
2. Integers

Evaluation of Arithmetic Expressions, Associativity and Precedence,
Arithmetic Operators, Domain of Types int, unsigned int

92

Celsius to Fahrenheit
// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.
#include <iostream>

int main() {
// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
return 0;

}

15 degrees Celsius are 59 degrees Fahrenheit

93

9 * celsius / 5 + 32

Arithmetic expression,
contains three literals, a variable, three operator symbols

How to put the expression in parentheses?

94

Precedence

Multiplication/Division before Addition/Subtraction
9 * celsius / 5 + 32

bedeutet

(9 * celsius / 5) + 32

Rule 1: precedence
Multiplicative operators (*, /, %) have a higher precedence ("bind
more strongly") than additive operators (+, -)

95



Associativity

From left to right
9 * celsius / 5 + 32

bedeutet

((9 * celsius) / 5) + 32

Rule 2: Associativity
Arithmetic operators (*, /, %, +, -) are left associative: operators of
same precedence evaluate from left to right

96

Arity

Rule 3: Arity
Unary operators +, - first, then binary operators +, -.

-3 - 4

means

(-3) - 4

97

Parentheses

Any expression can be put in parentheses by means of

associativities

precedences

arities (number of operands)

of the operands in an unambiguous way (Details in the lecture
notes).

98

Expression Trees
Parentheses yield the expression tree

(((9 * celsius) / 5) + 32)

+

/

*

9 celsius 5 32

99



Evaluation Order
"From top to bottom" in the expression tree

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

100

Evaluation Order
Order is not determined uniquely:

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

101

Expression Trees – Notation
Common notation: root on top

9 * celsius / 5 + 32

+

/

*

9 celsius

5

32

102

Evaluation Order – more formally

Valid order: any node is evaluated after its children

E

K1 K2

In C++, the valid order to
be used is not defined.

"Good expression": any valid evaluation order leads to the same result.
Example for a “bad expression”: a*(a=2)

103



Evaluation order

Guideline
Avoid modifying variables that are used in the same expression
more than once.

104

Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right

Negation - 1 16 right

Multiplication * 2 14 left

Division / 2 14 left

Modulo % 2 14 links

Addition + 2 13 left

Subtraction - 2 13 left

All operators: [R-value ×] R-value→ R-value

105

Interlude: Assignment expression – in more detail

Already known: a = b means
Assignment of b (R-value) to a (L-value).
Returns: L-value
What does a = b = c mean?
Answer: assignment is right-associative

a = b = c ⇐⇒ a = (b = c)

Example multiple assignment:
a = b = 0 =⇒ b=0; a=0

106

Division

Operator / implements integer division

5 / 2 has value 2
In fahrenheit.cpp

9 * celsius / 5 + 32
15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . . but not in C++!

9 / 5 * celsius + 32
15 degrees Celsius are 47 degrees Fahrenheit

107



Loss of Precision

Guideline
Watch out for potential loss of precision
Postpone operations with potential loss of precision to avoid “error
escalation”

108

Division and Modulo

Modulo-operator computes the rest of the integer division

5 / 2 has value 2, 5 % 2 has value 1.

It holds that:

(a / b) * b + a % b has the value of a.

109

Increment and decrement

Increment / Decrement a number by one is a frequent operation
works like this for an L-value:

expr = expr + 1.

Disadvantages

relatively long
expr is evaluated twice

Later: L-valued expressions whose evaluation is “expensive”
expr could have an effect (but should not, cf. guideline)

110

In-/Decrement Operators
Post-Increment

expr++

Value of expr is increased by one, the old value of expr is returned (as R-value)

Pre-increment

++expr

Value of expr is increased by one, the new value of expr is returned (as L-value)

Post-Dekrement

expr--

Value of expr is decreased by one, the old value of expr is returned (as R-value)

Prä-Dekrement

--expr

Value of expr is increased by one, the new value of expr is returned (as L-value)

111



In-/decrement Operators

use arity prec assoz L-/R-value

Post-increment expr++ 1 17 left L-value→ R-value

Pre-increment ++expr 1 16 right L-value→ L-value

Post-decrement expr-- 1 17 left L-value→ R-value

Pre-decrement --expr 1 16 right L-value→ L-value

112

In-/Decrement Operators

Example
int a = 7;
std::cout << ++a << "\n"; // 8
std::cout << a++ << "\n"; // 8
std::cout << a << "\n"; // 9

113

In-/Decrement Operators
Is the expression

++expr;← we favour this

equivalent to

expr++;?

