
2. Integers

Evaluation of Arithmetic Expressions, Associativity and Precedence,
Arithmetic Operators, Domain of Types int, unsigned int
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Celsius to Fahrenheit
// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.
#include <iostream>

int main() {
// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
return 0;

}

15 degrees Celsius are 59 degrees Fahrenheit
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9 * celsius / 5 + 32

Arithmetic expression,
contains three literals, a variable, three operator symbols

How to put the expression in parentheses?
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Precedence

Multiplication/Division before Addition/Subtraction
9 * celsius / 5 + 32

bedeutet

(9 * celsius / 5) + 32

Rule 1: precedence
Multiplicative operators (*, /, %) have a higher precedence ("bind
more strongly") than additive operators (+, -)
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Associativity

From left to right
9 * celsius / 5 + 32

bedeutet

((9 * celsius) / 5) + 32

Rule 2: Associativity
Arithmetic operators (*, /, %, +, -) are left associative: operators of
same precedence evaluate from left to right
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Arity

Rule 3: Arity
Unary operators +, - first, then binary operators +, -.

-3 - 4

means

(-3) - 4
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Parentheses

Any expression can be put in parentheses by means of

associativities

precedences

arities (number of operands)

of the operands in an unambiguous way (Details in the lecture
notes).
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Expression Trees
Parentheses yield the expression tree

(((9 * celsius) / 5) + 32)

+

/

*

9 celsius 5 32
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Evaluation Order
"From top to bottom" in the expression tree

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32
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Evaluation Order
Order is not determined uniquely:

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32
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Expression Trees – Notation
Common notation: root on top

9 * celsius / 5 + 32

+

/

*

9 celsius

5

32
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Evaluation Order – more formally

Valid order: any node is evaluated after its children

E

K1 K2

In C++, the valid order to
be used is not defined.

"Good expression": any valid evaluation order leads to the same result.
Example for a “bad expression”: a*(a=2)
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Evaluation order

Guideline
Avoid modifying variables that are used in the same expression
more than once.
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Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right

Negation - 1 16 right

Multiplication * 2 14 left

Division / 2 14 left

Modulo % 2 14 links

Addition + 2 13 left

Subtraction - 2 13 left

All operators: [R-value ×] R-value→ R-value
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Interlude: Assignment expression – in more detail

Already known: a = b means
Assignment of b (R-value) to a (L-value).
Returns: L-value
What does a = b = c mean?
Answer: assignment is right-associative

a = b = c ⇐⇒ a = (b = c)

Example multiple assignment:
a = b = 0 =⇒ b=0; a=0
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Division

Operator / implements integer division

5 / 2 has value 2
In fahrenheit.cpp

9 * celsius / 5 + 32
15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . . but not in C++!

9 / 5 * celsius + 32
15 degrees Celsius are 47 degrees Fahrenheit
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Loss of Precision

Guideline
Watch out for potential loss of precision
Postpone operations with potential loss of precision to avoid “error
escalation”
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Division and Modulo

Modulo-operator computes the rest of the integer division

5 / 2 has value 2, 5 % 2 has value 1.

It holds that:

(a / b) * b + a % b has the value of a.
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Increment and decrement

Increment / Decrement a number by one is a frequent operation
works like this for an L-value:

expr = expr + 1.

Disadvantages

relatively long
expr is evaluated twice

Later: L-valued expressions whose evaluation is “expensive”
expr could have an effect (but should not, cf. guideline)
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In-/Decrement Operators
Post-Increment

expr++

Value of expr is increased by one, the old value of expr is returned (as R-value)

Pre-increment

++expr

Value of expr is increased by one, the new value of expr is returned (as L-value)

Post-Dekrement

expr--

Value of expr is decreased by one, the old value of expr is returned (as R-value)

Prä-Dekrement

--expr

Value of expr is increased by one, the new value of expr is returned (as L-value)
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In-/decrement Operators

use arity prec assoz L-/R-value

Post-increment expr++ 1 17 left L-value→ R-value

Pre-increment ++expr 1 16 right L-value→ L-value

Post-decrement expr-- 1 17 left L-value→ R-value

Pre-decrement --expr 1 16 right L-value→ L-value
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In-/Decrement Operators

Example
int a = 7;
std::cout << ++a << "\n"; // 8
std::cout << a++ << "\n"; // 8
std::cout << a << "\n"; // 9
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In-/Decrement Operators
Is the expression

++expr;← we favour this

equivalent to

expr++;?

