17. Classes

Encapsulation, Classes, Member Functions, Constructors

556



A new Type with Functionality...

struct rational {

int n;

int d; // INV: d '= 0
};

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;

result.n = a.n * b.d + a.d * b.n;

result.d = a.d * b.d;

return result;

557



...Should be in a Library!

rational .h:

m Definition of a struct rational
m Function declarations

rational.cpp:

m arithmetic operators (operator+, operator+=, ...)
m relational operators (operator==, operator>, ...)
m in/output (operator >>, operator <<, ...)



Thought Experiment

The three core missions of ETH:

B research



Thought Experiment

The three core missions of ETH:

B research
m education



Thought Experiment

The three core missions of ETH:

m research
m education
m technology transfer



Thought Experiment

The three core missions of ETH:

m research
m education
m technology transfer

We found a startup: RAT PACK®!



Thought Experiment

The three core missions of ETH:

m research
m education
m technology transfer

We found a startup: RAT PACK®!

m Selling the rational library to customers
m ongoing development according to customer’s demands



The Customer is Happy

“Buying RAT PACK® has been a
game-changing move to put us on the
forefront of cutting-edge technology in so-
cial media engineering.”

B. Labla, CEO



The Customer is Happy

...and programs busily using rational.



The Customer is Happy

...and programs busily using rational.

m output as double-value (3 — 0.6)



The Customer is Happy

...and programs busily using rational.

m output as double-value (3 — 0.6)

// POST: double approximation of r
double to_double (rational r)
{

double result = r.n;

return result / r.d;

}



The Customer Wants More

“Can we have rational numbers with an extended value range?”



The Customer Wants More

“Can we have rational numbers with an extended value range?”

m Sure, no problem, e.g.:

strist ratiomnal

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

561



New Version of RAT PACK®

&

¥ |t sucks, nothing works any more!




New Version of RAT PACK®

o

g |t sucks, nothing works any more!
m What is the problem?




New Version of RAT PACK®




New Version of RAT PACK®

&

Q%"@Z@ —% Is sometimes 0.6, this cannot be true!

m That is your fault. Your conversion to double
is the problem, our library is correct.




New Version of RAT PACK®

&

=

/@
s

(%;' Up to now it worked, therefore the new \ C
version is to blame! /



Liability Discussion

// POST: double approximation of r
double to_double (ratiomal r){
double result = r.n;
return result / r.d;

3



Liability Discussion

// POST: double approximation of r
double to_double (ratiomal r){
double result = r.n;
return result / r.d;

}

correct using. ..

struct rational {
int n;
int d;

};



Liability Discussion

// POST: double approximation of r
double to_double (rational r){

}

double result

r.n;

return result / r.d;

correct using. ..

struct rational {

};

int n;
int d;

... not correct using

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};



Liability Discussion

// POST: double approximation of r

double to_double (ratiomal r){
double result = r.n;
return result / r.d;

3

r.is_positive and result.is_positive
do not appear.



We are to Blame!!

m Customer sees and uses our representation of rational numbers
(initially r.n, r.d)

564



We are to Blame!!

m Customer sees and uses our representation of rational numbers
(initially r.n, r.d)

m When we change it (r.n, r.d, r.is_positive), the customer’s
programs do not work anymore.

564



We are to Blame!!

m Customer sees and uses our representation of rational numbers
(initially r.n, r.d)

m When we change it (r.n, r.d, r.is_positive), the customer’s
programs do not work anymore.

m No customer is willing to adapt the programs when the version of
the library changes.

564



We are to Blame!!

m Customer sees and uses our representation of rational numbers
(initially r.n, r.d)

m When we change it (r.n, r.d, r.is_positive), the customer’s
programs do not work anymore.

m No customer is willing to adapt the programs when the version of
the library changes.

= RAT PACK® is history. ..



Idea of Encapsulation (Information Hiding)

m A type is uniquely defined by its value range and its functionality



Idea of Encapsulation (Information Hiding)

m A type is uniquely defined by its value range and its functionality
m The representation should not be visible.

565



Idea of Encapsulation (Information Hiding)

m A type is uniquely defined by its value range and its functionality
m The representation should not be visible.

m = The customer is not provided with representation but with
functionality!



Idea of Encapsulation (Information Hiding)

m A type is uniquely defined by its value range and its functionality
m The representation should not be visible.

m = The customer is not provided with representation but with
functionality!

T

str.length(),
v.push_back(1),...



