting Grades

1. Functional requirement:

6 — "Excellent ...

5,4 — "You passed!"

3 — "Close, but ...

2,1 — "You failed!"
otherwise — "Error!"

You passed!"

You failed!"

Outputting Grades

1. Functional requirement:

6 — "Excellent ... You passed!"
5,4 — "You passed!"
3 — "Close, but ... You failed!"
2,1 — "You failed!"
otherwise — "Error!"

2. Moreover: Avoid duplication of text and code

Outputting Grades with if Statements

int grade;

if (grade == 6) std::cout << "Excellent ... ";
if (4 <= grade && grade <= 6) {
std::cout << "You passed!";
} else if (1 <= grade && grade < 4) {
if (grade == 3) std::cout << "Close, but
std::cout << "You failed!";
} else std::cout << "Error!'";

Outputting Grades with if Statements

int grade;

if (grade == 6) std::cout << "Excellent ... ";
if (4 <= grade && grade <= 6) {
std::cout << "You passed!";
} else if (1 <= grade && grade < 4) {
if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";
} else std::cout << "Error!'";

Disadvantage: Control flow — and thus program behaviour — not
quite obvious

Outputting Grades with switch Statement

switch (grade) {

case 6: std::cout << "Excellent ... ";

case 5:

case 4: std::cout << "You passed!";
break;

case 3: std::cout << "Close, but ... ";

case 2:

case 1: std::cout << "You failed!";
break;

default: std::cout << "Error!";

Outputting Grades with switch Statement

switch (grade) { ¢ Jump to matching case
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";
break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";
break;

default: std::cout << "Error!";

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case b: Fall-through
case 4: std::cout << "You passed!";
break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";
break;
default: std::cout << "Error!";

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";

case 5: Fall-through
case 4: std::cout << "You passed!";

break; ¢ Exit switch
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;

default: std::cout << "Error!";

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case b:
case 4: std::cout << "You passed!";
break;
case 3: std::cout << "Close, but ... ";
case 2: Fall-through
case 1: std::cout << "You failed!";
break;
default: std::cout << "Error!";

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";

case 5:
case 4: std::cout << "You passed!";
break;
case 3: std::cout << "Close, but ... ";
case 2: Fall-through
case 1: std::cout << "You failed!";
break; < Exit switch

default: std::cout << "Error!";

Outputting Grades with switch Statement

switch (grade) {

case 6:
case 5:
case 4:
break;
case 3:
case 2:
case 1:
break;
default:

std::cout <<

std::cout <<

std::cout <<

std::cout <<

std::cout <<

"Excellent ... ";
"You passed!";
"Close, but ... ";
"You failed!";

"Error!"; 4= |n all other cases

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";

case 5:

case 4: std::cout << "You passed!";
break;

case 3: std::cout << "Close, but ... ";

case 2:

case 1: std::cout << "You failed!";
break;

default: std::cout << "Error!";

3

Advantage: Control flow clearly recognisable

The switch-Statement

switch (condition)
statement

m condition: Expression, convertible to integral type

m statement : arbitrary statemet, in which case and default-lables
are permitted, break has a special meaning.

The switch-Statement

switch (condition)
statement

m condition: Expression, convertible to integral type

m statement : arbitrary statemet, in which case and default-lables
are permitted, break has a special meaning.

m Use of fall-through property is controversial and should be
carefully considered (corresponding compiler warning can be
enabled)

7. Floating-point Numbers |

Types float and double; Mixed Expressions and Conversion;
Holes in the Value Range

“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =7 ";

int celsius;
std::cin >> celsius;

// Computation and output

std::cout << celsius << " degrees Celsius are "
<< 9 % celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82 degrees Fahrenheit. J

“Proper” Calculation

"Temperature in degrees Celsius =7 "

int celsius;

" degrees Celsius are "
9 % celsius / 5 + 32 " degrees Fahrenheit.\\n"

28 degrees Celsius are 82 degrees Fahrenheit.