Yes, but

Pre-increment can be more efficient (old value does not need to
be saved)

Post In-/Decrement are the only left-associative unary operators
(not very intuitive)
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C++ vs. ++C

Strictly speaking our language should be named ++C because

it is an advancement of the language C
while C++ returns the old C.
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Arithmetic Assignments

a += b
⇔

a = a + b

analogously for -, *, / and %
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Arithmetic Assignments

Gebrauch Bedeutung

+= expr1 += expr2 expr1 = expr1 + expr2

-= expr1 -= expr2 expr1 = expr1 - expr2

*= expr1 *= expr2 expr1 = expr1 * expr2

/= expr1 /= expr2 expr1 = expr1 / expr2

%= expr1 %= expr2 expr1 = expr1 % expr2

Arithmetic expressions evaluate expr1 only once.
Assignments have precedence 4 and are right-associative.
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Binary Number Representations

Binary representation (Bits from {0, 1})

bnbn−1 . . . b1b0

corresponds to the number bn · 2n + · · ·+ b1 · 2 + b0

Example: 101011 corresponds to 43.

Most Significant Bit (MSB)

Least Significant Bit (LSB)
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Binary Numbers: Numbers of the Computer?

Truth: Computers calculate using binary numbers.
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Binary Numbers: Numbers of the Computer?

Stereotype: computers are talking 0/1 gibberish
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Computing Tricks

Estimate the orders of magnitude of powers of two.2:

210 = 1024 = 1Ki ≈ 103.
220 = 1Mi ≈ 106,
230 = 1Gi ≈ 109,
232 = 4 · (1024)3 = 4Gi.
264 = 16Ei ≈ 16 · 1018.

2Decimal vs. binary units: MB - Megabyte vs. MiB - Megabibyte (etc.)
kilo (K, Ki) – mega (M, Mi) – giga (G, Gi) – tera(T, Ti) – peta(P, Pi) – exa (E, Ei)
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Hexadecimal Numbers

Numbers with base 16

hnhn−1 . . . h1h0

corresponds to the number

hn · 16n + · · ·+ h1 · 16 + h0.

notation in C++: prefix 0x

Example: 0xff corresponds to 255.

Hex Nibbles

hex bin dec
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
a 1010 10
b 1011 11
c 1100 12
d 1101 13
e 1110 14
f 1111 15
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Why Hexadecimal Numbers?

A Hex-Nibble requires exactly 4 bits. Numbers 1, 2, 4 and 8
represent bits 0, 1, 2 and 3.
“compact representation of binary numbers”

32-bit numbers consist of eight hex-nibbles: 0x00000000 -- 0xffffffff .
0x400 = 1Ki = 1′024.
0x100000 = 1Mi = 1′048′576.
0x40000000 = 1Gi = 1′073.741, 824.
0x80000000: highest bit of a 32-bit number is set
0xffffffff: all bits of a 32-bit number are set
“0x8a20aaf0 is an address in the upper 2G of the 32-bit address space”
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Why Hexadecimal Numbers?
“For programmers and technicians” (Excerpt of a user manual of the
chess computers Mephisto II, 1981)
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Example: Hex-Colors

#00FF00
r g b
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Why Hexadecimal Numbers?
The NZZ could have saved a lot of space ...
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Domain of Type int

// Output the smallest and the largest value of type int.
#include <iostream>
#include <limits>

int main() {
std::cout << "Minimum int value is "

<< std::numeric_limits<int>::min() << ".\n"
<< "Maximum int value is "
<< std::numeric_limits<int>::max() << ".\n";

return 0;
} Minimum int value is -2147483648.