Yes, but

Pre-increment can be more efficient (old value does not need to
be saved)

Post In-/Decrement are the only left-associative unary operators
(not very intuitive)

114

C++ vs. ++C

Strictly speaking our language should be named ++C because

it is an advancement of the language C
while C++ returns the old C.

115



Arithmetic Assignments

a += b
⇔

a = a + b

analogously for -, *, / and %

116

Arithmetic Assignments

Gebrauch Bedeutung

+= expr1 += expr2 expr1 = expr1 + expr2

-= expr1 -= expr2 expr1 = expr1 - expr2

*= expr1 *= expr2 expr1 = expr1 * expr2

/= expr1 /= expr2 expr1 = expr1 / expr2

%= expr1 %= expr2 expr1 = expr1 % expr2

Arithmetic expressions evaluate expr1 only once.
Assignments have precedence 4 and are right-associative.

117

Binary Number Representations

Binary representation (Bits from {0, 1})

bnbn−1 . . . b1b0

corresponds to the number bn · 2n + · · ·+ b1 · 2 + b0

Example: 101011 corresponds to 43.

Most Significant Bit (MSB)

Least Significant Bit (LSB)

118

Binary Numbers: Numbers of the Computer?

Truth: Computers calculate using binary numbers.

119



Binary Numbers: Numbers of the Computer?

Stereotype: computers are talking 0/1 gibberish

120

Computing Tricks

Estimate the orders of magnitude of powers of two.2:

210 = 1024 = 1Ki ≈ 103.
220 = 1Mi ≈ 106,
230 = 1Gi ≈ 109,
232 = 4 · (1024)3 = 4Gi.
264 = 16Ei ≈ 16 · 1018.

2Decimal vs. binary units: MB - Megabyte vs. MiB - Megabibyte (etc.)
kilo (K, Ki) – mega (M, Mi) – giga (G, Gi) – tera(T, Ti) – peta(P, Pi) – exa (E, Ei)

121

Hexadecimal Numbers

Numbers with base 16

hnhn−1 . . . h1h0

corresponds to the number

hn · 16n + · · ·+ h1 · 16 + h0.

notation in C++: prefix 0x

Example: 0xff corresponds to 255.

Hex Nibbles

hex bin dec
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
a 1010 10
b 1011 11
c 1100 12
d 1101 13
e 1110 14
f 1111 15

122

Why Hexadecimal Numbers?

A Hex-Nibble requires exactly 4 bits. Numbers 1, 2, 4 and 8
represent bits 0, 1, 2 and 3.
“compact representation of binary numbers”

32-bit numbers consist of eight hex-nibbles: 0x00000000 -- 0xffffffff .
0x400 = 1Ki = 1′024.
0x100000 = 1Mi = 1′048′576.
0x40000000 = 1Gi = 1′073.741, 824.
0x80000000: highest bit of a 32-bit number is set
0xffffffff: all bits of a 32-bit number are set
“0x8a20aaf0 is an address in the upper 2G of the 32-bit address space”

123



Why Hexadecimal Numbers?
“For programmers and technicians” (Excerpt of a user manual of the
chess computers Mephisto II, 1981)

ht
tp

:/
/w

ww
.z

an
ch

et
ta

.n
et

/d
ef

au
lt

.a
sp

x?
Ca

te
go

ri
e=

EC
HI

QU
IE

RS
&P

ag
e=

do
cu

me
nt

at
io

ns

124

Example: Hex-Colors

#00FF00
r g b

125

Why Hexadecimal Numbers?
The NZZ could have saved a lot of space ...