richtig wére 82.4

“Proper” Calculation

"Temperature in degrees Celsius =7 "
float celsius; // Enable fractional numbers

" degrees Celsius are "
9 % celsius / 5 + 32 " degrees Fahrenheit.\\n"

28 degrees Celsius are 82.4 degrees Fahrenheit. J

Fixed-point numbers

m fixed number of integer places (e.g. 7)
m fixed number of decimal places (e.g. 3)

Fixed-point numbers

m fixed number of integer places (e.g. 7)
m fixed number of decimal places (e.g. 3)

82.4 = 0000082.400

Fixed-point numbers
m fixed number of integer places (e.g. 7)
m fixed number of decimal places (e.g. 3)

82.4 = 0000082.400

Disadvantages

m Value range is getting even smaller than for integers.

Fixed-point numbers
m fixed number of integer places (e.g. 7)
m fixed number of decimal places (e.g. 3)
0.0824 = 0000000 .082« third place truncated

Disadvantages

m Representability depends on the position of the decimal point.

Floating-point numbers

m Observation: same number, different representations with varying
“efficiency”, e.g.
0.0824 = 0.00824 -10' =0.824-107!
—=824-1072 =824-10"*

Number of significant digits remains constant

Floating-point numbers

m Observation: same number, different representations with varying
“efficiency”, e.g.
0.0824 = 0.00824 -10' =0.824-107!
—=824-1072 =824-10"*

Number of significant digits remains constant

m Floating-point number representation thus:

m Fixed number of significant places (e.g. 10),
m Plus position of the decimal point via exponent

m Numberis Mantissa x 10Exponent

Types float and double

m are the fundamental C++ types for floating point numbers
m approximate the field of real numbers (R, +, x) from mathematics

Types float and double

m are the fundamental C++ types for floating point numbers
m approximate the field of real numbers (R, +, x) from mathematics
m have a big value range, sufficient for many applications:

m float: approx. 7 digits, exponent up to £38
m double: approx. 15 digits, exponent up to +308

Types float and double

m are the fundamental C++ types for floating point numbers

m approximate the field of real numbers (R, +, x) from mathematics
m have a big value range, sufficient for many applications:

m float: approx. 7 digits, exponent up to £38
m double: approx. 15 digits, exponent up to +308

m are fast on most computers (hardware support)

Arithmetic Operators

Analogous to int, but ...

m Division operator / models a “proper” division (real-valued, not
integer)
m No modulo operator, i.e. no %

Literals

are different from integers

1

/\J

integer part

Literals

are different from integers by providing

m decimal point

1.0 : type double, value 1

1.23

integer part

=

fractional part

Literals

are different from integers by providing

m decimal point 1 e-7

1.0 : type double, value 1 /\] k/\

I 1
integer part exponent

H Or exponent.

1e3 : type double, value 1000

Literals

are different from integers by providing

m decimal point

1.0 : type double, value 1

1
—J

23e-7

L

)

m and / or exponent.

1e3 : type double, value 1000

I
integer part

I
j exponent

fractional part

1.23e-7 : type double, value 1.23 - 10~

Literals

are different from integers by providing

m decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

integer part

I
ﬁ exponent

m and / or exponent.

1e3 : type double, value 1000

fractional part

1.23e-7 : type double, value 1.23 - 10~

1.23e-7f : type float, value 1.23 - 10~

Computing with f1oat: Example

Approximating the Euler-Number

o

Zl ~ 2.71828 . ..
1=0

using the first 10 terms.

Computing with £1oat: Euler Number

std::cout << "Approximating the Euler number... \n";

// values for i—th iteration, initialized for i
float t = 1.0f; // term 1/i!
float e = 1.0f; // i—th approximation of e

// iteration 1, ..., n
for (unsigned int i = 1; i < 10; ++i) {
t /= 1i; // 1/@GE—-1)' —> 1/i!
e += t;
std::cout << "Value after term " << i << ": "
<< e << n\nu;

=0

Computing with £1oat: Euler Number

Value after term 1: 2

Value after term 2: 2.5
Value after term 3: 2.66667
Value after term 4: 2.70833
Value after term 5: 2.71667
Value after term 6: 2.71806
Value after term 7: 2.71825
Value after term 8: 2.71828
Value after term 9: 2.71828

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.

m In mixed expressions integers are converted to floating point
numbers.

