
17. Classes

Encapsulation, Classes, Member Functions, Constructors

556

A new Type with Functionality. . .

struct rational {
int n;
int d; // INV: d != 0

};

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}
...

557

. . . should be in a Library!

rational.h:
Definition of a struct rational
Function declarations

rational.cpp:
arithmetic operators (operator+, operator+=, ...)
relational operators (operator==, operator>, ...)
in/output (operator >>, operator <<, ...)

558

Thought Experiment

The three core missions of ETH:

research

education
technology transfer

We found a startup: RAT PACKr!

Selling the rational library to customers
ongoing development according to customer’s demands

559

Thought Experiment

The three core missions of ETH:

research
education

technology transfer

We found a startup: RAT PACKr!

Selling the rational library to customers
ongoing development according to customer’s demands

559

Thought Experiment

The three core missions of ETH:

research
education
technology transfer

We found a startup: RAT PACKr!

Selling the rational library to customers
ongoing development according to customer’s demands

559

Thought Experiment

The three core missions of ETH:

research
education
technology transfer

We found a startup: RAT PACKr!

Selling the rational library to customers
ongoing development according to customer’s demands

559

Thought Experiment

The three core missions of ETH:

research
education
technology transfer

We found a startup: RAT PACKr!

Selling the rational library to customers
ongoing development according to customer’s demands

559

The Customer is Happy
“Buying RAT PACKr has been a

game-changing move to put us on the
forefront of cutting-edge technology in so-
cial media engineering.”

B. Labla, CEO

. . . and
programs busily using rational.

output as double-value (35 → 0.6)

// POST: double approximation of r
double to_double (rational r)
{

double result = r.n;
return result / r.d;

}

560

The Customer is Happy
. . . and programs busily using rational.

output as double-value (35 → 0.6)

// POST: double approximation of r
double to_double (rational r)
{

double result = r.n;
return result / r.d;

}

560

The Customer is Happy
. . . and programs busily using rational.

output as double-value (35 → 0.6)

// POST: double approximation of r
double to_double (rational r)
{

double result = r.n;
return result / r.d;

}

560

The Customer is Happy
. . . and programs busily using rational.

output as double-value (35 → 0.6)

// POST: double approximation of r
double to_double (rational r)
{

double result = r.n;
return result / r.d;

}

560

The Customer Wants More
“Can we have rational numbers with an extended value range?”

Sure, no problem, e.g.:

struct rational {
int n;
int d;

};
⇒

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

561

The Customer Wants More
“Can we have rational numbers with an extended value range?”

Sure, no problem, e.g.:

struct rational {
int n;
int d;

};
⇒

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

561

New Version of RAT PACKr

It sucks, nothing works any more!

What is the problem?

−3
5 is sometimes 0.6, this cannot be true!

That is your fault. Your conversion to double
is the problem, our library is correct.

Up to now it worked, therefore the new
version is to blame!

562

New Version of RAT PACKr

It sucks, nothing works any more!
What is the problem?

−3
5 is sometimes 0.6, this cannot be true!

That is your fault. Your conversion to double
is the problem, our library is correct.

Up to now it worked, therefore the new
version is to blame!

562

New Version of RAT PACKr

It sucks, nothing works any more!
What is the problem?

−3
5 is sometimes 0.6, this cannot be true!

That is your fault. Your conversion to double
is the problem, our library is correct.

Up to now it worked, therefore the new
version is to blame!

562

New Version of RAT PACKr

It sucks, nothing works any more!
What is the problem?

−3
5 is sometimes 0.6, this cannot be true!

That is your fault. Your conversion to double
is the problem, our library is correct.

Up to now it worked, therefore the new
version is to blame!

562

New Version of RAT PACKr

It sucks, nothing works any more!
What is the problem?

−3
5 is sometimes 0.6, this cannot be true!

That is your fault. Your conversion to double
is the problem, our library is correct.

Up to now it worked, therefore the new
version is to blame!

562

Liability Discussion

// POST: double approximation of r
double to_double (rational r){

double result = r.n;
return result / r.d;

}

correct using. . .

struct rational {
int n;
int d;

};

. . . not correct using

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

r.is_positive and result.is_positive
do not appear.

563

Liability Discussion

// POST: double approximation of r
double to_double (rational r){

double result = r.n;
return result / r.d;

}

correct using. . .

struct rational {
int n;
int d;

};

. . . not correct using

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

r.is_positive and result.is_positive
do not appear.

563

Liability Discussion

// POST: double approximation of r
double to_double (rational r){

double result = r.n;
return result / r.d;

}

correct using. . .

struct rational {
int n;
int d;

};

. . . not correct using

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

r.is_positive and result.is_positive
do not appear.