Classes

m provide the concept for encapsulation in C++



Classes

m provide the concept for encapsulation in C++
m are a variant of structs



Classes

m provide the concept for encapsulation in C++
m are a variant of structs
m are provided in many object oriented programming languages



Encapsulation: public/private

Cli;;—;;;;;;;EETff\\\\‘_is used instead of struct if anything at all

. shall be “hidden”
int n;

int d; // INV: 4 !'= 0
};

567



Encapsulation: public/private

Cli;;—;;;;;;;EETff\\\\‘_is used instead of struct if anything at all

] shall be “hidden”
int n;

int d; // INV: 4 !'= 0
};

only difference

m struct: by default nothing is hidden
m class : by default everything is hidden

567



Encapsulation: public/private

class rational {

int n;

int d; // INV: 4 !'= 0
};

Application Code

rational r;

r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private



Encapsulation: public/private

Good news: r.d = 0 cannot happen

i — .
class rational { any more by accident.

int n;
int d; // INV: 4 !'= 0
};

Application Code

rational r;

r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private



Encapsulation: public/private

Good news: r.d = 0 cannot happen

i — .
class rational { any more by accident.

int n;

i . . | =
int d; // INV: d !=0 Bad news: the customer cannot do any-
i thing any more ...

Application Code

rational r;

r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private



Encapsulation: public/private

Good news: r.d = 0 cannot happen

i — .
class rational { any more by accident.

int n;

i . . | =

int d; // INV: d !=0 Bad news: the customer cannot do any-
i thing any more ...
Application Code ...and we can't, either.

. (no operator+,...)
rational r;

r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private



Member Functions: Declaration

class rational {
public:
// POST: return value is the numerator of this instance
int numerator () const {
return n;

}

// POST: return value is the denominator of this instance
int denominator () const {
return d;
}
private:
int n;
int d; // INV: d!= 0
i



public area

Member Functions: Declaration

class rational {
public:

(// POST: return value is the numerator of this instance
int numerator () const {

return n;
}
// POST: return value is the denominator of this instance
int denominator () const {

return d;

N

\
private:

int n;

int d; // INV: d!= 0
i



public area

Member Functions: Declaration

class rational {
public:
(// POST: return value is the numerator of this instance

int numerator () const member function
return n;

}
< // POST: return value is the denominator of this instance
int denominator () const {
return d;
\
private:
int n;

int d; // INV: d!= 0
};



Member Functions: Declaration

class rational {
public:
(// POST: return value is the numerator of this instance

int numerator () const member function
return n;

©
o
© < }
O . .
= // POST: return value is the denominator of this instance
=} . .
int denominator () const { .
o member functions have ac-
return d; < .
K} cess to private data
private:

int n;
int d; // INV: d!= 0
};



Member Functions: Call

// Definition des Typs
class rational {

};

// Variable des Typs
rational r; member access

int n = r.numerator(); // Zaehler
int d = r.denominator(); // Nenner



Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const

{

return n;

}



Member Functions: Definition ???

// POST: returns numerator of this instance
int numerator () const

{

return n;

}



Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const

{

return n; r.numerator ()

}

m A member function is called for an expression of the class.



Member Functions: Definition

// POST: returns numerator of this instance

int numerator () const
{

return n; r.numerator ()
}

m A member function is called for an fession of the class. in the
function, this- Is implicit argument.



Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const

{

return n; r .numerator ()

}

m A member function is called for an expression of the class. in the
function, this is the name of this implicit argument.

m const refers to the instance this



Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const

{

return n; r .numerator ()

}

m A member function is called for an expression of the class. in the
function, this is the name of this implicit argument.

m const refers to the instance this

m n is the shortcut for this->n (precise explanation of “=>” next
week)



const and Member Functions

class rational {
public:
int numerator () const
{ return n; }
void set_numerator (int N)
{n=0N;}

rational x;
x.set_numerator(10); // ok;
const rational y = x;

int n = y.numerator(); // ok;
y.set_numerator(10); // error;

1

The const at a member function is to promise that an instance
cannot be changed via this function.

const items can only call const member functions.



Comparison

class rational {
int n;

public:
int numerator () const

{

return n;
}
i

rational r;

std::cout << r.numerator();



Comparison

class rational {
int n;

public:
int numerator () const

{

return this->n;
}
i

rational r;

std::cout << r.numerator();



Comparison
Roughly like this it were ...

class rational {
int n;

public:
int numerator () const
{
return this->n;
}
i

rational r;

std::cout << r.numerator();



Comparison
Roughly like this it were ...

class rational {
int n;

public:
int numerator () const

{

return this->n;
}
i

rational r;

std::cout << r.numerator();

... without member functions

struct bruch {
int n;

};

int numerator (const bruch& dieser)

{
return dieser.n;
}

bruch r;

std::cout << numerator(r);



Member-Definition: In-Class

class rational {
int n;

public:
int numerator () const

{

return n;

}
};

m No separation between
declaration and definition (bad
for libraries)



Member-Definition: In-Class vs. Out-of-Class

class rational { class rational {

int n; int n;
public: public:

int numerator () comst int numerator () const;

{

return n; };

}

S int rational: :numerator () const
i {

return n;

m No separation between }

declaration and definition (bad
for libraries) m This also works.