126

Domain of Type int

// Output the smallest and the largest value of type int.
#include <iostream>
#include <limits>

int main() {
std::cout << "Minimum int value is "

<< std::numeric_limits<int>::min() << ".\n"
<< "Maximum int value is "
<< std::numeric_limits<int>::max() << ".\n";

return 0;
} Minimum int value is -2147483648.

Maximum int value is 2147483647.
Where do these numbers come from?

127



Domain of the Type int

Representation with B bits. Domain comprises the 2B integers:

{−2B−1,−2B−1 + 1, . . . ,−1, 0, 1, . . . , 2B−1 − 2, 2B−1 − 1}

Where does this partitioning come from?

On most platforms B = 32

For the type int C++ guarantees B ≥ 16

Background: Section 2.2.8 (Binary Representation) in the lecture
notes.

128

Over- and Underflow

Arithmetic operations (+,-,*) can lead to numbers outside the
valid domain.
Results can be incorrect!

power8.cpp: 158 = −1732076671

power20.cpp: 320 = −808182895

There is no error message!

129

The Type unsigned int

Domain
{0, 1, . . . , 2B − 1}

All arithmetic operations exist also for unsigned int.
Literals: 1u, 17u . . .

130

Mixed Expressions

Operators can have operands of different type (e.g. int and
unsigned int).

17 + 17u
Such mixed expressions are of the “more general” type
unsigned int.
int-operands are converted to unsigned int.

131



Conversion

int Value Sign unsigned int Value

x ≥ 0 x

x < 0 x + 2B

132

Conversion “reversed”

The declaration

int a = 3u;

converts 3u to int.

The value is preserved because it is in the domain of int; otherwise
the result depends on the implementation.

133

Signed Number Representation

(Hopefully) clear by now: binary number representation without
sign, e.g.

[b31b30 . . . b0]u =̂ b31 · 231 + b30 · 230 + · · ·+ b0

Obviously required: use a bit for the sign.
Looking for a consistent solution

The representation with sign should coincide with the unsigned solution as
much as possible. Positive numbers should arithmetically be treated equal in
both systems.

134

Computing with Binary Numbers (4 digits)
Simple Addition

2 0010

+3 +0011

5 0101

Simple Subtraction

5 0101

−3 −0011

2 0010
135



Computing with Binary Numbers (4 digits)
Addition with Overflow

7 0111

+9 +1001

16 (1)0000

Negative Numbers?

5 0101

+(−5) ????

0 (1)0000
136

Computing with Binary Numbers (4 digits)
Simpler -1

1 0001

+(−1) 1111

0 (1)0000

Utilize this:

3 0011

+? +????

−1 1111
137

Computing with Binary Numbers (4 digits)
Invert!

3 0011

+(−4) +1100

−1 1111=̂ 2B − 1

a a

+(−a− 1) ā

−1 1111=̂ 2B − 1
138

Computing with Binary Numbers (4 digits)

Negation: inversion and addition of 1

−a =̂ ā + 1

Wrap around semantics (calculating modulo 2B

−a =̂ 2B − a

139



Why this works

Modulo arithmetics: Compute on a circle3

11 ≡ 23 ≡ −1 ≡
. . . mod 12

+
4 ≡ 16 ≡ . . .

mod 12

=
3 ≡ 15 ≡ . . .

mod 12

3The arithmetics also work with decimal numbers (and for multiplication).
140

Negative Numbers (3 Digits)

a −a
0 000 000 0
1 001 111 -1
2 010 110 -2
3 011 101 -3
4 100 100 -4
5 101
6 110
7 111

The most significant bit decides about the sign and it contributes to
the value.

141

Two’s Complement

Negation by bitwise negation and addition of 1

−2 = −[0010] = [1101] + [0001] = [1110]

Arithmetics of addition and subtraction identical to unsigned arithmetics

3− 2 = 3 + (−2) = [0011] + [1110] = [0001]

Intuitive “wrap-around” conversion of negative numbers.

−n→ 2B − n

Domain: −2B−1 . . . 2B−1 − 1

142