563

Liability Discussion

// POST: double approximation of r
double to_double (rational r){

double result = r.n;
return result / r.d;

}

correct using. . .

struct rational {
int n;
int d;

};

. . . not correct using

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

r.is_positive and result.is_positive
do not appear.

563

We are to Blame!!

Customer sees and uses our representation of rational numbers
(initially r.n, r.d)

When we change it (r.n, r.d, r.is_positive), the customer’s
programs do not work anymore.
No customer is willing to adapt the programs when the version of
the library changes.

⇒ RAT PACKr is history. . .

564

We are to Blame!!

Customer sees and uses our representation of rational numbers
(initially r.n, r.d)
When we change it (r.n, r.d, r.is_positive), the customer’s
programs do not work anymore.

No customer is willing to adapt the programs when the version of
the library changes.

⇒ RAT PACKr is history. . .

564

We are to Blame!!

Customer sees and uses our representation of rational numbers
(initially r.n, r.d)
When we change it (r.n, r.d, r.is_positive), the customer’s
programs do not work anymore.
No customer is willing to adapt the programs when the version of
the library changes.

⇒ RAT PACKr is history. . .

564

We are to Blame!!

Customer sees and uses our representation of rational numbers
(initially r.n, r.d)
When we change it (r.n, r.d, r.is_positive), the customer’s
programs do not work anymore.
No customer is willing to adapt the programs when the version of
the library changes.

⇒ RAT PACKr is history. . .

564

Idea of Encapsulation (Information Hiding)

A type is uniquely defined by its value range and its functionality

The representation should not be visible.
⇒ The customer is not provided with representation but with
functionality!

str.length(),
v.push_back(1),. . .

565

Idea of Encapsulation (Information Hiding)

A type is uniquely defined by its value range and its functionality
The representation should not be visible.

⇒ The customer is not provided with representation but with
functionality!

str.length(),
v.push_back(1),. . .

565

Idea of Encapsulation (Information Hiding)

A type is uniquely defined by its value range and its functionality
The representation should not be visible.
⇒ The customer is not provided with representation but with
functionality!

str.length(),
v.push_back(1),. . .

565

Idea of Encapsulation (Information Hiding)

A type is uniquely defined by its value range and its functionality
The representation should not be visible.
⇒ The customer is not provided with representation but with
functionality!

str.length(),
v.push_back(1),. . .

565

Classes

provide the concept for encapsulation in C++

are a variant of structs
are provided in many object oriented programming languages

566

Classes

provide the concept for encapsulation in C++
are a variant of structs

are provided in many object oriented programming languages

566

Classes

provide the concept for encapsulation in C++
are a variant of structs
are provided in many object oriented programming languages

566

Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

only difference

struct: by default nothing is hidden
class : by default everything is hidden

is used instead of struct if anything at all
shall be “hidden”

567

Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

only difference

struct: by default nothing is hidden
class : by default everything is hidden

is used instead of struct if anything at all
shall be “hidden”

567

Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

Application Code

rational r;
r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private

Good news: r.d = 0 cannot happen
any more by accident.

Bad news: the customer cannot do any-
thing any more . . .

. . . and we can’t, either.
(no operator+,. . .)

568

Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

Application Code

rational r;
r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private

Good news: r.d = 0 cannot happen
any more by accident.

Bad news: the customer cannot do any-
thing any more . . .

. . . and we can’t, either.
(no operator+,. . .)

568

Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

Application Code

rational r;
r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private

Good news: r.d = 0 cannot happen
any more by accident.

Bad news: the customer cannot do any-
thing any more . . .

. . . and we can’t, either.
(no operator+,. . .)

568

Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

Application Code

rational r;
r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private

Good news: r.d = 0 cannot happen
any more by accident.

Bad news: the customer cannot do any-
thing any more . . .

. . . and we can’t, either.
(no operator+,. . .)

568

Member Functions: Declaration
class rational {
public:

// POST: return value is the numerator of this instance
int numerator () const {

return n;
}
// POST: return value is the denominator of this instance
int denominator () const {

return d;
}

private:
int n;
int d; // INV: d!= 0

};

569

Member Functions: Declaration
class rational {
public:

// POST: return value is the numerator of this instance
int numerator () const {

return n;
}
// POST: return value is the denominator of this instance
int denominator () const {

return d;
}

private:
int n;
int d; // INV: d!= 0

};

pu
bl

ic
ar

ea

569

Member Functions: Declaration
class rational {
public:

// POST: return value is the numerator of this instance
int numerator () const {

return n;
}
// POST: return value is the denominator of this instance
int denominator () const {

return d;
}

private:
int n;
int d; // INV: d!= 0

};

pu
bl

ic
ar

ea

member function

569

Member Functions: Declaration
class rational {
public:

// POST: return value is the numerator of this instance
int numerator () const {

return n;
}
// POST: return value is the denominator of this instance
int denominator () const {

return d;
}

private:
int n;
int d; // INV: d!= 0

};

pu
bl

ic
ar

ea

member function

member functions have ac-
cess to private data

569

Member Functions: Call

// Definition des Typs
class rational {

...
};
...
// Variable des Typs
rational r;

int n = r.numerator(); // Zaehler
int d = r.denominator(); // Nenner

member access

570

Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const
{

return n;
}

A member function is called for an expression of the class.

in the
function, this is the name of this implicit argument.
const refers to the instance this

571

Member Functions: Definition ???