Initialisation? Constructors!

class rational

{
public:
rational (int num, int den)
: n (num), d (den)
{
assert (den !'= 0);
}
};

rational r (2,3); // r = 2/3



Initialisation? Constructors!

class rational

{
public:
rational (int num, int den) R
s 5w G, 8 () Inltlallzatlon. of the
{ member variables
assert (den != 0); +—— function body.
}
}

rational r (2,3); // r = 2/3



Initialisation “rational = int”?

class rational
{
public:
rational (int num)
: n (num), d (1)
{3

}

rational r (2); // explicit initialization with 2
rational s = 2; // implicit conversion



Initialisation “rational = int”?

class rational
{
public:
rational (int num)
: n (num), d (1)
{} +—— empty function body

}

rational r (2); // explicit initialization with 2
rational s = 2; // implicit conversion



The Default Constructor

class rational

{
public: empty list of arguments
rational ()/
:n (0), 4 (1)
{}
}

rational r; //t =0



The Default Constructor

class rational

{

public: empty list of arguments

1:.a.tiona1 ()/

:n (0), 4d (1)
{3

}
rational r; //t =0

= There are no uninitiatlized variables of type rational any more!



Alterantively: Deleting a Default Constructor

class rational

{
public:
r”a.tional () = delete;
b
Iiéltional T; error: use of deleted function ’rational::rational()

= There are no uninitiatlized variables of type rational any more!



RAT PACK® Reloaded ...

Customer’s program now looks like this:

// POST: double approximation of r
double to_double (const rational r)
{
double result = r.numerator();
return result / r.denominator();

}



RAT PACK® Reloaded ...

Customer’s program now looks like this:

// POST: double approximation of r
double to_double (const rational r)

{

double result = r.numerator();
return result / r.denominator();

}

m We can adapt the member functions together with the
representation v’



RAT PACK® Reloaded ...

class rational {

9 o . :

o private:
?5 int n;
O int d;

};




RAT PACK® Reloaded ...

class rational {

e o . :

o private:
?5 int n;
O int d;

};

int numerator () const

{

return n;

}




RAT PACK® Reloaded ...

class rational {

int numerator () const

® ce {
o) private: return n;
?5 int n; }
©] int d;
};
class rational {
private:
— unsigned int n;
ég unsigned int 4;
(4] bool is_positive;

};



RAT PACK® Reloaded ...

class rational { int numerator () const
® - {
o) private: return n;
"5 int n; }
©] int d;
};
class rational { int numerator () const{
e if (is_positive)
private: return n;
!_ unsigned int n; else {
dCL_J unsigned int 4; int result = n;
(4] bool is_positive; return —result;
}; }

3



RAT PACK® Reloaded ?

class rational { int numerator () const

{
private: if (is_positive)
unsigned int n; return n;
else {

unsigned int d;
bool is_positive;

};

int result = n;
return —result;
%
}



RAT PACK® Reloaded ?

class rational {

private:
unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const
{
if (is_positive)
return n;
else {
int result = n;
return —result;
}
}

m value range of nominator and denominator like before



RAT PACK® Reloaded ?

class rational { int numerator () comst

{
private: if (is_positive)
i i return n;
unsigned int n;
i i else {
unsigned int d; :
i iti int result = n;
bool is_positive;
}; return —result;
’ }
}

m value range of nominator and denominator like before
m possible overflow in addition



Encapsulation still Incompleete

Customer’s point of view (rational.h):

class rational {

public:
// POST: returns numerator of xthis
int numerator () comnst;

private:
// none of my business

};



Encapsulation still Incompleete

Customer’s point of view (rational.h):

class rational {
public:

int numerator () comnst;

private:

};

m We determined denominator and nominator type to be int



Encapsulation still Incompleete

Customer’s point of view (rational.h):

class rational {
public:

int numerator () comnst;
private:

};

m We determined denominator and nominator type to be int
m Solution: encapsulate not only data but alsoe types.



Fix: “our” type rational: :integer

Customer’s point of view (rational.h):

public:
using integer = long int; // might change
// POST: returns numerator of xthis
integer numerator () const;



Fix: “our” type rational: :integer

Customer’s point of view (rational.h):
public:
using integer = long int; // might change
// POST: returns numerator of xthis
integer numerator () const;

m We provide an additional type!



Fix: “our” type rational: :integer

Customer’s point of view (rational.h):

public:
using integer = long int; // might change
// POST: returns numerator of xthis
integer numerator () const;

m We provide an additional type!
m Determine only Functionality, e.qg:

m implicit conversion int — rational: :integer



Fix: “our” type rational: :integer

Customer’s point of view (rational.h):
public:
using integer = long int; // might change
// POST: returns numerator of xthis
integer numerator () const;

m We provide an additional type!
m Determine only Functionality, e.qg:

m implicit conversion int — rational: :integer
m function double to_double (rational::integer)



RAT PACK® Revolutions

Finally, a customer program that remains stable

// POST: double approximation of r
double to_double (const rational r)
{
rational::integer n = r.numerator();
rational::integer d = r.denominator();
return to_double (n) / to_double (d);
}



	Classes
	Thought Experiment
	Encapsulation
	Member Functions
	Constructors
	Type aliases within classes