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.

m In mixed expressions integers are converted to floating point
numbers.

9 * celsius / 5 + 32

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.

m In mixed expressions integers are converted to floating point
numbers.

9 * celsius / 5 + 32

|

Typ float, value 28

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.

m In mixed expressions integers are converted to floating point
numbers.

9 x 28.0f / 5 + 32

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.

m In mixed expressions integers are converted to floating point
numbers.

9 x 28.0f / 5 + 32

!

is converted to float : 9.0f

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.

m In mixed expressions integers are converted to floating point
numbers.

252.0f / 5 + 32

T

is converted to float : 5.0f

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.

m In mixed expressions integers are converted to floating point
numbers.

50.4f + 32

!

is converted to float : 32.0f

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.

m In mixed expressions integers are converted to floating point
numbers.

82.4f

Holes in the value range

float ni;
std::cout << "First number =7 ";
std::cin >> ni;

float n2;
std::cout << "Second number =7 ";
std::cin >> n2;

float d;
std::cout << "Their difference =7 ";
std::cin >> d;

std::cout << "Computed difference — input difference = "
<< nl — n2 — d << "\n";

Holes in the value range

float ni;
std::cout << "First number =7 "; input 1.5
std::cin >> ni;

float n2;
std::cout << "Second number =7 "; input 1.0
std::cin >> n2;

float d;
std::cout << "Their difference =7 "; |input 0.5
std::cin >> d;

std::cout << "Computed difference — input difference = "
<< nl — n2 — d << "\n";

Holes in the value range

float ni;
std::cout << "First number =7 "; input 1.5
std::cin >> ni;

float n2;
std::cout << "Second number =7 "; input 1.0
std::cin >> n2;

float d;
std::cout << "Their difference =7 "; |input 0.5
std::cin >> d;

std::cout << "Computed difference — input difference = "
<< nl — n2 — d << "\n"; output 0

Holes in the value range

float ni;
std::cout << "First number =7 "; input 1.1
std::cin >> ni;

float n2;
std::cout << "Second number =7 "; input 1.0
std::cin >> n2;

float d;
std::cout << "Their difference =7 "; |input 0.1
std::cin >> d;

std::cout << "Computed difference — input difference = "
<< nl — n2 — d << "\n";

Holes in the value range

float ni;
std::cout << "First number =7 "; input 1.1
std::cin >> ni;

float n2;
std::cout << "Second number =7 "; input 1.0
std::cin >> n2;

float d;
std::cout << "Their difference =7 "; |input 0.1
std::cin >> d;

std::cout << "Computed difference — input difference = "
<< nl — n2 — 4 << "\n"; output 2.23517e-8

Holes in the value range

float ni;
std::cout << "First number =7 "; input 1.1
std::cin >> ni;

float n2;
std::cout << "Second number =7 "; input 1.0
std::cin >> n2;

float d;

std::cout << "Their difference =7 "; |input 0.1

std::cin >> d;

std::cout << "Computed difference — input difference = "
<< nl — n2 — 4 << "\n"; output 2.23517e-8

What is going on here?

Value range

Integer Types:

m Over- and Underflow relatively frequent, but ...
m the value range is contiguous (no holes): Z is “discrete”.

Value range

Integer Types:

m Over- and Underflow relatively frequent, but ...
m the value range is contiguous (no holes): Z is “discrete”.

Floating point types:

m Overflow and Underflow seldom, but ...
m there are holes: R is “continuous”.

	Control Statements II
	Visibility
	Lifetime
	While and Do-While
	Jump Statements
	Control Flow

	Floating-point Numbers I
	Fixed-point Numbers
	Arithmetic Operators and Literals
	Mixed Expressions
	Value Range