// POST: returns numerator of this instance
int numerator () const
{

return n;
}

A member function is called for an expression of the class.

in the
function, this is the name of this implicit argument.
const refers to the instance this

571

Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const
{

return n;
}

A member function is called for an expression of the class.

in the
function, this is the name of this implicit argument.
const refers to the instance this

r.numerator()

571

Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const
{

return n;
}

A member function is called for an expression of the class. in the
function, this is the name of this implicit argument.

const refers to the instance this

r.numerator()

571

Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const
{

return n;
}

A member function is called for an expression of the class. in the
function, this is the name of this implicit argument.
const refers to the instance this

r.numerator()

571

Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const
{

return n;
}

A member function is called for an expression of the class. in the
function, this is the name of this implicit argument.
const refers to the instance this
n is the shortcut for this->n (precise explanation of “->” next
week)

r.numerator()

571

const and Member Functions

class rational {
public:

int numerator () const
{ return n; }
void set_numerator (int N)
{ n = N;}

...
}

rational x;
x.set_numerator(10); // ok;
const rational y = x;
int n = y.numerator(); // ok;
y.set_numerator(10); // error;

The const at a member function is to promise that an instance
cannot be changed via this function.

const items can only call const member functions.

572

Comparison

Roughly like this it were ...

class rational {
int n;
...

public:
int numerator () const
{

return n;
}

};

rational r;
...
std::cout << r.numerator();

... without member functions

struct bruch {
int n;
...

};

int numerator (const bruch& dieser)
{

return dieser.n;
}

bruch r;
..
std::cout << numerator(r);

573

Comparison

Roughly like this it were ...

class rational {
int n;
...

public:
int numerator () const
{

return this->n;
}

};

rational r;
...
std::cout << r.numerator();

... without member functions

struct bruch {
int n;
...

};

int numerator (const bruch& dieser)
{

return dieser.n;
}

bruch r;
..
std::cout << numerator(r);

573

Comparison
Roughly like this it were ...

class rational {
int n;
...

public:
int numerator () const
{

return this->n;
}

};

rational r;
...
std::cout << r.numerator();

... without member functions

struct bruch {
int n;
...

};

int numerator (const bruch& dieser)
{

return dieser.n;
}

bruch r;
..
std::cout << numerator(r);

573

Comparison
Roughly like this it were ...

class rational {
int n;
...

public:
int numerator () const
{

return this->n;
}

};

rational r;
...
std::cout << r.numerator();

... without member functions

struct bruch {
int n;
...

};

int numerator (const bruch& dieser)
{

return dieser.n;
}

bruch r;
..
std::cout << numerator(r);

573

Member-Definition: In-Class
class rational {

int n;
...

public:
int numerator () const
{

return n;
}
....

};

No separation between
declaration and definition (bad
for libraries)

class rational {
int n;
...

public:
int numerator () const;
...

};

int rational::numerator () const
{

return n;
}

This also works.

574

Member-Definition: In-Class vs. Out-of-Class
class rational {

int n;
...

public:
int numerator () const
{

return n;
}
....

};

No separation between
declaration and definition (bad
for libraries)

class rational {
int n;
...

public:
int numerator () const;
...

};

int rational::numerator () const
{

return n;
}

This also works.
574

Initialisation? Constructors!

class rational
{
public :

rational (int num, int den)
: n (num), d (den)

{
assert (den != 0);

}
...
};
...
rational r (2,3); // r = 2/3

576

Initialisation? Constructors!

class rational
{
public :

rational (int num, int den)
: n (num), d (den)

{
assert (den != 0);

}
...
};
...
rational r (2,3); // r = 2/3

Initialization of the
member variables

function body.

576

Initialisation “rational = int”?

class rational
{
public :

rational (int num)
: n (num), d (1)

{}
...
};
...
rational r (2); // explicit initialization with 2
rational s = 2; // implicit conversion

578

Initialisation “rational = int”?

class rational
{
public :

rational (int num)
: n (num), d (1)

{}
...
};
...
rational r (2); // explicit initialization with 2
rational s = 2; // implicit conversion

empty function body

578

The Default Constructor

class rational
{
public :

...
rational ()

: n (0), d (1)
{}

...
};
...
rational r ; // r = 0

empty list of arguments

⇒ There are no uninitiatlized variables of type rational any more!