Maximum int value is 2147483647.
Where do these numbers come from?
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Domain of the Type int

Representation with B bits. Domain comprises the 2B integers:

{−2B−1,−2B−1 + 1, . . . ,−1, 0, 1, . . . , 2B−1 − 2, 2B−1 − 1}

Where does this partitioning come from?

On most platforms B = 32

For the type int C++ guarantees B ≥ 16

Background: Section 2.2.8 (Binary Representation) in the lecture
notes.
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Over- and Underflow

Arithmetic operations (+,-,*) can lead to numbers outside the
valid domain.
Results can be incorrect!

power8.cpp: 158 = −1732076671

power20.cpp: 320 = −808182895

There is no error message!
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The Type unsigned int

Domain
{0, 1, . . . , 2B − 1}

All arithmetic operations exist also for unsigned int.
Literals: 1u, 17u . . .
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Mixed Expressions

Operators can have operands of different type (e.g. int and
unsigned int).

17 + 17u
Such mixed expressions are of the “more general” type
unsigned int.
int-operands are converted to unsigned int.
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Conversion

int Value Sign unsigned int Value

x ≥ 0 x

x < 0 x + 2B
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Conversion “reversed”

The declaration

int a = 3u;

converts 3u to int.

The value is preserved because it is in the domain of int; otherwise
the result depends on the implementation.
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Signed Number Representation

(Hopefully) clear by now: binary number representation without
sign, e.g.

[b31b30 . . . b0]u =̂ b31 · 231 + b30 · 230 + · · ·+ b0

Obviously required: use a bit for the sign.
Looking for a consistent solution

The representation with sign should coincide with the unsigned solution as
much as possible. Positive numbers should arithmetically be treated equal in
both systems.
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Computing with Binary Numbers (4 digits)
Simple Addition

2 0010

+3 +0011

5 0101

Simple Subtraction

5 0101

−3 −0011

2 0010
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Computing with Binary Numbers (4 digits)
Addition with Overflow

7 0111

+9 +1001

16 (1)0000

Negative Numbers?

5 0101

+(−5) ????

0 (1)0000
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Computing with Binary Numbers (4 digits)
Simpler -1

1 0001

+(−1) 1111

0 (1)0000

Utilize this:

3 0011

+? +????

−1 1111
137

Computing with Binary Numbers (4 digits)
Invert!

3 0011

+(−4) +1100

−1 1111=̂ 2B − 1

a a

+(−a− 1) ā

−1 1111=̂ 2B − 1
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Computing with Binary Numbers (4 digits)

Negation: inversion and addition of 1

−a =̂ ā + 1

Wrap around semantics (calculating modulo 2B

−a =̂ 2B − a
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Why this works

Modulo arithmetics: Compute on a circle3

11 ≡ 23 ≡ −1 ≡
. . . mod 12

+
4 ≡ 16 ≡ . . .

mod 12

=
3 ≡ 15 ≡ . . .

mod 12

3The arithmetics also work with decimal numbers (and for multiplication).
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Negative Numbers (3 Digits)

a −a
0 000 000 0
1 001 111 -1
2 010 110 -2
3 011 101 -3
4 100 100 -4
5 101
6 110
7 111

The most significant bit decides about the sign and it contributes to
the value.
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Two’s Complement

Negation by bitwise negation and addition of 1

−2 = −[0010] = [1101] + [0001] = [1110]

Arithmetics of addition and subtraction identical to unsigned arithmetics

3− 2 = 3 + (−2) = [0011] + [1110] = [0001]

Intuitive “wrap-around” conversion of negative numbers.

−n→ 2B − n

Domain: −2B−1 . . . 2B−1 − 1
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