580

The Default Constructor

class rational
{
public :

...
rational ()

: n (0), d (1)
{}

...
};
...
rational r ; // r = 0

empty list of arguments

⇒ There are no uninitiatlized variables of type rational any more!

580

Alterantively: Deleting a Default Constructor

class rational
{
public :

...
rational () = delete;

...
};
...
rational r ; // error: use of deleted function ’rational::rational()

⇒ There are no uninitiatlized variables of type rational any more!

581

RAT PACKr Reloaded . . .

Customer’s program now looks like this:
// POST: double approximation of r
double to_double (const rational r)
{

double result = r.numerator();
return result / r.denominator();

}

We can adapt the member functions together with the
representation X

583

RAT PACKr Reloaded . . .

Customer’s program now looks like this:
// POST: double approximation of r
double to_double (const rational r)
{

double result = r.numerator();
return result / r.denominator();

}

We can adapt the member functions together with the
representation X

583

RAT PACKr Reloaded . . .
be

fo
re

class rational {
...
private:

int n;
int d;

};

int numerator () const
{

return n;
}

af
te

r

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const{
if (is_positive)

return n;
else {

int result = n;
return −result;

}
}

584

RAT PACKr Reloaded . . .
be

fo
re

class rational {
...
private:

int n;
int d;

};

int numerator () const
{

return n;
}

af
te

r

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const{
if (is_positive)

return n;
else {

int result = n;
return −result;

}
}

584

RAT PACKr Reloaded . . .
be

fo
re

class rational {
...
private:

int n;
int d;

};

int numerator () const
{

return n;
}

af
te

r

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const{
if (is_positive)

return n;
else {

int result = n;
return −result;

}
}

584

RAT PACKr Reloaded . . .
be

fo
re

class rational {
...
private:

int n;
int d;

};

int numerator () const
{

return n;
}

af
te

r

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const{
if (is_positive)

return n;
else {

int result = n;
return −result;

}
}

584

RAT PACKr Reloaded ?

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const
{

if (is_positive)
return n;

else {
int result = n;
return −result;

}
}

value range of nominator and denominator like before
possible overflow in addition

585

RAT PACKr Reloaded ?

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const
{

if (is_positive)
return n;

else {
int result = n;
return −result;

}
}

value range of nominator and denominator like before

possible overflow in addition

585

RAT PACKr Reloaded ?

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const
{

if (is_positive)
return n;

else {
int result = n;
return −result;

}
}

value range of nominator and denominator like before
possible overflow in addition

585

Encapsulation still Incompleete

Customer’s point of view (rational.h):
class rational {
public:

// POST: returns numerator of ∗this
int numerator () const;
...

private:
// none of my business

};

We determined denominator and nominator type to be int
Solution: encapsulate not only data but alsoe types.

586

Encapsulation still Incompleete

Customer’s point of view (rational.h):
class rational {
public:

// POST: returns numerator of ∗this
int numerator () const;
...

private:
// none of my business

};

We determined denominator and nominator type to be int

Solution: encapsulate not only data but alsoe types.

586

Encapsulation still Incompleete

Customer’s point of view (rational.h):
class rational {
public:

// POST: returns numerator of ∗this
int numerator () const;
...

private:
// none of my business

};

We determined denominator and nominator type to be int
Solution: encapsulate not only data but alsoe types.

586

Fix: “our” type rational::integer

Customer’s point of view (rational.h):
public:

using integer = long int; // might change
// POST: returns numerator of ∗this
integer numerator () const;

We provide an additional type!

Determine only Functionality, e.g:

implicit conversion int→ rational::integer

function double to_double (rational::integer)

587

Fix: “our” type rational::integer

Customer’s point of view (rational.h):
public:

using integer = long int; // might change
// POST: returns numerator of ∗this
integer numerator () const;

We provide an additional type!

Determine only Functionality, e.g:

implicit conversion int→ rational::integer

function double to_double (rational::integer)

587

Fix: “our” type rational::integer

Customer’s point of view (rational.h):
public:

using integer = long int; // might change
// POST: returns numerator of ∗this
integer numerator () const;

We provide an additional type!
Determine only Functionality, e.g:

implicit conversion int→ rational::integer

function double to_double (rational::integer)

587

Fix: “our” type rational::integer

Customer’s point of view (rational.h):
public:

using integer = long int; // might change
// POST: returns numerator of ∗this
integer numerator () const;

We provide an additional type!
Determine only Functionality, e.g:

implicit conversion int→ rational::integer
function double to_double (rational::integer)

587

RAT PACKr Revolutions

Finally, a customer program that remains stable
// POST: double approximation of r
double to_double (const rational r)
{

rational::integer n = r.numerator();
rational::integer d = r.denominator();
return to_double (n) / to_double (d);

}

588

	Classes
	Thought Experiment
	Encapsulation
	Member Functions
	Constructors
	Type aliases within classes

